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Ionic polymer-metal composites (IPMCs) are a novel class of soft sensing and actuation materials

with promising applications in robotic and biomedical systems. In this paper, we present a model

for nonlinear electrical dynamics of IPMC actuators, by applying perturbation analysis on

the dynamics-governing partial differential equation (PDE) around a given bias voltage. By

approximating the steady-state electric field under the bias with a piecewise linear function, we

derive a linear PDE for the perturbed charge dynamics, which has piecewise constant coefficients

and coefficients linear in the spatial variable. Through power series expansion, we solve the PDE to

get the charge distribution up to any prescribed order. The perturbed electric field and current are

subsequently obtained, which result in a bias-dependent impedance model. This model captures

the nonlinear nature of the IPMC electrical dynamics and degenerates to the linear model when the

bias is zero. The model predicts that, as the bias voltage increases, both the magnitude and the

phase delay of the impedance decrease. These trends are quantitatively verified in experiments,

where excellent agreement is achieved between the experimental measurements and model

predictions. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730339]

I. INTRODUCTION

Ionic polymer-metal composites (IPMCs) are a novel

class of soft actuation and sensing materials. An IPMC con-

sists of three layers, with an ion-exchange polymer mem-

brane (e.g., Nafion) sandwiched by metal electrodes. Inside

the polymer, (negatively charged) anions covalently fixed to

polymer chains are balanced by mobile (positively charged)

cations. An applied voltage across an IPMC leads to the

transport of cations and accompanying solvent molecules,

resulting in both differential swelling and electrostatic forces

inside the material, which cause the material to bend and

hence the actuation effect.1,2 Because of their softness and

low actuation voltage requirement, IPMC actuators have

been proposed for various applications in biomedical devices

and underwater robotics.3–6

Recent years have seen significant advances in improv-

ing IPMC materials. One research thrust is on developing

various electroding techniques to enhance actuation perform-

ance and electromechanical properties of IPMCs.7–10

Another research thrust is on understanding the roles of

solvents and ions.11–13 For example, ionic fluids have been

proposed as solvents for IPMCs to enable stable in-air actua-

tion.14,15 Closely coupled with the material development

effort is the interest in the modeling and understanding of

IPMC actuation behavior and mechanisms.2,16–24 Current

modeling work on IPMC actuators typically falls into three

categories, with progressively increased level of complexity

and fidelity: black-box models, gray-box models, and white-

box models. Black-box models attempt to reproduce empirical

responses without referring to the physical origin of the phe-

nomena.25,26 These models are simple but are sample-dependent

and not geometrically scalable. The gray-box models incorpo-

rate some physical principles but still use empirical descrip-

tions to define some other complex physical processes.27–29

White-box models, on the other hand, aim to capture the

underlying physics of IPMC actuators.2,16,18–22,30–34

A number of researchers have reported the characteriza-

tion and modeling of nonlinear behaviors in IPMCs. For

example, in the study of a linear, two-port transducer model

for IPMCs, Newbury and Leo noted the significant impact of

the initial curvature of an IPMC on its actuation response.35

Bar-Cohen et al. reported the remanent deformation of an

IPMC sample after the electrical activation was removed.36

With a black-box approach, Bonomo and coworkers intro-

duced diode elements into their circuit model to capture the

nonlinear electrical response of IPMCs.29 Hysteresis in

IPMCs is another nonlinear phenomenon that has been stud-

ied by several groups. For example, Paquette et al. showed

that a nanocomposite-IPMC exhibited less pronounced hys-

teresis in the current/voltage (I/V) characteristics than an

untreated IPMC.37 Chen and Tan proposed a black-box

model for an IPMC actuator by cascading a Preisach hystere-

sis model with a linear system,38 while Hao and Li used a

parallel connection of a Prandtl-Ishlinskii model and linear

dynamics to capture the hysteresis and creep behavior,

respectively.39 In addition, Kothera and Leo explored several

tools in black-box nonlinear system identification, including

Volterra series40 and Hammerstein structures,41 to character-

ize and model nonlinear IPMC responses.

Most physics-based partial differential equation (PDE)

models capture nonlinear dynamics in IPMCs, but typically,

they can only be solved numerically and cannot be used for

real-time control design. For example, Tadokoro et al. proposed

a PDE model that accommodates electric field-induced ion

transport, ion-dragged solvent transport, membrane swelling

and contraction, and conformational changes and showed the
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agreement of simulation results with experimental measure-

ment on the actuation response under a step voltage input.31

Wallmersperger et al. developed a model of transport and

electromechanical transduction based upon a coupled che-

moelectrical multifield formulation and employed an adapt-

ive multigrid method to obtain the numerical resolution,

which was found to match the experimental results.42 While

these models are instrumental in understanding the physics

of IPMCs, they rely on numerical solutions and offer little

direct analytical insight. On the other hand, several methods

have been explored by researchers to gain certain analytical

insight into nonlinear IPMC behaviors (especially electrical

behaviors) from physics-based models. For example, Porfiri

proposed Poisson–Nernst–Planck equations to model the

time evolution of the electric potential and the concentration

of mobile cations and used the method of matched asymp-

totic expansions to compute the nonlinear capacitance of an

IPMC and consequently derived a physics-based circuit

model.22 Davidson and Goulbourne also applied the matched

asymptotic expansions method to study the capacitance of

ionic liquid-based IPMCs.43 Nonlinear capacitance of an

IPMC has also been developing by Chen et al.44 by deriving

the steady-state solution under a step voltage, for the nonlin-

ear dynamics-governing PDE.2 While all these works shed

important light on the nonlinear capacitance, they do not pro-

vide closed-form dynamic models for IPMCs. Finally, by

dropping the nonlinear term in the governing PDE, Chen and

Tan derived an explicit, infinite-dimensional transfer func-

tion model for the impedance and actuation behavior of

IPMCs;45 however, the linearity assumption implies that this

model is only valid when the actuation voltage is low.

In this paper, we propose a new approach to the under-

standing of nonlinear IPMC electrical dynamics using pertur-

bation analysis, which will result in closed-form transfer

function models for IPMC impedance under different actua-

tion voltage biases. In particular, the perturbed dynamics of

an IPMC biased at any given voltage is examined. By

approximating the steady-state electric field under the bias

with a piecewise linear function, we derive a linear PDE for

the perturbed charge dynamics, which has piecewise-

constant coefficients and coefficients linear in the spatial

variable. The latter coefficients depend on the bias voltage.

Through power series expansion, we solve the PDE to get

the charge distribution up to any prescribed order. The per-

turbed electric field and current are subsequently obtained,

yielding a bias-dependent impedance model. This model

captures the nonlinear nature of the IPMC electrical dynam-

ics and degenerates to the linear model when the bias is zero.

The impedance model predicts that, as the bias voltage

increases, both the magnitude and the phase delay of the im-

pedance decrease. Experiments on an IPMC sample have

been conducted to characterize its electrical behavior under

four different biases from 0 to 1.5 V. Experimental results

have quantitatively confirmed the model-predicted trends.

To our best knowledge, this work is the first to formally

report the bias-dependent impedance of IPMCs and to pro-

vide a theoretical explanation. The proposed model is also

expected to be instrumental in control design for IPMC

actuators.

The remainder of the paper is organized as follows. We

first present the analysis and piecewise-linear approximation

of the electric field under a constant voltage (bias) in Sec. II.

The perturbation analysis is presented in Sec. III, to derive

the bias-dependent impedance model. Methods and materials

for experimental model validation are described in Sec. IV,

and the results are presented and discussed in Sec. V.

Finally, concluding remarks are provided in Sec. VI.

II. STEADY-STATE FIELD ANALYSIS AND
APPROXIMATION

We first analyze the steady-state distribution of the elec-

tric field within the polymer when a bias voltage is applied.

Numerical results indicate that the field can be approximated

with a piecewise linear function that has three segments. The

later perturbation analysis will be performed around this ap-

proximate steady-state field distribution.

A. Review of dynamics-governing PDEs

We start with the PDE model for ion transport dynamics

that was originally proposed by Nemat-Nasser and Li.2 Con-

sider Fig. 1, where an IPMC beam is clamped at one end

(z¼ 0) and its displacement at the other end (z¼ L) is

denoted by w(t). The neutral axis of the beam is denoted by

x¼ 0, and the upper and lower surfaces are denoted by x¼ h
and x¼ –h, respectively.

Typically, the lateral dimensions of an IPMC beam are

much greater than its thickness, which allows us to assume

that all field variables (electric field, electric displacement,

etc.) inside the polymer are restricted to the thickness direc-

tion only. Let /, E, D, and q denote the electric potential,

electric field, electric displacement, and the charge density,

respectively. The following equations hold as:

E ¼ D

je
¼ @/
@x

; (1)

q ¼ @D

@x
¼ FðCþ � C�Þ; (2)

where je is the effective dielectric constant of the polymer,

F is the Faraday’s constant, and Cþ and C– are the cation

and anion concentrations, respectively.

Using the continuity equation, we get

@J

@x
¼ � @Cþ

@t
: (3)

FIG. 1. Geometric definition of an IPMC cantilever beam.
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The ion flux consists of diffusion, migration, and con-

vection terms, and can be derived as2

J ¼ � dje

F

@2E

@x2
� Fð1� C�dVÞ

RT
E

@E

@x
þ FC�

je

� �� �
; (4)

where d is the ionic diffusivity, R is the gas constant, T is the

absolute temperature, and dV is the volumetric change, which

represents how much the polymer volume swells after taking

water. With Eq. (3), one can derive the nonlinear PDE in

terms of the electric field as

@2E

@x@t
¼ d

@3E

@x3
� Fð1� C�dVÞ

RT

@2E

@x2
Eþ

�
@E

@x

�2
" # 

�F2C�ð1� C�dVÞ
RTje

@E

@x

�
: (5)

In several papers,2,16,32,45 the nonlinear term involving in

Eq. (5) has been dropped based on the assumption

qðxÞ ¼ je
@E

@x
� C�F; (6)

resulting in a linear PDE, which has been used to derive

closed-form models for IPMC dynamics.32,45 However,

Chen and Tan44 show that the assumption (6) holds only for

small actuation voltages (<0.2 V). The goal of this paper,

therefore, is to develop closed-form models that are valid in-

dependent of the assumption (6).

B. Steady-state field distribution under
a constant voltage

We first analyze the steady-state charge and electric

field distributions under a constant applied voltage V0. This

will be instrumental in our perturbation analysis later. Under

a constant voltage, the system will approach the equilibrium

state, where J¼ 0. Equation (4) then implies

@2E0

@x2
� Fð1� C�dVÞ

RT
E0

@E0

@x
þ FC�

je

� �
¼ 0; (7)

where E0 represents the steady-state distribution of the elec-

tric field. Two additional equations are required for solving

for E0 and the corresponding charge distribution q0:

(1) The overall charge-balance condition leads toðh

�h

q0ðxÞ dx ¼ 0; (8)

where q0 ¼ je
@E0

@x .

(2) The potential difference across IPMC is equal to the

applied voltage

ðh

�h

E0ðxÞ dx ¼ V0: (9)

Chen and Tan44 proposed a recursive scheme for

numerically solving Eqs. (7)–(9). We have adopted the same

scheme to solve for the field distributions under different

voltages (Fig. 2). Table I lists the parameters used in our

computation, which were identified for an IPMC sample

used in the experiments of this work. Following Nemat-

Nasser and Li,2 we take 1� C�dV � 1. From Fig. 2, under

each voltage, the electric field vanishes except in the bound-

ary regions. Furthermore, as the voltage V0 increases, both

the electric field value and the range of its non-vanishing

region increase.

Another observation one can make from Fig. 2 is that

the electric field in the boundary regions varies with the spa-

tial variable x in a linear fashion, at least to the first-order

approximation. We thus propose the approximation of the

field distribution with a piecewise linear function, which will

greatly facilitate the model development later on. In particu-

lar, we approximate E0 as

E0ðxÞ ¼
E0;1 ¼ a1xþ b1; for x < h1

E0;2 ¼ a2xþ b2; for h1 � x � h2

E0;3 ¼ a3xþ b3; for x > h2

;

8><
>: (10)

where h1 ¼ � b1

a1
and h2 ¼ � b3

a3
denote the approximate boun-

daries for the zero-field region, and a2¼ b2¼ 0. Fig. 3 illus-

trates the piecewise-linear approximation for the case of

V0¼ 1.5 V, and Table II lists the approximating coefficients

ai, bi, i¼ 1, 2, 3, for all cases computed in Fig. 2.

III. BIAS-DEPENDENT IMPEDANCE MODEL

A. Perturbation analysis

The nonlinear PDE (5) can be compactly written as

FIG. 2. Simulation results: steady-state electric field distribution under con-

stant voltages.

TABLE I. Parameters used in numerical solving Eqs. (7)–(9).

F
C/mol

R
C/(mol�K)

T
K

je

F/m

C�

mol/m3

h
m

9.6485� 104 8.31 300 2.43� 10�5 1091 1.6� 10�4
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@2E

@x@t
¼ d

@3E

@x3
� f

@2E

@x2
Eþ @E

@x

� �2
" #

� g
@E

@x

 !
; (11)

where f and g are constants given by

f ¼4 Fð1� C�dVÞ
RT

and g ¼4 F2C�ð1� C�dVÞ
RTje

: (12)

We now consider applying a voltage input V that is per-

turbed from a constant bias V0,

VðtÞ ¼ V0 þ �V1ðtÞ; (13)

where 0 < �� 1. The solution to Eq. (11), �Eðx; t; �Þ, can be

expanded around � ¼ 0

�Eðx; t; �Þ ¼ E0ðxÞ þ �E1ðxÞ þ �2E2ðxÞ þ � � � ;

where E0(x) represents the steady-state field distribution

under the bias voltage V0. For perturbation analysis, we

ignore terms involving �2 and higher order terms and obtain

an approximate solution of the form

Eðx; tÞ ¼ E0ðxÞ þ �E1ðx; tÞ: (14)

We plug Eq. (14) into each term in Eq. (11) and ignore terms

involving �2,

@E

@x
¼ @E0

@x
þ � @E1

@x

@2E

@x@t
¼ � @

2E1

@x@t

@E

@x

� �2

¼ @E0

@x
þ � @E1

@x

� �2

¼ @E0

@x

� �2

þ 2�
@E0

@x

@E1

@x
þ �2 @E1

@x

� �2

@2E

@x2
E ¼ @2E0

@x2
þ � @

2E1

@x2

� �
ðE0 þ �E1Þ

¼ @
2E0

@x2
E0 þ �

@2E0

@x2
E1 þ �

@2E1

@x2
E0 þ �2 @

2E1

@x2
E1

@3E

@x3
¼ @

3E0

@x3
þ � @

3E1

@x3
:

Equation (11) is then rewritten as

�

d

@2E1

@x@t
¼ @

3E0

@x3
þ � @

3E1

@x3
� f

@2E0

@x2
E0 þ �

@2E0

@x2
E1

�

þ � @
2E1

@x2
E0 þ

@E0

@x

� �2

þ 2�
@E0

@x

@E1

@x

#

� g
@E0

@x
þ � @E1

@x

� �
: (15)

From Eq. (7), we have

@3E0

@x3
� f

@2E0

@x2
E0 þ

@E0

@x

� �2
 !

� g
@E0

@x
¼ 0; (16)

which allows us to simplify Eq. (15) to

1

d

@2E1

@x@t
¼ @

3E1

@x3
� f

@2E0

@x2
E1 þ E0

@2E1

@x2
þ 2

@E0

@x

@E1

@x

� �

� g
@E1

@x
: (17)

The charge density q(x, t) can be decomposed as

qðx; tÞ ¼ q0ðxÞ þ �q1ðx; tÞ; (18)

where q1 ¼ je
@E1

@x . Equation (17) can be rewritten in terms of

q1,

1

d

@q1

@t
� @

2q1

@x2
þ fje

@2E0

@x2
E1 þ f

@q1

@x
E0

þ 2f
@E0

@x
q1 þ gq1 ¼ 0: (19)

With the piecewise-linear approximation (10) for E0(x), we

have @2E0

@x2 ¼ 0 for all x except at x¼ h1, h2, and @E0

@x ¼ ai,

where ai, i¼ 1, 2, 3, is as defined in Eq. (10). The PDE (19)

for q1 can then be simplified as

1

d

@q1

@t
� @

2q1

@x2
þ f

@q1

@x
E0 þ 2faiq1 þ gq1 ¼ 0; (20)

FIG. 3. Piecewise-linear approximation of the steady state electric field for

V0¼ 1.5 V.

TABLE II. Coefficients for piecewise-linear approximation of the electric

field, for V0¼ 0.5, 1.5, 2.0, 2.5 V.

a1 b1 a2 b2 a3 b3

V0¼ 0.5 �8.68� 1011 �1.30� 108 0 0 2.01� 1012 �2.99� 108

V0¼ 1.5 �9.31� 1011 �1.37� 108 0 0 2.64� 1012 �3.88� 108

V0¼ 2.0 �9.53� 1011 �1.38� 108 0 0 4.55� 1012 �6.64� 108

V0¼ 2.5 �9.65� 1011 �1.37� 108 0 0 4.87� 1012 �7.01� 108

124907-4 Y. K. Fotsing and X. Tan J. Appl. Phys. 111, 124907 (2012)



which can be further converted to the Laplace domain

� @
2q1

@x2
þ f ðaixþ biÞ

@q1

@x
þ s

d
þ 2aif þ g

� �
q1 ¼ 0; (21)

where s is the Laplace variable, and with a bit abuse of nota-

tion, q1¼q1 (x, s) now represents the charge distribution in the

s-domain. For ease of presentation, we will also use the same

notation to represent E1 and V1 in the time- and s-domains.

B. Derivation of the impedance model

The charge density q1 can be solved from Eq. (21) to-

gether with the following two conditions:ðh

�h

q1ðx; sÞdx ¼ 0; (22)

ðh

�h

E1ðx; sÞdx ¼ 1

je

ðh

�h

ðx

0

q1ðn; sÞdndx ¼ V1ðsÞ: (23)

Note that in the first equality in Eq. (23) we have used the

observation E1ð0; sÞ � 0.

Some of the coefficients in Eq. (21) are piecewise con-

stant and some have x-dependence, which prevents one from

obtaining a closed-form solution. Instead, we represent q1

with a power series, the coefficients of which depend on x,

q1ðx; sÞ ¼
X1
n¼0

an;iðsÞxn; (24)

where

i ¼
1; if x < h1

2; if h1 � x � h2

3; if x > h2

:

8><
>: (25)

Subsequently, we have

@q1

@x
¼
X1
n¼1

nan;iðsÞxn�1; (26)

@2q1

@x2
¼
X1
n¼2

nðn� 1Þan;iðsÞxn�2: (27)

Plugging Eqs. (25)–(27) into Eq. (21), we have

�
X1
n¼2

nðn�1Þan;ix
n�2þaif

X1
n¼1

nan;ix
nþfbi

X1
n¼1

nan;ix
n�1

þ
�s

d
þ2aifþg

�X1
n¼0

an;ix
n¼0: (28)

Equation (28) can be manipulated into the following form:

�
X1
n¼0

ðnþ 2Þðnþ 1Þanþ2;ix
n þ aif

X1
n¼1

nan;ix
n

þ fbi

X1
n¼0

ðnþ 1Þanþ1;ix
n þ

�
s

d
þ 2aif þ g

�X1
n¼0

an;ix
n ¼ 0:

Equating the coefficients of powers of x, we obtain, for

n¼ 0,

�2a2;i þ fbia1;i þ
�

s

d
þ 2aif þ g

�
a0;i ¼ 0; (29)

and for n� 1,

� ðnþ 2Þðnþ 1Þanþ2;i þ aifnan;i þ fbiðnþ 1Þanþ1;i

þ s

d
þ 2aif þ g

� �
an;i ¼ 0: (30)

Equations (29) and (30) imply, for all n� 0,

anþ2;i ¼
fbiðnþ 1Þanþ1;i þ

s

d
þ aif ðnþ 2Þ þ g

� �
an;i

ðnþ 2Þðnþ 1Þ : (31)

With the recursion (31), one can express all coefficients an,i,

n� 2, in terms of a0,i and a1,i, and we can obtain the latter by

using Eqs. (22) and (23). It turns out that a0,i and a1,i are in-

dependent of i and we will simply write them as a0 and a1,

respectively. In practice, we seek an approximation to the

power series (24)

q1ðx; sÞ ¼
XN

n¼0

an;ix
n ¼ a0 þ a1xþ a2;ix

2 þ � � � þ aN;ix
N;

(32)

for a given N.

Once q1(x, s) is obtained, we can evaluate the trans-

ferred charge Q1(s) and the current I1(s) associated with the

applied voltage V1(s),

Q1ðsÞ ¼ A

ðh

0

q1ðx; sÞ dx;

I1ðsÞ ¼ sQ1ðsÞ;

where A is the surface area of the IPMC. The bias-dependent

impedance model, for a given order N, is then derived as

ZðsÞ ¼ V1ðsÞ
I1ðsÞ

¼ ~aN�1sN�1 þ � � � þ ~a2s2 þ ~a1sþ ~a0

sð~bN�1sN�1 þ � � � þ ~b2s2 þ ~b1sþ ~b0Þ
;

(33)

where ~a0; ~a1; � � � ; ~aN�1 and ~b0; ~b1; � � � ; ~bN�1 are constants

that are dependent on the physical parameters of the IPMC.

For example, for N¼ 1,

ZðsÞ ¼ � 2h

sð3AjeÞ
:

Note that when the bias V0¼ 0, the steady-state electric field

E0(x): 0, and thus ai¼ bi¼ 0, for i 2 f1; 2; 3g. In this case,

the PDE (21) for the charge distribution degenerates to the

one obtained by dropping the nonlinear term in Eq. (5), and

thus the resulting impedance model becomes the same as the

linear model derived by Chen and Tan45 (when the surface

resistance of the IPMC is ignored). Therefore, our model

encompasses the linear model as a special case.
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IV. EXPERIMENTAL MODEL VERIFICATION:
MATERIALS AND METHODS

A. Material and experimental setup

Experiments were conducted on an IPMC sample,

obtained from Environmental Robots, Inc., to validate the

proposed bias-dependent impedance model. The sample was

Nafion-based with platinum electrodes. We post-processed

the sample by depositing a 0.5 lm thick layer of gold on

each electrode surface to enhance its conductivity. This

resulted in negligible surface resistance, thus satisfying the

assumption made in the modeling work. The sample was

51 mm long, 11 mm wide, and 320 lm thick. The free length

of the sample was 47 mm in the cantilevered configuration.

All experiments were conducted at room temperature.

In experiments, the cantilevered IPMC beam was soaked

in deionized water. For verification of the impedance models,

actuation voltages of the form V0þ 0.2 sin(xt) V were

applied. Four different values of the bias V0 were used, 0 V,

0.5 V, 1 V, and 1.5 V. For each bias value, AC actuation vol-

tages ranging 0.1–100 Hz were used for measuring the corre-

sponding impedance responses. The actuation signals were

generated from a computer equipped with a dSPACE system

(DS 1104 R&D Controller Board and Control Desk, dSPACE)

and amplified by a power amplifier (BOP 36–6D, Kepco)

before being applied to the IPMC. The actuation voltage and

current signals were captured by the dSPACE system. Fast

Fourier transforms were performed on these signals in MATLAB

to extract the magnitude and phase at any given frequency,

from which the empirical gain and phase frequency responses

were obtained and used for the model validation.

B. Methods for parameter identification

Faraday’s constant F and the gas constant R are physical

constants and thus do not require identification: F¼ 9.6487

� 104 C/mol, R¼ 8.31 J/(mol�K). The sample dimensions were

measured directly; in particular, the half thickness h¼ 1.6

� 10�4 m. The absolute temperature T was taken to be 300 K.

The volumetric change dV was set to be zero,2 and the anion

concentration C� was taken to be 1091 mol/m3 following the

reported values in the literature.45

The remaining parameters for the impedance model

include the ionic diffusivity d and the effective dielectric

constant je. These two parameters were determined with

data fitting. This process, however, was not straightforward

because the coefficients fai; big3
i¼1, in Eq. (21) and thus

Eq. (33) depends on the numerically computed field profile

E0(x), and the computation of E0(x) requires knowing the pa-

rameters including je. A recursive procedure was taken to

solve this problem. We started with reported values for d and

je in the literature,44,45 ran simulation for the steady-state

equations (7)–(9) and obtained fai; big3
i¼1. We then used the

MATLAB function lsqnonlin to identify d and je to minimize

the error between the model predictions and the experimental

data on the impedance spectrum. With the newly obtained

value for je, we went back to recompute E0 and fai; big3
i¼1.

This process was repeated until the best data fit was achieved.

Note that although these two parameters were identified

through data fitting, the simultaneous matching of four data

sets (as described in Sec. V), each including gain and phase

responses at multiple frequencies, provides adequate evidence

supporting the modeling approach itself.

V. RESULTS AND DISCUSSIONS

The impedance model (33) contains an order parameter N.

The model is expected to be more actuate with larger N, but a

larger N implies higher complexity. Therefore, a suitable N
needs to be determined. Fig. 4 shows the evolution of the im-

pedance spectrum as the order N of the approximating power

series for q1 is increased, where the bias voltage V0 is 1.5 V.

We can see that the approximating series converges and N¼ 6

provides adequate accuracy in the approximation. This value

of N is used in all model predictions presented in this section.

Fig. 5 shows the measured impedance spectra of the

IPMC sample under four different biases, V0¼ 0, 0.5, 1, 1.5 V.

FIG. 4. Convergence of the impedance model as the order N increases. The

bias voltage V0¼ 1.5 V.

FIG. 5. Measured IPMC impedance spectra for the bias V0¼ 0.0, 0.5, 1.0, 1.5 V.
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It can be observed that within the tested frequency range of

0.1–100 Hz, the gain response decreases (implying higher

current response) with the frequency, while the phase lead

between the current and the voltage (negative of the shown

phase) initially increases and then drops with the frequency.

In addition, as the bias increases, the gain response decreases

(higher current response), while the phase lead between the

current and the voltage drops. Fig. 6 shows the model predic-

tions of the impedance spectra under the same set of bias

voltages. We can see that the model predictions not only cap-

ture the trends of gain and phase responses as the frequency

increases but also capture the trends when the bias increases.

To provide a closer comparison between the model and the

experimental data, we put the model prediction and experi-

mental measurement for each bias on the same graph; see

Figs. 7–10. The good agreement in all cases provides strong

evidence that the model is able to capture the bias-dependent

impedance of IPMC materials. Note that, as we commented

at the end of Sec. III, the bias-dependent impedance model

for the case of v0 ¼ 0 V coincides with the linear model.

Therefore, from Figs. 5–10, while the linear model is able

to provide a good prediction for the zero-DC bias case, it

will fail to capture the impedance changes as the DC bias is

increased.

While one would expect that the impedance spectrum

varies monotonically with the bias, one exception can be

found for the phase response. In particular, as seen in Fig. 5,

the phase response under zero bias (V0¼ 0 V) within the low

frequency range (<10 Hz) is not consistent with the bias-

dependent trend observed for the other curves; it would have

fallen under the phase response for V0¼ 0.5 V if following

the trend. While we do not have an intuitive explanation for

FIG. 6. Model predictions of IPMC impedance spectra for the bias V0¼ 0,

0.5, 1.0, 1.5 V.

FIG. 7. Model prediction versus experimental measurement of the IPMC

impedance spectrum when the bias V0¼ 0.0 V.

FIG. 8. Model prediction versus experimental measurement of the IPMC

impedance spectrum when the bias V0¼ 0.5 V.

FIG. 9. Model prediction versus experimental measurement of the IPMC

impedance spectrum when the bias V0¼ 1.0 V.
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this phenomenon at this moment, the model prediction in

Fig. 6 actually captures this “exception” precisely.

VI. CONCLUSION AND FUTURE WORK

In this paper, we reported for the first time the depend-

ence of the electrical dynamics of IPMCs on the bias actua-

tion voltage and presented rigorous modeling analysis for

this phenomenon. The proposed model started with the non-

linear PDE governing the charge dynamics. Instead of

directly dropping the nonlinear term in the PDE, we per-

formed perturbation analysis around a given operating point

characterized by a constant bias. The methodology for solv-

ing the resulting PDE for the perturbed dynamics was devel-

oped, with which closed-form local impedance models were

derived. The proposed bias-dependent impedance model was

validated experimentally.

There are several directions in which this work can be

extended. In this paper, we have assumed perfectly conduct-

ing electrode surfaces. It is of interest to incorporate the

effect of surface resistance into the model, as done by Chen

and Tan45 in the development of a linear, physics-based

model. Second, we are interested in characterizing and mod-

eling the dependence of the actuation dynamics on the bias

voltage. A natural model structure for the actuation dynam-

ics comprises a cascading of electrical dynamics, electrome-

chanical coupling, and mechanical dynamics.4,45 In addition

to the bias-dependent electrical dynamics as studied in this

paper, the mechanical dynamics will also exhibit bias-

dependent nonlinear behavior for two reasons. An applied

bias voltage induces compressive stress and tensile stress on

the anode and cathode sides of the IPMC, respectively. Due

to the stress-stiffening effect,46,47 the apparent stiffness and

thus the natural frequencies of the IPMC beam will be bias-

dependent. Moreover, with the large deformation induced by

a relatively large bias voltage, linear stress-strain relationship

no longer applies and one will need to incorporate nonlinear

mechanics into the modeling process.48 We will investigate

how to accommodate both stress-stiffening and large-

deformation effects in modeling the bias-dependent mechan-

ical dynamics, which will then be used to construct the full

actuation model.
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