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Abstract

In this paper a novel, Gibbs sampler-based algorithm is proposed for coordination of autonomous swarms. The swarm is modeled as a
Markov random field (MRF) on a graph with a time-varying neighborhood system determined by local interaction links. The Gibbs potential is
designed to reflect global objectives and constraints. It is established that, with primarily local sensing/communications, the swarm configuration
converges to the global minimizer(s) of the potential function. The impact of the Gibbs potential on the convergence speed is investigated.
Finally a hybrid algorithm is developed to improve the efficiency of the stochastic scheme by integrating the Gibbs sampler-based method with
the deterministic gradient-flow method. Simulation results are presented to illustrate the proposed approach and verify the analyses.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

With rapid advances in sensing, actuation, communication,
and computation capabilities, autonomous unmanned vehi-
cles (AUVs) are expected to cooperatively perform tasks in
various hazardous, unknown or remote environments. In this
paper, by an autonomous swarm, we mean a group of AUVs
with potentially huge number of members. Distributed meth-
ods for control and coordination of autonomous swarms are
especially appealing due to large scales of vehicle networks
and communication constraints. Such methods have often been
inspired by the swarming behaviors demonstrated by bacte-
ria, insects, and animals (Leonard & Fiorelli, 2001; Passino,
2002), or by the swarming models proposed in physics, biol-
ogy, and computer science (Levine, Rappel, & Cohen, 2000;
Mogilner & Edelstein-Keshet, 1999; Reynolds, 1987; Vicsek,
Czirook, Ben-Jacob, Cohen, & Shochet, 1995). Recent work on
multi-agent control includes Olfati-Saber and Murray (2002),
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Lawton, Beard, and Young (2003), Jadbabaie, Lin, and Morse
(2003), Tanner, Jadbabaie, and Pappas (2003), Gazi and Passino
(2003), Justh and Krishnaprasad (2004), Olfati-Saber and Mur-
ray (2004), Olfati-Saber (2006), Moreau (2005), to name a few.

A popular approach in multi-vehicle coordination is based
on artificial potential functions, which encode desired vehi-
cle behaviors such as inter-vehicle interactions, obstacle avoid-
ance, and target approaching (Baras, Tan, & Hovareshti, 2003;
Leonard & Fiorelli, 2001; Ogren, Fiorelli, & Leonard, 2004).
This approach has been explored for path planning and con-
trol of robotic manipulators and mobile robots over the past
two decades (Khatib, 1986; Rimon & Kodistschek, 1992).
Despite its simple, local, and elegant nature, this approach
suffers from the problem that the system dynamics could be
trapped at the local minima of potential functions (Koren &
Borenstein, 1991). Researchers attempted to address this prob-
lem by designing potential functions that have no other local
minima (Kim & Khosla, 1992; Volpe & Khosla, 1990), or
by escaping from local minima using ad hoc techniques, e.g.,
random walk (Barraquand, Langlois, & Latombe, 1992) and
virtual obstacles (Liu, Krishna, & Yong, 2000).

In this paper a novel, systematic approach is proposed to co-
ordinate an autonomous swarm based on the theory of Markov
random fields (MRFs) and Gibbs sampling, a tool that has been
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traditionally used in statistical mechanics, image processing,
computer vision, and data analysis and clustering (Carlin &
Louis, 2000; Chellappa & Jain, 1993; Geman & Geman, 1984;
Medvedovic, Young, & Bumgarner, 2004; Winkler, 1995). The
approach aims to achieve global objectives (without being
trapped at local minima of potential functions) using primarily
local interactions together with limited global interactions. A
discrete-time path planning setting is considered, where vehi-
cles are allowed to move on a discretized grid in a 2D space. We
focus on the high-level coordination and planning problem in
this paper, and thus the vehicle dynamics is not included in the
analysis. However, such dynamics should be considered during
the low-level vehicle control in executing the planned trajectory.

A swarm is modeled as an MRF on a graph, where the (mo-
bile) vehicles and their communication/sensing links constitute
the vertices and the edges of the graph, respectively. As in the
artificial potential approach, global objectives and constraints
are reflected in potential functions—in this case, Gibbs po-
tentials. The movement of vehicles is decided using simulated
annealing based on the Gibbs sampler. The dynamic graph
associated with the evolution of vehicle networks, however,
presents significant challenges in convergence analysis since
classical MRF theory does not apply directly.

We first present analysis on the single-vehicle case before
embarking on the multi-vehicle case. The aforementioned dy-
namic graph now degenerates to a single vertex and the analysis
is much simplified. The purpose of studying the single-vehicle
case is twofold. Firstly, this is of interest in its own right by
showing the convergence to the optimal location despite the
existence of local minima, a clear advantage over the tradi-
tional gradient-flow method. Secondly, some analytical tech-
niques and results for the single-vehicle case, e.g., the conver-
gence bound and the impact of potential function design on the
convergence speed, also apply to the multi-vehicle case.

To deal with the coordination of multiple vehicles, a two-step
sampling scheme is proposed: in the first sampling a vehicle is
picked through a properly designed, configuration-dependent
proposal distribution, and in the second sampling step the ve-
hicle makes a move using the local characteristics of the Gibbs
distribution. It is shown that simulated annealing with such a
two-step scheme leads to convergence to the configuration(s)
of minimal potential. This scheme requires mostly local inter-
actions among vehicles except a global communication mech-
anism for notifying the newly selected vehicle. Such a mech-
anism could be provided, e.g., by a dedicated base station, or
by multi-hop communication.

In practice the stochastic nature of the proposed algorithm
might lead to high traveling cost and long maneuver time. To
mitigate this problem, a hybrid algorithm is developed by com-
bining the Gibbs sampler-based method with the determinis-
tic gradient-flow method. A vehicle switches between the two
schemes to achieve a sound tradeoff between efficiency and
optimality. Analysis is performed on the choice of switching
parameters. The impact of vehicle memory on performance en-
hancement is also investigated.

The remainder of the paper is organized as follows. The
concept of MRFs and the problem setup are described in

Section 2. The single-vehicle case is treated in Section 3, while
the multi-vehicle case studied in Section 4. In Section 5 the
hybrid algorithm is presented. Section 6 concludes the paper.

2. Problem setup

2.1. MRFs and Gibbs sampler

One can refer to, e.g., Winkler (1995), Bremaud (1999), for
a review of MRFs. Let S be a finite set of cardinality �, with
elements indexed by s and called sites. For s ∈ S, let �s be a
finite set called the phase space for site s. A random field on
S is a collection X = {Xs}s∈S of random variables Xs taking
values in �s . A configuration of the system is x = {xs, s ∈ S},
where xs ∈ �s , ∀s. The product space ���1 × · · · × �� is
called the configuration space. A neighborhood system on S is
a family � = {�s}s∈S , where ∀s, r ∈ S,

• �s ⊂ S,
• s /∈ �s , and
• r ∈ �s if and only if s ∈ �r .

�s is called the neighborhood of site s. The random field X is
called an MRF with respect to the neighborhood system � if,
∀s∈S, P(Xs=xs |Xr=xr , r �=s)=P(Xs=xs |Xr=xr , r∈�s).

A random field X is a Gibbs random field if and only if it
has the Gibbs distribution:

P(X = x) = e− U(x)
T

Z
, ∀x ∈ �,

where T is the temperature variable, U(x) is the potential for

configuration x, and Z is the partition function: Z=∑x e− U(x)
T .

The Hammersley–Clifford theorem (Bremaud, 1999) estab-
lishes the equivalence of a Gibbs random field and an MRF.

The Gibbs sampler belongs to the class of Markov Chain
Monte Carlo (MCMC) methods, which sample Markov chains
leading to stationary distributions. The algorithm updates the
configuration by visiting sites sequentially or randomly with
certain proposal distribution (Winkler, 1995), and sampling
from the local specifications of a Gibbs field. A sweep refers
to one round of sequential visits to all sites, or � random visits
under the proposal distribution. The convergence of the Gibbs
sampler was studied by Geman and Geman (1984) in the
context of image processing. There it was shown that as the
number of sweeps goes to infinity, the distribution of X(n)

converges to the Gibbs distribution. Furthermore, with an
appropriate cooling schedule, simulated annealing using the
Gibbs sampler yields a uniform distribution on the set of mi-
nimizers of U(x). Thus the global objectives could be
achieved through appropriate design of the Gibbs potential
function.

2.2. Problem setup for multi-vehicle coordination

Consider a 2D mission space (the extension to 3D space
is straightforward), which is discretized into a lattice of cells.
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Fig. 1. An example mission scenario with a circular target and a nonconvex
obstacle (formed by two overlapping circular obstacles). Since the mission
space is a discretized grid, a cell is taken to be within a disk if its center is so.

For ease of presentation, each cell is assumed to be square
with unit dimensions. One could of course define cells of
other geometries (e.g., hexagons) and of other dimensions
(related to the coarseness of the grid) depending on the prob-
lems at hand. Label each cell with its coordinates (i, j), where
1� i�N1, 1�j �N2, for N1, N2 > 0. There is a set S of vehi-
cles (or mobile nodes) indexed by s = 1, . . . , � on the mission
space. To be precise, each vehicle s is assumed to be a point
located at the center of some cell (is, js), and the position of
vehicle s is taken to be ps = (is, js). It is further assumed that
at most one vehicle is allowed to stay in each cell at any time
instant. This assumption is motivated by several possible con-
siderations, such as maintaining safe inter-vehicle distance or
avoiding redundant vehicle coverage (for maximum coverage
efficiency).

The distance R between two cells, (ia, ja) and (ib, jb), is

R�‖(ia, ja) − (ib, jb)‖ =
√

(ia − ib)
2 + (ja − jb)

2. There
might be multiple obstacles in the space, where an obstacle
is defined to be a set of adjacent cells that are inaccessi-
ble to vehicles. For instance, a “circular” obstacle centered
at (io, jo) with radius Ro can be defined as O�{(i, j) :√

(i − io)2 + (j − jo)2 �Ro}. The accessible area is the set
of cells in the mission space that are not occupied by obstacles.
An accessible-area graph can then be defined by letting each
cell in the accessible area be a vertex and connecting neigh-
boring cells with edges. The mission space is connected if the
associated accessible-area graph is connected, which will be
assumed in this paper. There can be target areas in the space.
A target area is a set of adjacent cells that represent desirable
destinations of mobile nodes. A “circular” target area can be
defined similarly as a “circular” obstacle. An example mission
scenario is shown in Fig. 1.

In this paper all vehicles are assumed to be identical. Each ve-
hicle has a sensing range Rs : it can “see” whether a cell within
distance Rs is occupied by some node or obstacle through
sensing or direct inter-vehicle communication. There is also an

Rs

Ri

Rm

Fig. 2. Illustration of the sensing range Rs , the interaction range Ri , and the
moving range Rm.

interaction range Ri (Ri �Rs) for vehicles: for a vehicle s,
only vehicles within a distance of Ri can impact its moving
decision. These nodes form the set �s of neighbors of node
s. The distinction between Rs and Ri is made mainly for the
convenience in later analysis, but it also reflects the scenarios
where decision complexity forces each vehicle to consider only
a subset of vehicles in its sensing range. We further assume that
a node can travel at most Rm (Rm �Rs), called moving range,
within one move. See Fig. 2 for illustration of the three range
definitions.

The neighborhood system defined earlier naturally leads to
a dynamic graph, where each vehicle represents a vertex of
the graph and the neighborhood relation prescribes the edges
between vehicles. An MRF can then be defined on the graph,
where each vehicle s is a site and the associated phase space
�s is the set of all cells located within the moving range
Rm from location ps and not occupied by obstacles or other
vehicles. The configuration space of the MRF is denoted
as X.

The Gibbs potential U(x) takes the form:

U(x) =
∑

s

�s(x), (1)

where �s(x) depends only on xs and {xr , r ∈ �s}. Moreover,
the individual potential �s(x) consists of three terms with each
reflecting one goal or one constraint:

�s(x) = �gJg(xs) + �oJo(xs) + �nJn(xs, x�s
), (2)

where x�s
denotes the locations of nodes in �s for configura-

tion x. In (2), Jg(xs), Jo(xs), and Jn(xs, x�s
) account for the at-

traction from the target areas, the repelling from obstacles, and
the interaction between neighbors, respectively, and �g, �o, �n
are the corresponding weighting coefficients for adjusting the
potential surface. Note that the design of these constants is also
a challenging and important issue as it may directly impact the
behaviors of nodes and the convergence rates of algorithms.
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Jn is assumed to consist of pairwise terms:

Jn(xs, x�s
) =

∑
r∈�s

J̄n(xs, xr ). (3)

There are important differences between a classical MRF in-
troduced in Section 2.1 and the MRF defined for the vehicle
networks. In a classical MRF, both the phase space �s and the
neighborhood �s are time-invariant; however, for a vehicle net-
work, both �s and �s depend on the dynamic graph and vary
with time. This prevents the classical MRF theory from being
adopted directly for convergence analysis in the context of this
paper.

3. The single-vehicle case

In the single-vehicle case, �=1 and the potential term involv-
ing vehicle interactions vanishes. The configuration x degener-
ates to the location of the vehicle, and the goal is to maneuver
the vehicle to the target (or any other location with the mini-
mal potential) in the presence of arbitrarily shaped obstacles.
The algorithm is described and its convergence established in
Section 3.1, and the impact of Gibbs potential design on the
convergence speed is explored in Section 3.2.

3.1. The annealing algorithm and its convergence

Pick a cooling schedule T (n) with T (n) → 0 as n → ∞,
an integer ��1, and a sufficiently large Nmax. The algorithm
works as follows:

• Step 1: Initialization. Let n = 1, k = 1;
• Step 2: Gibbs sampling. Based on the current location x,

determine the set Nx
m of candidate locations for the next

move: Nx
m�{z : ‖z−x‖�Rm, z /∈ any obstacle}, where ‖·‖

denotes the Euclidean norm. Update x to y ∈ Nx
m with local

specifications

P(y|x) = e− U(y)
T (n)∑

z∈Nx
m

e− U(z)
T (n)

.

Let k = k + 1. If k = �, let k = 0, and n = n + 1;
• Step 3: If n < Nmax, go to Step 2; quit otherwise.

Some results on classical MRFs (Winkler, 1995) can be adapted
to establish the convergence of the above algorithm. One can
first show that there is a unique stationary distribution �T for
a fixed temperature T:

Theorem 3.1. Assume that the accessible-area graph is con-
nected. For a fixed temperature T, let PT be the kernel of the
homogeneous Markov chain X(n) defined by the Gibbs sam-
pler. Then X(n) has a unique stationary distribution �T :

�T (x) = e− U(x)
T
∑

z∈Nx
m

e− U(z)
T

ZT

, (4)

where ZT =∑y∈X (e− U(y)
T
∑

z∈Ny
m

e− U(z)
T ). Furthermore, start-

ing from any distribution �,

lim
n→∞ �P n

T = �T . (5)

Proof. Since the MRF has only one site, the Markov kernel
PT defined by the Gibbs sampler is

PT (x, y)�P(X(n + 1) = y|X(n) = x)

=
⎧⎨
⎩

e− U(y)
T∑

z∈Nx
m

e− U(z)
T

if y ∈ Nx
m,

0 if y /∈Nx
m.

(6)

Due to the connectivity of the accessible area, there exists at
least one path between any two configurations x and y (i.e.,
a sequence of moves {x, x1, . . . , y}), and the shortest path is
bounded above by � moves for some finite �. This implies that
PT has a strictly positive power P �

T . Hence the Markov chain is
ergodic (Horn & Johnson, 1985) and it has a unique invariant
distribution �T , which implies (5). One can verify that (4) is
a stationary distribution for PT . �

With a proper choice of T (n) and �, the simulated annealing
algorithm yields the desired configuration:

Theorem 3.2. Assume that the accessible area is connected.
Pick � as in the proof of Theorem 3.1. Let T (n) be a cooling
schedule decreasing to 0 such that eventually

T (n)� �	

ln n
, (7)

where 	=maxx,y {|U(x)−U(y)| : y ∈ Nx
m}. Let Qn =P �

T (n).
Then from any initial distribution �,

lim
n→∞ �Q1 · · · Qn = �∞, (8)

where �∞ is the distribution (4) at T = 0. Let M be the set of
minimizers of U(x). Then �∞ satisfies∑
x∈M

�∞(x) = 1. (9)

Recall that for a Markov kernel P, its contraction coefficient
c(P ) is defined as

c(P ) = ( 1
2 ) max

x,y
‖P(x, ·) − P(y, ·)‖1,

where P(x, ·) denotes the vector of conditional distributions
p(·|x), and ‖ · ‖1 denotes the 1-norm. The following lemma
will be useful in the proof of Theorem 3.2.

Lemma 3.1 (Winkler, 1995). Let 
 and � be probability distri-
butions, and P and Q be Markov kernels. Then

‖
P − �P ‖1 �c(P )‖
 − �‖1,

c(PQ)�c(P )c(Q),

c(P )�1 − |X| min{P(x, y) : x, y ∈ X},
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and for a primitive P (i.e., all entries of P � are positive for
sufficiently large �),

c(P n) → 0 as n → ∞,

where X is the state space of the Markov chain and |X| denotes
its cardinality.

Proof of Theorem 3.2. Let mx� min{U(z) : z ∈ Nx
m}. For

y ∈ Nx
m,

PT (x, y) = e− U(y)−mx
T∑

z∈Nx
m

e− U(z)−mx
T

� |�|−1e
−	
T , (10)

where |�| is the maximal cardinality of the phase space. For
Q = P �

T , from Lemma 3.1 and (10),

c(Q)�1−|X| min
x,y

Q(x, y)�1−|X|
(

min
x∈X,y∈Nx

m

PT (x, y)

)�

�1−�e
−�	
T , (11)

where � = |X| · |�|−� �1. This implies, for Qk = P �
T (k),

c(Qk)�1 − �e
−�	
T (k) .

Then for i�n,

n∏
k=i

c(Qk)�
n∏

k=i

(1 − �e
−�	
T (k) )�

n∏
k=i

(1 − �k−1) (12)

�e−∑n
k=i �k−1

(13)

�
(

i

n

)�

, (14)

where (12) is from (7), (13) is from

(1 − r)�e−r , ∀r ∈ (0, 1),

and (14) is from

ln(ni−1) < ln(n + 1) − ln(i) =
n∑

k=i

(ln(1 + k) − ln k)

=
n∑

k=i

ln(1 + k−1)�
n∑

k=i

k−1.

With some abuse of notation, �T (n) will be written as �n to
simplify the expressions. For i�n, one has

‖�Q1 . . . Qn − �∞‖1

=‖(�Q1. . .Qi−1−�∞)Qi. . .Qn+�∞Qi. . .Qn−�∞‖1

�‖(�Q1. . .Qi−1−�∞)‖1c(Qi. . .Qn)

+ ‖�∞Qi. . .Qn − �∞‖1

�2c(Qi. . .Qn)+‖�i−�∞‖1+‖�n−�∞‖1

+
j=n−1∑

j=i

‖�j−�j+1‖1, (15)

where the last inequality is established by Dobrushin’s theo-
rem (Winkler, 1995). When n, i → ∞ and n

i
→ ∞, the first

term in (15) approaches 0 by (14), and the second and third
terms also approach 0 by the definition of �∞. To show that
the fourth term vanishes as i → ∞, it suffices to prove each
component sequence of {�n(x)}n�1, ∀x ∈ X, decreases or
increases eventually. By investigating the derivative of �n(x)

with respect to the temperature T, the ultimate monotonicity
can be established, as was done in Winkler (1995). This com-
pletes the proof of (8).

Let m�minx∈X. One has

�T (x) = e− U(x)−m
T

∑
z∈Nx

m
e− U(z)−m

T∑
y∈X (e− U(y)−m

T
∑

z∈Ny
m

e− U(z)−m
T )

.

If U(x) /∈M, e− U(x)−m
T → 0 and thus �T (x) → 0 as T → 0,

which implies (9). �

Assume that there is a unique target area with minimum po-
tential. Theorem 3.2 then implies that under the proposed algo-
rithm, a vehicle can reach the target ultimately for arbitrarily
shaped obstacles.

3.2. Impact of potential function on convergence speed

It is of interested to study how to improve the convergence
speed by appropriately designing the potential function. The
following result connects the potential function to the conver-
gence speed.

Proposition 3.1. Let the cooling schedule T (n) = �	
ln n

. The
convergence speed in Theorem 3.2 is characterized by

‖�Q1 . . . Qn − �∞‖1 = O(n
− ��m

�m+��	 ), (16)

where �m=miny /∈M (U(y)−m), and m, �, 	, and � are defined
as in Theorem 3.2 or in its proof.

Proof. From (15), ‖�Q1 . . . Qn − �∞‖1 is bounded by four
terms. From (14), the first term is bounded by ( i

n
)�. The other

terms are each bounded by ‖�i − �∞‖1, considering the ulti-
mate monotonicity of the sequence {�n}.

If x is not a minimizer of U,

e− U(x)−m
T (i) = e− (U(x)−m) ln i

�	 �e− �m ln i
�	 = i−

�m
�	 ,

which implies

|�i (x) − �∞(x)| = �i (x)

= e− U(x)−m
T (i)

∑
z∈Nx

m
e− U(z)−m

T (i)

∑
y∈X (e− U(y)−m

T (i)
∑

z∈Ny
m

e− U(z)−m
T (i) )

�
i−

�m
�	
∑

z∈Nx
m

e− U(z)−m
T (i)

∑
y∈X (e− U(y)−m

T (i)
∑

z∈Ny
m

e− U(z)−m
T (i) )

.
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Since
∑

z∈Nx
m

e− U(z)−m
T (i) � ¯|�|, and

∑
y∈X

⎛
⎝e− U(y)−m

T (i)

∑
z∈Ny

m

e− U(z)−m
T (i)

⎞
⎠

= |M| + terms involving e− U(z)−m
T (i) with z /∈M� |M|,

one has

|�i (x) − �∞(x)|� |�̄|i− �m
�	

|M| = O(i−
�m
�	 ).

Now if x is a minimizer of U (i.e., x ∈ M), �∞(x) �= 0.
Assuming first z /∈N

y
m ∀y, z ∈ M, one can show �i (x)= 1

|M|
using Theorem 3.2. This implies

|�i (x) − �∞(x)|

=
∣∣∣∣∣∣

∑
z∈Nx

m
e− U(z)−m

T (i)

∑
y∈X (e− U(y)−m

T (i)
∑

z∈Ny
m

e− U(z)−m
T (i) )

− 1

|M|

∣∣∣∣∣∣
=
∣∣∣∣ 1 + b

|M| + a
− 1

|M|
∣∣∣∣= |b|M| − a|

|M|(|M| + a)

� |b|M| − a|
|M|2 � b|M| + a

|M|2 ,

where a and b are terms involving e− U(z)−m
T (i) with z /∈M. Since a

and b are both of order O(i−
�m
�	 ), so is |�i (x)−�∞(x)|. Sim-

ilarly, one can show for more general cases involving multiple

minimizers within Rm, |�i (x)−�∞(x)|=O(i−
�m
�	 ), ∀x ∈ M.

Thus a bound for ‖�Q1 . . . Qn − �∞‖1 is(
i

n

)�

+ const · i−
�m
�	 . (17)

This becomes minimal for

i∗ =
(

const · �m

�	

) 1

�+ �m
��	 · n

�

�+ �m
�	

= const · n

�

�+ �m
�	 .

Eq. (16) then follows by plugging i∗ into (17). �

Proposition 3.1 shows that the potential surface (in particular:
g� ��m

�m+��	 ) determines the convergence speed of the algorithm.

It is thus natural to use g as a design indicator. Simulation was
conducted to verify the above analysis. A similar scenario as
in Fig. 1 was used but with a 10 by 10 grid. A single vehicle
starts from the lower left corner, and wants to reach the target
area at the upper right corner. The potential function used was

U(x) = �g‖x − pg‖ + �0

2∑
k=1

1

‖x − pok‖ , (18)

where pg and pok denote the centers of the circular target area
and of the circular obstacles. In the simulation �g was varied
from 0.05 to 100 while �o was fixed to 1. For each pair of
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Fig. 3. The correlation of computed convergence speed with the design
indicator g.

coefficients, the algorithm was run N = 104 steps, and the
number of times w that the vehicle visited target during the last
100 steps was counted. The empirical distance was calculated
by ‖�N −�∞‖1=2(1−w/100). The variation of ‖�N −�∞‖1
with respect to �g is consistent with that of the design indicator
g (Fig. 3), which confirms the analysis (16).

4. The multi-vehicle case

4.1. The coordination algorithm

The coordination algorithm for multiple vehicles uses a ran-
domized sequence for updating the nodes, and a key idea in-
volved is the configuration- and temperature-dependent pro-
posal distribution Gx

T (s). Here s is the index of vehicles, T
denotes the temperature, and x denotes a configuration, which
specifies the locations of all vehicles. Given x and T, a vehicle
s is selected with probability Gx

T (s) for update, where

Gx
T (s) =

∑
z∈Nx

m(s) e− U(z)
T∑

s′∈S

∑
z∈Nx

m(s′) e− U(z)
T

(19)

=
∑

z∈Nx
m(s) e− U(z)−U(x)

T∑
s′∈S

∑
z∈Nx

m(s′) e− U(z)−U(x)
T

. (20)

In (19), Nx
m(s) denotes the set of s-neighbors of configuration

x within one move:

Nx
m(s)�{z ∈ X : zS\s = xS\s , ‖zs − xs‖�Rm}, (21)

where S\s is the set of all nodes except s, and zS\s is the
locations of nodes in S\s for configuration z. Due to the form of
Gibbs potential (see (1)–(3)), a node s will be able to evaluate,
for z ∈ Nx

m(s), the potential difference U(z) − U(x) and

thus the sum Dx
T (s)�

∑
z∈Nx

m(s) e− U(z)−U(x)
T when Rs �Ri+Rm.

Roughly speaking, Dx
T (s) measures the reduction of potential
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function if node s is selected for update. The proposal function
Gx

T (s) in (19) implies that a node s gets a higher chance for
update than a node r if Dx

T (s) > Dx
T (r).

In a two-step sampling procedure, node s is first randomly
selected with probability Gx

T (s), and then xs is updated ac-
cording to its local characteristics while xS\s is kept fixed: for
l ∈ Cs

m,

P(xs = l) = e− U(xs=l,xS\s )−U(x)

T∑
l′∈Cs

m
e− U(xs=l′,xS\s )−U(x)

T

, (22)

where Cs
m is the set of candidate locations node s can take, i.e.,

l ∈ Cs
m is not occupied by any obstacle or other nodes, and

‖xs − l‖�Rm. Note that, again, the evaluation of (22) can be
done locally by node s when Rs �Ri + Rm. One can verify
that there exists a smallest integer �, such that after � steps
of sampling, any configuration x has a positive probability of
becoming any other configuration y.

The coordination algorithm is presented next. Pick an ap-
propriate cooling schedule T (n) with T (n) → 0 as n → ∞.
Pick Nmax. For each T (n), run � steps of sampling as described
above (called one annealing step).

• Step 1: Initialization. Start with an arbitrary configuration
x(0) and let n = 1, k = 1. Pick an arbitrary node s(0). Have
all nodes to evaluate and send D

x(0)
T (1)(s) to s(0). Node s(0)

calculates the proposal distribution G
x(0)
T (1)(s) according to

(19), and then selects a node s1(1)1 for update by sampling
G

x(0)
T (1)(s), and sends the vector {Dx(0)

T (1)(s), s ∈ S} to s1(1);

• Step 2: Updating the selected node. Node sk(n) updates its
location by sampling its local characteristics (see (22)). De-
note the new configuration as xk(n);

• Step 3: Selecting the next node. Note that the neighborhood
�s of a node s changes only if node sk(n) was in �s before
its updating or is currently in �s . For either case, the distance

between such s (denoting the set of such nodes as �̄
k
(n))

and sk(n) is now no greater than Ri + Rm �Rs and they
can communicate locally. The node sk(n) thus collects and

updates D
xk(n)
T (n) (s) for nodes in �̄

k
(n). Let k =k +1. If k = �,

let k = 0 and n = n + 1. The current node evaluates and
samples new proposal distribution, selects the next node to
be updated, and communicates the updated {DT (n)(s)} to the
next node (the superscript of D is omitted when it is clear
from the context);

• Step 4: If n < Nmax, go to Step 2; otherwise quit.

Remark 4.1. Long-range (over a distance greater than Rs)
communication is only required for initialization and for trans-
ferring {Dx

T (s)} to the newly selected node. Since {Dx
T (s)} is

just a �-dimensional vector, information exchange in the algo-
rithm is primarily at the local level.

1 In the notation xk(n) or sk(n), n indexes the annealing temperature,
while k (from 1 to �) indexes the sampling step within a fixed temperature.

4.2. Convergence analysis

Let PT be the Markov kernel defined by the update (19) and
(22), i.e.,

PT (x, y) =
∑
s∈S

Gx
T (s) · 1(y ∈ Nx

m(s))
e− U(y)

T∑
z∈Nx

m(s) e− U(z)
T

=
∑

s∈S

∑
z∈Nx

m(s) e− U(z)
T∑

s′∈S

∑
z∈Nx

m(s′) e− U(z)
T

· e− U(y)
T · 1(y ∈ Nx

m(s))∑
z∈Nx

m(s) e− U(z)
T

=
∑
s∈S

e− U(y)
T · 1(y ∈ Nx

m(s))∑
s′∈S

∑
z∈Nx

m(s′) e− U(z)
T

. (23)

Theorem 4.1. Let QT =P �
T . Then QT has a unique stationary

distribution �T with

�T (x) = e− U(x)
T
∑

s∈S

∑
z∈Nx

m(s) e− U(z)
T

ZT

, (24)

where ZT =∑
y e− U(y)

T
∑

s∈S

∑
z∈Ny

m(s) e− U(z)
T .

Proof. First one can show that �T is a stationary distribution
of PT . From (23) and (24),∑

y

�T (y)PT (y, x)

=
∑
y

e− U(y)
T
∑

s′′∈S

∑
z∈Ny

m(s′′) e− U(z)
T

ZT

×
∑
s∈S

e− U(x)
T · 1(x ∈ N

y
m(s))∑

s′∈S

∑
z∈Ny

m(s′) e− U(z)
T

= e− U(x)
T
∑

y e− U(y)
T
∑

s∈S 1(x ∈ N
y
m(s))

ZT

= e− U(x)
T
∑

s∈S

∑
z∈Nx

m(s) e− U(z)
T

ZT

= �T (x).

Since QT = P �
T , �T is also a stationary distribution for QT .

Due to the choice of �, QT (x, y) > 0, ∀x, y. Thus, from the
Perron–Frobenius theorem, QT has a unique stationary distri-
bution, which is �T . �

Let 	 be the maximal local oscillation of the potential U:

	� max
x

max
y∈Nx

m

|U(x) − U(y)|,

where Nx
m =⋃

s∈S N
x
m(s).

Theorem 4.2. Let T (n) be a cooling schedule decreasing to
0 such that eventually, T (n)� �	

ln n
. Let Qn = P �

T (n), and let
M be the set of global minima of U(·). Then for any initial
distribution �,

lim
n→∞ �Q1 · · · Qn → �∞, (25)
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where �∞ is the distribution (24) evaluated at T = 0. In par-
ticular,∑
x∈M

�∞(x) = 1. (26)

Proof. Let �x = minz∈Nx
m
U(z). For y ∈ Nx

m, from (23),

PT (x, y) = e− U(y)−�x
T∑

s′∈S

∑
z∈Nx

m(s′) e− U(z)−�x
T

� e− 	
T

�|X| ,

where |X| denotes the cardinality of the configuration space
X. Following analogous arguments to those in the proof of
Theorem 3.2, one can show

c(Qn)�1 − �e− −�	
T (n) ,

where c(Qn) denotes the contraction coefficient of Qn, and
� = |X|

(�|X|)� . Similarly, one can prove claim (25). From (24), as
T (n) → 0, �T (n)(x) → 0, for all x /∈M. Eq. (26) thus follows.

�

From Theorem 4.2, the proposed algorithm can achieve
global objectives provided that the global minimizers of
U(·) correspond to the desired configurations. Let �m =
minx /∈M U(x) − m, i.e., the minimal potential difference be-
tween other configurations and the global minimizers. The
following result characterizes the convergence speed of the
multi-vehicle coordination algorithm. The proof is omitted due
to its similarity to that of Proposition 3.1:

Proposition 4.1. Consider the coordination algorithm with
T (n) = �	

ln n
. Then for any initial distribution �,

‖�Q1 · · · Qn − �∞‖ = O(n
− ��m

�m+��	 ) = O(n−g), (27)

where � is as defined in Theorem 4.2, and g = ��m

�m+��	 .

4.3. Simulation results

Simulation was conducted to verify the analysis. The empha-
sis was on scenarios involving inter-vehicle interactions (e.g.,
formation control). Two examples are presented, one on clus-
tering and the other on formation control. Other objectives or
constraints, such as target-approaching and obstacle avoidance,
can be easily incorporated, as was done in the single-vehicle
case.

4.3.1. Clustering
The goal is to cluster all the nodes without specifying a

specific target area. This is more challenging than the case
of having an explicit target, as the latter provides persistent
attraction from a fixed location. The potential

U(x) =
∑

r �=s, ‖xr−xs‖�Ri

− c

‖xr − xs‖ ,

where c > 0. Clearly, the more neighbors each node has and the
closer they are, the lower U. Simulation was performed for 50

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

10 20 30

5

10

15

20

25

30

(a) (b)

(c) (d)

Fig. 4. Snapshots of clustering operation: (a) Initial configuration; (b) after
100 annealing steps; (c) after 400 annealing steps; (d) after 500 annealing
steps.

nodes on a 30 by 30 grid with RI = 4
√

2 + 
 (
 > 0 and very
small), Rm=2

√
2+
, Rs =RI +Rm (this was also true for other

simulations in this section), c = 2, T (n) = 1
0.08 ln n

, and � = 50.
Fig. 4 shows the snapshots of the network evolution. The

algorithm’s ability to overcome local minima is evident from
the figure: the nodes initially evolved into two separated (farther
than Rs) sub-clusters, and yet they merged into one cluster after
500 annealing steps.

4.3.2. Formation
The goal is to have the nodes to form (square) lattice struc-

tures with a desired inter-vehicle distance Rdes. The potential
function used was

U(x) =
∑

r �=s, ‖xr−xs‖�Ri

c1(|‖xr − xs‖ − Rdes|� − c2),

where c1 > 0, c2 > 0, and � > 0. A proper choice of c2 encour-
ages nodes to have more neighbors. The power � shapes the po-
tential function. In particular, for |‖xr −xs‖−Rdes| < 1, smaller
� leads to larger potential difference from the global minimum.

Simulation was first conducted for 9 nodes on an 8 by 8 grid.
Parameter used were: Ri = 2

√
2 − 
, Rm = √

2 + 
, Rdes = 2,
c1 = 10, c2 = 1.05, � = 0.02, T (n) = 1

0.01 ln n
, and � = 20.

The desired configuration (global minimizer of U) is shown
in Fig. 5 (modulo vehicle permutation and formation transla-
tion on the grid). Simulated annealing was performed for 104

steps. Empirical distributions with respect to configuration po-
tentials were calculated based on the average of every 2500
steps (Fig. 6). The trend of convergence to the configuration
of the lowest potential is clear from Fig. 6. One can further
calculate the error ‖�n − �∞‖1, where �n is the empirical dis-
tribution of configurations (again modulo vehicle permutation
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Fig. 5. The desired formation for 9 vehicles on an 8 by 8 grid.
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Fig. 6. Evolution of the empirical distribution of configuration potentials.

and network translation). In particular, �n is only calculated
for n= 1000, 2000, 3000, . . . , and for a configuration x, �n(x)

equals the relative frequency of x between the (n−1000)th and
the nth sampling steps. From Theorem 4.2,

�∞(x) =
{

1 if x is desired,

0 otherwise,
implying

‖�n − �∞‖1 = 1 − �n(x
∗) + |0 − (1 − �n(x

∗)|
= 2(1 − �n(x

∗)), (28)

where x∗ denotes the desired formation. The evolution of ‖�n−
�∞‖1 is shown in Fig. 7.
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Fig. 7. Evolution of ‖�n − �∞‖1.
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Fig. 8. Comparison of annealing schemes with different discretization levels.

It is of interest to investigate the robustness of the proposed
scheme with respect to the discretization level of the grid. For
this purpose, the same mission space was discretized into a
16 by 16 grid with cell size of 0.5, and simulation was per-
formed based on the new lattice. All mission-related param-
eters were kept the same as in the 8 by 8 case. In partic-
ular, the exclusion condition (one cell cannot contain more
than one vehicle) on the 8 by 8 grid was properly translated
into a condition for the new grid. Five simulation runs were
performed for both discretization schemes, and each was run
for 104 annealing steps. For each simulation, the evolution
of ‖�n − �∞‖1 was calculated according to (28) and the to-
tal annealing time was recorded. Fig. 8 compares the perfor-
mance under the two discretization schemes, where ‖�n−�∞‖1
and the annealing time were averaged over the five runs for
each case. The results indicate that the convergence to the
desired formation can be achieved under both discretization
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schemes, while it takes longer computational time for the finer
discretization.

5. A hybrid coordination algorithm

The Gibbs sampler-based simulated annealing complements
the deterministic gradient-flow method in that it could move
vehicles out of otherwise trapping areas, but one has to pay the
cost associated with probabilistic exploration—longer execu-
tion time and traveling distance. In addition, the algorithm is of
sequential nature, i.e., vehicles move one at a time. The hybrid
algorithm to be presented next aims to combine advantages of
both the stochastic scheme and the gradient-flow scheme while
avoiding their disadvantages.

5.1. The hybrid algorithm

To facilitate the discussion, a scenario illustrated in Fig. 1 is
considered, and the mission is to maneuver the vehicles into the
target while maintaining inter-vehicle interactions and avoiding
obstacles. Hence all three times in (2) are present. The algorithm
works as follows:

• Step 1: Each vehicle starts with the gradient-flow method
and goes to Step 2;

• Step 2: If for d consecutive time steps a vehicle cannot move
under the gradient method and its location is not within the
target area, it is considered to be trapped. The vehicle then
switches to the Gibbs sampler-based simulated annealing
with a predetermined cooling schedule and goes to Step 3;

• Step 3: After N-step simulated annealing, the vehicle
switches to the gradient method and goes to Step 2.

The same potential function �s(x) will be used for both the
deterministic scheme and the stochastic scheme. Let x be the
current configuration, and Nx

m(s) be the set of s-neighbors
of x within one move, as defined in (21). In the gradient-flow
scheme, vehicle s takes a move to minimize �s(z), z ∈ Nx

m(s).
In the stochastic scheme, vehicle s makes a move by sampling
a Gibbs distribution as in the single-vehicle case with potential
U(ys)��s(ys, xS/s). Note that xS/s will vary as other vehicles
make their own moves.

As vehicles move simultaneously, conflicts can occur, i.e.,
multiple vehicles contend for one spot. To resolve this is-
sue, it is assumed that Rs �2Rm and thus potentially con-
tending nodes are within the local communication range be-
fore they make the moves. A conflict can then be resolved lo-
cally. For instance, a uniform sampling could be performed
among the contenders to pick a winner, and the winner takes
the desired spot while the other contenders stay put for this
round.

5.2. Choice of switching parameters

In the hybrid algorithm there are two key parameters: d and
N. d is the waiting time that triggers a vehicle to switch from
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Fig. 9. Average traveling time versus switching parameter.

the deterministic approach to the stochastic one, and N is the
duration of stochastic exploration.

5.2.1. Waiting time d
When d is smaller, it is more likely for a vehicle to make a

wrong decision and switch to simulated annealing. In particular,
a vehicle may be “trapped” temporarily due to the presence
of its neighbors. Premature switching to stochastic exploration
adds to the traveling cost. On the other hand, if d is too large,
it will also be a waste of time if indeed the current cell is a
trapping spot.

This tradeoff was verified through simulations. In the sim-
ulation there were 20 vehicles on a 48 × 48 grid (see Fig. 1).
The target has a center pg = (43, 43) with radius Rg = 5, and
the overlapping circular obstacles are centered at (17, 23) and
(23, 17), respectively, with radii 5. Initially the vehicles were
randomly distributed close to the other corner which is oppo-
site to the target. The potential terms for target attraction and
obstacle avoidance were as in (18), while a neighbor potential
term was adopted to encourage having more neighbors. The
following were used: �g = 10, �o = 1, �n = 5, Rm = √

2 + 
,
Ri = 6

√
2 + 
, Rs = 7

√
2 + 
, and T (n) = 100

ln(n)
.

A quantity ug was defined, ug�
∑

s∈S ‖xs −pg‖2, to measure
how far the vehicles, as a whole, are away from the target. The
simulation stops if ug �200, and the traveling time is recorded.
So at the end of each simulation, the average distance between
the target and vehicles is about

√
10, which is less than the

target radius Rg. In the simulation d was varied from 2 to 100
while N was fixed to 100. For each d, 10 simulation runs were
performed and the traveling times were averaged. Fig. 9 shows
the average traveling time versus d. From the figure, a moderate
d should be chosen for the best efficiency.

5.2.2. Duration N
Intuitively, very small N may not provide a trapped vehicle

enough opportunities to get out; but very large N will kill the
time-saving advantage offered by the gradient-flow algorithm.
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To facilitate the analysis, a simplifying assumption is adopted.
Considering that each vehicle makes its own moving decision,
one might approximate the multi-vehicle system as a collection
of independent single vehicles. Furthermore, it is assumed that
the time spent on the gradient-flow method is much shorter than
that spent on the stochastic approach, and can be neglected.
The latter assumption was verified by simulation. Define the
reachable area to be the set of cells from which a vehicle
can reach the target area under the gradient-flow method, and
the unreachable area to be its complement. Starting from the
unreachable area with the gradient method, a vehicle will be
trapped at some point and it will then switch to simulated an-
nealing. For the duration N of stochastic exploration, let P(N)

be the probability that a vehicle will move to the reachable area
after N-step simulated annealing. Then the expected time for
the vehicle to reach the target is

Ttotal =
∞∑

k=1

k · N · P(N)(1 − P(N))k−1

= N · P(N)−1, (29)

where the vehicle is assumed to start from the unreachable area,
otherwise Ttotal = 0.

The key question then becomes how to evaluate P(N). For-
tunately, a bound on P(N) can be obtained based on Proposi-
tion 3.1. Let �∞ has mass 1 in the target area. Since the target
belongs to the reachable area,

P(N)�Prob(vehicle reaches target)

�1 − 1

2
const · N

− ��m
�m+��	 . (30)

Combining (29) and (30), one obtains

Ttotal �
N

1 − 1
2 const · N

− ��m
�m+��	

. (31)

Eq. (31) clearly indicates that an optimal N exists to minimize
the bound on Ttotal. This analysis was confirmed by simulation.
The same scenario and parameters were used as earlier except
that d was fixed to 6 and N was varied from 30 to 600. Fig.
10 shows the average traveling time versus N, and one can see
that a choice of N between 50 and 150 would achieve good
time-efficiency.

5.3. Effect of the memory

In this subsection the notion of memory is introduced to
further improve the hybrid scheme. The idea is to record the
trapping spots and reduce the probability of repeatedly being
trapped at the same spots. Each vehicle keeps track of the risk
level of dangerous cells, and accordingly lower the probability
of accessing high-risk regions in simulated annealing.

• Step 1: Pick d, N, and T (n), and let all vehicles initially
choose the gradient-flow method;

• Step 2: When a vehicle s determines that it has been trapped
at cell y, it increases the risk level Rs

y by 1 (the default risk
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Fig. 10. Average traveling time versus duration for stochastic exploration.
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Fig. 11. Impact of memory on the average traveling time.

level for every location is 1). Then the vehicle switches to
simulated annealing with n = 1;

• Step 3: At each annealing step, vehicle s determines the set
Cs

m of candidate locations for its next move. For l ∈ Cs
m, it

evaluates the Gibbs potential function �s(xs=l, xS/s), which
is simply denoted as �̄s(l). Then vehicle s will take l with
the probability

P(xs = l) = e− �̄s (l)
T (n) /Rs

l∑
l′∈Cs

m
e− �̄s (l′)

T (n) /Rs
l′

;

• Step 4: Increase n by 1 and repeat Step 3 until n reaches
N. The vehicle s then switches back to the gradient-flow
algorithm and goes to Step 2;

• Step 5: The algorithm stops if the aggregate distance ug � 
̄
for some specified tolerance 
̄.
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To compare the performance with the original hybrid control
scheme, simulation was performed with the same setup as in
the previous section, where d = 6 and N was varied from 30 to
600. As seen in Fig. 11, the hybrid control scheme with memory
always achieves better performance than the memoryless one.

6. Conclusions and discussions

In this paper a stochastic algorithm was presented for coor-
dination of autonomous swarms. The algorithm was based on
the Gibbs sampler with a random visiting scheme. The spe-
cific choice of the proposal distribution results in Gibbs-type
distributions for vehicle configurations, leading to the conver-
gence of the algorithm. The random visiting scheme entails
long-range communication for notifying newly selected nodes
although such information exchange is minimal. A determinis-
tic sequential visiting scheme would eliminate this requirement;
however, the convergence behavior would be unclear since the
stationary distribution for each T is no longer of the Gibbs-type.

An intriguing idea would be to update the vehicles in paral-
lel, each with a Gibbs sampler-based on local characteristics.
This would lead to a fully decentralized scheme, which is de-
sirable for large-scale systems. Although simulation has shown
promising signs along this line (Baras & Tan, 2004), analytical
results are currently lacking. Without further assumptions, it is
difficult to argue that the overall system only settles at global
minima of the potential function.

In the current paper a hybrid algorithm was also developed in
an attempt to improve the efficiency of the stochastic scheme.
Some analysis was provided to gain insight into the algorithm.
The algorithm is heuristic in nature and treats each vehicle in-
dependently, and thus one cannot expect to get analytical con-
vergence results for the network as a whole. In some sense the
hybrid control scheme offers stochastic perturbation to the de-
terministic gradient-flow method; however, it has advantages
over random walk-type perturbation schemes (Barraquand
et al., 1992). Take the single-vehicle case as an example. One
can show that the probability of a vehicle getting trapped again
after N annealing steps goes to zero as N goes to infinity. For a
random-walk perturbation scheme, however, as the number N
of random walks goes to infinity, the configuration distribution
approaches the stationary distribution of the Markov chain
defined by the random walk, and there is no guarantee for the
vehicle to reach the target as N → ∞.

The coordination schemes presented are meant for high-level
path planning. They should be combined with low-level plan-
ning and control modules in implementation. Since vehicles
move on a discrete lattice, the choice of discretization level
becomes an important problem. From the simulation results, a
practical and efficient strategy is to use the coarsest discretiza-
tion that is compatible with the problem setup (e.g., the min-
imum inter-vehicle separation). The cell geometry is another
factor in discretization. In this paper the mission space was
discretized into a lattice with square cells. One could use cells
of other geometries without changing the algorithm (except
the numbering scheme for cells) to implement, e.g., triangu-
lar or hexagonal formations. For future work, it would also be

interesting to investigate the robustness of the algorithm when
uncertainties in sensing exist.
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