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ABSTRACT

MODELING, IDENTIFICATION, AND CONTROL OF HYSTERETIC SYSTEMS WITH

APPLICATION TO VANADIUM DIOXIDE MICROACTUATORS

By

Jun Zhang

Hysteresis nonlinearity in magnetic and smart material systems hinders the realization of their

potential in sensors and actuators. The goal of this dissertation is to advance methods for mod-

eling, identification, and control of hysteretic systems. These methods are applied to the inverse

compensation, self-sensing feedback control, and robust control of vanadium dioxide (VO2) mi-

croactuators. As a novel smart material, VO2 undergoes a thermally induced insulator-to-metal

transition and a structural phase transition, exhibiting pronounced hysteresis in electrical and me-

chanical domains.

With the goal of obtaining accurate hysteresis models while maintaining a low model com-

plexity, optimal compressions for two popular hysteresis models, namely the Preisach operator

and the generalized Prandtl-Ishlinskii (GPI) model, are studied, where the Kullback-Leibler diver-

gence and entropy, respectively, are adopted to quantify the information loss in model compression.

While the optimal compression of the Preisach operator is realized using exhaustive search, dy-

namic programming is employed to optimally compress the GPI model efficiently. Both simulation

and experimental results demonstrate that the proposed algorithms yield superior performances

than typically adopted schemes.

In order to identify the Preisach operator, existing work involves applying a complicated input

sequence and measuring a large set of output data. We propose an efficient approach to identify

the Preisach operator that requires fewer measurements. The output of the Preisach operator is

transformed into the frequency domain, generating a sparse vector of discrete cosine transform



(DCT) coefficients. The model parameters are reconstructed using a compressive sensing-based

algorithm. The effectiveness of the proposed scheme is illustrated through simulation and experi-

ments.

A few new contributions have been made to the modeling and control of VO2 microactuators.

In order to capture the non-monotonic curvature-temperature hysteresis of VO2 microactuators,

physics-motivated models that combine a monotonic hysteresis operator for phase transition in-

duced curvature and a memoryless operator for differential thermal expansion induced curvature

are proposed. Effective inverse compensation schemes for the proposed non-monotonic hysteresis

models are presented. The modeling and inverse compensation schemes are validated experimen-

tally.

Since external sensing systems are not desirable with micro devices, a self-sensing model is

developed for VO2 microactuators to estimate the deflection from the resistance measurement. We

exploit the physical understanding that each of the resistance and the deflection is determined by a

hysteretic relationship with the temperature, which is modeled with a GPI model and an extended

GPI model, respectively. The self-sensing model is obtained by cascading the extended GPI model

with the inverse of the GPI model. The performance of the self-sensing scheme is experimentally

evaluated with proportional-integral control. Finally, an H∞ robust controller is further developed,

where a simple polynomial-based self-sensing scheme is adopted, as the emphasis is on accom-

modating the uncertainties produced by the hysteresis nonlinearity and the self-sensing error. The

effectiveness of the proposed approach is demonstrated through experiments.
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Chapter 1

Introduction

In this chapter, a brief background on modeling, identification, and control of hysteretic systems is

presented. Limitations of the existing work on modeling and identification of hysterestic systems

are discussed. Afterwards, the motivations of inverse compensation, self-sensing feedback control,

and robust control for vanadium dioxide (VO2) microactuators are briefly discussed. At last, an

overview of the contributions and the organization of the dissertation are presented.

1.1 Modeling, Identification, and Control of Hysteretic Systems

1.1.1 Modeling

The term “hysteresis” was coined by James A. Ewing in his 1881 study of ferromagnetism [1].

Hysteresis is a nonlinear effect that occurs in a wide range of areas, such as biology [2], eco-

nomics [3], ferromagnetic materials [4] and various smart materials [5–8]. There has been ex-

tensive work dealing with modeling and control of systems with hysteresis. Hysteresis models

can be roughly classified as physics-based and phenomenology-based. Jiles and Atherton [4] pro-

posed a physics-based hysteresis model for ferromagnetics. While physics-based model may be

valid to a limited quantity of systems, phenomenology-based models, such as the Preisach oper-

ator [9–12], generalized Prandtl-Ishlinskii (GPI) model [13–16], Duhem model [17], Bouc-Wen

model [18], and Maxwell model [19], are often applicable to a broader class of systems with hys-
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teresis, and thus have been adopted more extensively to capture hysteresis nonlinearity. Among

them, the Preisach operator and the GPI model are widely adopted and have been proven effective

in capturing different forms of hysteresis.

The practical utilization of the Preisach operator mostly involves uniform discretization of

the density function on the Preisach plane [9, 10, 12]. For example, Tan and Baras proposed to

approximate the Preisach density function with a piecewise constant function, where the Preisach

density function is discretized into a grid consisting of equal-sized cells [9]. It is anticipated and

verified that the accuracy of the model improves as the number of discretization level increases

[12]; however, computational complexity and data storage cost also increase with the number

of discretization level, posing challenges in parameter identification and control of systems with

hysteresis. Similarly, existing work on the GPI model has typically adopted some predefined

play radii [13, 20–22], the modeling performance of which could be far from optimal. While

it is generally true that the modeling performance improves with an increasing number of play

operators, similarly, computational and data storage costs will also increase for the model and the

corresponding model-based inverse compensation. Obtaining accurate hysteresis models while

maintaining a relatively low calculation and storage costs is thus an issue of practical interest.

1.1.2 Identification

The Preisach operator consists of weighted superposition of hysterons. Parameter identification

based on the Preisach operator usually involves discretization of the Preisach density function in

one form or another, and one effective method is to approximate the density function with a piece-

wise constant function [9]. Both online [12, 23] and offline [9, 24–26] schemes can be adopted

for model identification. When the discretization level is L, there are L(L+ 1)/2 cells with dif-

ferent density values [27]. The input needs to provide sufficient excitation for all the density
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values for model identification [12]. One example of such inputs takes the form of damped oscil-

lations, which produces nested hysteresis loops [12]. The input sequence should contain at least

L(L+1)/2 elements to identify all the densities. When the discretization level is chosen larger, the

corresponding Preisach operator could better capture the actual hysteresis, but the identification

would require a larger number of measurements. For instance, in [24], the Preisach density func-

tion was discretized into 200 levels, and at least 20,100 measurements would need to be taken and

processed to identify all the density values. In [26], a 20-level Preisach operator was adopted to

characterize the displacement-temperature hysteresis of a VO2-coated microactuator. In order to

capture the hysteresis under quasi-static condition, a relatively long wait time was needed for each

measurement due to the slow thermal dynamics, resulting in long experiment time for collecting

the required data for model identification [26]. Therefore, it is of great interest to design a more

efficient identification approach that requires less input-output data.

1.1.3 Control

With the fast development of smart material-actuated hysteretic systems, there has been an increas-

ing amount of work in control schemes. Among them, an important class is inverse compensation.

When experiments are operate in quasi-static condition [6], the inverse compensation problem is

simplified to: given a desired output value, calculate an input sequence such that the final value of

the plant reaches the desired value. So the hysteresis effect is approximately cancelled out in this

manner. Inversions of a few phenomenological models have been reported [9, 18, 20, 22, 27, 28].

The inversion of the Preisach model is typically derived based on numerical iteration [27], ana-

lytical inversion of the GPI model can often be derived analytically [20, 28], which facilitates the

real-time control implementation. Note that analytical inversion of a GPI model requires that all

the generalized play operators have the same envelope functions, limiting its ability in modeling
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complex hysteresis.

Although inverse compensation is effective, it is also highly computationally demanding and

does not perform robustly against disturbances. In order to control systems with hysteresis, various

feedback control approaches have been proposed [9, 12, 29, 30]. Robust control theory has been

used in systems to reduce environmental disturbances and plant uncertainties, but such studies have

been typically limited to conventional smart materials, such as piezoelectric-based actuators [31–

34], where the controllers were designed to control the deflection of piezoelectric microactuators

based on charge measurements.

1.2 Modeling and Control of Vanadium Dioxide (VO2) Microac-

tuators

VO2 is a novel smart material that undergoes a thermally induced solid-to-solid phase transition

around 68 ◦C [35]. During the transition, the material’s crystalline structure changes from a mono-

clinic phase (M1) at low temperatures to a tetragonal phase (R) at high temperatures, which results

in drastic changes in multiple physical properties (including resistance [8], induced mechanical

stress [36] , and optical transmittance [37]) and pronounced hysteresis with respect to tempera-

ture. These characteristics make VO2 a promising multifunctional material for sensors [38], actu-

ators [36, 39, 40], and memory applications [41]. The actuation potential of VO2 was not noticed

until recently [36]. As shown in Fig. 1.1, by coating VO2 on a microstructure (e.g., a silicon

cantilever), thermally actuated micro-benders can be created, which have shown full reversible

actuation, large bending, and high energy density [40], making them particularly suitable for ap-

plications such as micromanipulation and microrobotics.
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Figure 1.1: Superimposed SEM pictures of the 300 µm VO2-coated silicon cantilever taken when

the substrate temperature was 30 ◦C (lower curvature) and 90 ◦C (higher curvature), respectively.

1.2.1 Modeling and Inverse Compensation

The realization of the potential of VO2-coated microactuators, however, is greatly hindered by

their sophisticated non-monotonic hysteretic behavior (shown in Fig. 1.2) resulting from two com-

peting actuation effects. The first actuation effect is due to the internal stress generated during the

phase transition, which is inherently hysteretic with respect to temperature. The second actuation

effect is due to the differential thermal expansion of the VO2 layer and the substrate, which causes

an opposite bending effect. While the thermal expansion effect persists throughout the tempera-

ture range, the stress generated during the VO2’s structural changes dominates across the phase

transition [39]. As a result, the relationship between the bending curvature and temperature is

non-monotonic when the temperature is raised or lowered monotonically. It is crucial to capture

the non-monotonic hysteresis behavior in VO2 microactuators.

Most studies on modeling and inverse compensation of hysteresis in smart materials have fo-

cused on monotonic hysteresis nonlinearities [9, 10, 28, 42–47], where a monotonic input causes

a monotonic output. A special type of non-monotonic hysteresis with butterfly-shaped hysteresis

loops was investigated by Drincic et al. [48]; however, the study there was focused on hysteresis

loops that can be converted to monotonic hysteresis through uni-modal mappings. For the model

consisting of a classical Prandtl-Ishlinskii (CPI) model and a memoryless function, the authors
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Figure 1.2: Non-monotonic hysteresis behavior in a VO2 microactuator. The good repeatability of

the actuation behavior is also shown.

proposed an iterative scheme for its inversion [49], but the convergence of the inverse algorithm

was not considered. Inverse compensation of non-monotonic hysteresis needs to be developed for

VO2 microactuators.

1.2.2 Self-sensing Feedback Control

For the control of micro devices, external sensing systems, such as laser scattering [36] and in-

terferometry [50], are often undesirable or even infeasible due to their sizes and complexity, and

self-sensing provides a cost-effective alternative. In self-sensing, the variable of interest (often a

mechanical signal) is estimated based on another variable (typically an electrical signal) that is

much easier to obtain. Existing work on self-sensing of actuators has mainly involved traditional

smart materials, such as piezoelectrics [29, 51, 52], shape memory alloys (SMAs) [30, 53, 54], and

magnetorheological fluids [55]. For example, Ivan et al. implemented self-sensing for piezo-

electric actuators, where both the displacement and the external force at the tip of the cantilever

were estimated based on the current measurement, and a Prandtl-Ishlinskii model was adopted

to compensate for the remaining hysteresis nonlinearity [52]. In [53], the strain feedback of the
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SMA-actuated flexures for motion control was estimated from resistance measurement using a

high-order polynomial model. Polynomial models were also utilized to estimate the strain or grip-

per motion of the SMA-based grippers [30, 54]. Although the hysteresis gap between strain and

resistance can be decreased by changing the pretension force, the remaining hysteresis still poses

challenges for precision control of these grippers.

The self-sensing of VO2-based microactuators presents new challenges. In particular, the re-

sistance change is due to an insulator-to-metal transition while the mechanical change is due to

a structural phase transition [35]. Although strongly correlated, these two different phase tran-

sitions do not occur simultaneously and thus the relationship between deflection and resistance

is hysteretic and highly complicated. In [56], a memoryless Boltzmann function was utilized

for self-sensing and a proportional-integral controller was implemented based on the self-sensing

signal. However, memoryless functions-based self-sensing schemes cannot capture the inherent

deflection-resistance hysteresis and result in large sensing errors, which poses a significant limita-

tion to tracking control accuracy. A novel composite self-sensing model and proportional - integral

control based on the composite self-sensing will be studied.

1.2.3 Robust Control

Robust control using self-sensing feedback needs to be designed to improve the feedback control

robustness for VO2 microactuators. Although external disturbances and model uncertainties were

considered for the controller designs, the error between the actual deflection and the reference error

was not addressed explicitly. The robust controllers in [33,34] were synthesized for suppression of

piezoelectric structure vibrations by self-sensing the rate of strain change, where tracking desired

reference signals was not a concern. The work done in [33] followed a similar control framework

as in [31], but it was designed to follow a desired deflection value of zero (in order to reduce vi-
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brations). Although the controller design in [34] accommodates constraints on control effort, it

does not account for effects of model uncertainties, hysteresis, or disturbances. In terms of other

hysteretic materials, such as SMAs, there has been no reported work in robust control using self-

sensing for deflection control. A robust controller will be developed, which takes into account

the error in modeling temperature-deflection hysteresis, and environmental disturbances, in order

to minimize the tracking error. Unlike previous work on robust position control of hysteretic mi-

croactuators based on self-sensing [31–34], the controller in this work takes into consideration the

error between the desired and actual deflection values in order to precisely control the microactua-

tor. The performance of the robust controller is also compared to a proportional-integral-derivative

(PID) controller.

1.3 Contribution and Organization

1.3.1 Overview of Contribution

First, tools from information theory, namely KL divergence and entropy, are utilized to optimally

compress the Preisach operator and the GPI model under given complexity constraints. The com-

pressed hysteresis models are more accurate while maintaining relatively low calculation and stor-

age complexity. While due to the particular setting of the Preisach plane, the optimal compression

of the Preisach operator involves an exhaustive search, the optimal compression of the GPI model

is reformulated as an optimal control problem and solved with dynamic programming. The pro-

posed schemes are verified in simulation and experimental results involving the hysteresis between

the resistance and the temperature of a VO2 film.

Second, identification of the Preisach operator is studied under the compressive sensing frame-

work that requires much fewer measurements. The proposed approach adopts the discrete cosine
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transform (DCT) transform of the output data to obtain a sparse vector. Sparser vector is further ob-

tained assuming the order of all the output data are known. The model parameters can be efficiently

reconstructed using the proposed scheme. The least-squares scheme is also realized, and is com-

pared with the proposed approach using the same number of measurements. Root-mean-square

error (RMSE) is adopted to examine the identified model parameters and model estimation perfor-

mances. The proposed identification approach is shown to have better identification performance

than the least-squares scheme through both simulation and experiments involving a VO2-integrated

microactuator.

Third, physics-motivated non-monotonic hysteresis models that account for the two competing

actuation mechanisms are presented. The first mechanism is the stress resulting from structural

changes in VO2, which is modeled with a monotonic Preisach operator or a GPI model. The sec-

ond mechanism is the differential thermal expansion effect, which is modeled with a memoryless

operator. Efficient inverse compensation schemes are developed for the proposed non-monotonic

hysteresis models. For the non-monotonic model based on the Preisach operator, the inversion

complexity is studied; for the non-monotonic model based on the GPI model, the inversion is de-

veloped based on fixed-point iteration with which the convergence conditions of the algorithm are

derived. The proposed modeling and compensation schemes are validated experimentally.

Fourth, self-sensing feedback control for VO2 microactuators is studied. The proposed com-

posite self-sensing approach exploits the physical understanding that both the resistance and the

deflection have different hysteretic relationships with the temperature. The steady state current is

used as a surrogate for the temperature of VO2. The self-sensing model is obtained by cascading an

extended GPI (EGPI) model with the inverse of a GPI model. The performance of the self-sensing

scheme is evaluated experimentally with proportional-integral control.

Finally, an H∞ robust controller is further designed and implemented for precision deflection
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control. A ninth-order polynomial is adopted to model the self-sensing relationship between the

deflection and the resistance. The uncertainties produced by the hysteresis between the deflection

and the temperature input and the error in the self-sensing model are accommodated by the pro-

posed controller. The robust controller is demonstrated through step and multisinusoidal reference

tracking experiments with simulated white noise current signal.

1.3.2 Organization

In Chapter 2, the optimal compression of the Preisach operator is presented. In Chapter 3, we

present the optimal compression of the GPI model. The compressive sensing-based Preisach oper-

ator identification is proposed in Chapter 4. In Chapter 5, we discuss the non-monotonic hysteresis

modeling and inverse compensation based on the Preisach operator. The EGPI model and its in-

version are studied in Chapter 6. In Chapter 7, a composite hysteresis model is proposed for

self-sensing feedback control of VO2 microactuators. Robust control for VO2 microactuators is

presented in Chapter 8. Conclusions and future work are provided in Chapter 9.

10



Chapter 2

Kullback-Leibler (KL) Divergence-based

Optimal Compression of the Preisach

Operator

In this chapter, a novel scheme to optimally compress the Preisach operator is proposed. The

KL divergence is utilized to quantify the information loss in approximating the Preisach density

function as piecewise-constant functions. In particular, the proposed cost function incorporates

both the largest cell information loss and the total information loss, for a given discretization

scheme on the Preisach plane. Exhaustive search is conducted to find the optimal discretization

scheme. The proposed approach is applied to the modeling of the hysteretic relationship between

resistance and temperature of a VO2 film, and its effectiveness is further examined in open-loop

inverse compensation experiments. The proposed discretization scheme is compared with two

other approaches and with uniform discretizaiton, and the effectiveness of the proposed approach

is validated in both model verification and inverse compensation.

2.1 Problem Formulation

KL divergence, or relative entropy, characterizes the distance between probability distribution

functions [57]. KL divergence has been used extensively in statistics [58], pattern recognition [59],
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and signal processing [60]. To motivate this approach in discretization of the Preisach operator,

consider the problem of approximating a probability distribution function (pdf) fp(x) in a certain

region with a uniform pdf fq(x). If fp(x) is a uniform distribution, then it can be approximated

without error by fq(x). However, much of its information will be lost if fp(x) varies greatly from

point to point.

For the Preisach operator, the number of discretization levels has a direct impact on the com-

plexity in model representation, identification, and inverse compensation, and is thus taken as the

complexity measure. The choice of the Preisach operator discretization is a critical issue that de-

termines the accuracy in approximating the Preisach operator and the complexity in implementing

the inverse Preisach operator. Consider the problem of approximating some arbitrary Preisach

density function with a cell-wise constant function. For a given discretization level (thus a given

level of algorithmic complexity), it is desirable to discretize the density function in such a way

that the original density function has the least information loss approximating it using a constant

within each cell. In other words, coarser (finer, resp.) discretization should be applied in regions

with smaller (larger, resp.) density variation so as to minimize the overall information loss in the

approximation process.

Our problem is thus formulated as: given the number of discretization level, find the optimal

discretization scheme that minimizes the information loss in representing the original Preisach

operator by the approximating one.

2.2 Information Loss Metric: KL Divergence-based Measure

For continuous random variables, the KL divergence is defined as:
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DLK(P||Q) =
∫

X
fp(x) log

fp(x)

fq(x)
dx, (2.1)

where fp and fq represent the pdfs of P and Q, respectively. We use the convention that 0 log 0
q = 0,

p log
p
0 = ∞. It can be shown that the KL divergence between two pdfs is always nonnegative, and

is zero if and only if the two probability distributions are identical [57].

The concept of KL divergence can be applied to Preisach density function discretization in

the following way: assume that a discretized density function with high fidelity is known (know-

ing the true infinite-dimensional density function is not practical). The original density can be

approximated with a piecewise constant function compatible with a discretization grid using a

lower discretization level; namely, the approximating density takes a constant value within each

discretization cell, but the value varies from cell to cell [9]. The KL divergence between the

(normalized) original density restricted to a cell and the uniform distribution can then capture the

information loss in that cell.

In particular, for a certain discretization, the pdf pi, j within each cell is first calculated and the

amount of information loss Hi, j for representing pi, j with a uniform density qi, j is computed. Ti, j

is defined as the integral of µ over cell (i, j):

Ti, j =
∫ ∫

Cell(i, j)
µ(β ,α)dβdα. (2.2)

Then the probability density functions pi, j and qi, j, over cell (i, j), are defined as:

pi, j(β ,α) =
µ(β ,α)

Ti, j
, (2.3)

qi, j(β ,α) =
1

Si, j
, (2.4)
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where Si, j is the total area of cell (i, j). The KL divergence Hi, j between pi, j and qi, j is:

Hi, j =
∫ ∫

cell(i, j)
pi, j(β ,α) log

pi, j(β ,α)

qi, j(βα)
dβdα. (2.5)

Due to the normalization process, the relative importance of each cell with respect to other cells

is not captured in Hi, j. To account for this, the information loss is defined as Li, j for cell (i, j) by

weighing Hi, j with Ti, j:

Li, j = Hi, j ·Ti, j.

The approximating Preisach density value for cell (i, j) is Ti, j/Si, j.

2.3 Optimal Compression Scheme

It is of interest to investigate what is a suitable “metric” for measuring the compression error.

For a given level of discretization M, the discretization variables are denoted as {βk}M
k=0, where

β0 = vmin, βM = vmax are fixed and β0 ≤ β1 ≤ ·· · ≤ βM−1 ≤ βM. D = {βk}M−1
k=1

is called a

discretization strategy. For a given D , the weighted KL divergence Li, j can measure how well

the (normalized) density function within each cell (i, j) is approximated by a uniform distribution,

but a total measure for the overall information loss is needed to evaluate the performance of the

discretization strategy D .

In searching the total measure criterion, thus achieving optimal compression, it’s not desirable

to have certain cells whose information loss are very large. The total information loss of all cells

is another consideration. The criterion is proposed to be

14



JKL(D) = H ·DKL(PL ‖Qu),

where PL represents the (normalized) pdf of {Li, j}, and Qu represents a uniform pdf with value

1/N, where N = M(M + 1)/2 is the total number of cells. The relative importance is similarly

chosen as H and the area for every cell is assumed to be 1. This criterion takes both the total

information loss and maximum information loss into consideration.

Other than uniform discretization, two other cost function approaches are considered for com-

parison purposes.

• J∞(D) = maxi, j Li, j

With J∞, the largest information loss among cells is minimized, but the total information loss

could be large.

• J1(D) = ∑i, j Li, j

With J1, the total information loss is minimized, but large information losses in some regions

are possible, which would result in large error when the operator works in that particular

region.

Since the proposed approach considers both the maximum and total information losses, it is

expected that it will best approximate the density function, compared with the other two cost

function approaches and the uniform discretization scheme under the same complexity.

The compression scheme can be outlined as follows. Given an original Preisach operator, with

uniform discretized density function µi, j, i, j = 1, · · · ,L. Discretize the density function with a

lower discretization level M < L, and find D = {βk}M−1
k=1

that minimizes J(D). {βk}M−1
k=1

values

are chosen from a discrete set. In this work the discrete set is chosen to be the input levels of the
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original discretized plane: βk ∈ {vmin +
(l−1)(vmax−vmin)

L |l = 1,2, · · · ,L},k = 1, · · · ,M − 1, and

exhaustive search is conducted to find the solution that minimizes J(D).

2.4 Experimental Results

2.4.1 Experimental Characterization

The hysteresis between resistance and temperature in a VO2 film was used as an example to show

the effectiveness of the proposed discretization scheme. A VO2 layer was deposited by pulsed

laser deposition. The film was glued with a highly thermal conductive silver paint, and in close

contact with a Peltier heater. The Peltier heater was controlled with a temperature controller with

0.1 ◦C precision. Fig. 2.1 shows the experimental setup. The resistance of the film was measured

through two electrical aluminum contacts patterned on the VO2 film.

Figure 2.1: Experimental setup for resistance vs temperature measurements of a VO2 film.

Since the measured resistance (R) changes approximately two orders of magnitude during the

phase transition, − log10 R was taken as the output, where the negative sign is introduced so that

the resulting Preisach operator has a nonnegative density function. Fig. 2.2(a) shows the measured

− log10 R–T hysteresis loops including minor loops, and Fig. 2.2(b) shows the identified, piecewise

constant density function µ(β ,α) using the data in Fig. 2.2(a), where uniform discretization on the
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Figure 2.2: (a) Measured − log10(R)–T hysteresis in VO2. (b) Identified Preisach density function.

Preisach density function was adopted with discretization level M = 40. The full range of tempera-

ture input [v′min, v′max] was [30, 80] ◦C. The offset value was identified to be −3.308log10Ω, where

log10 Ω denotes the unit of the output.

2.4.2 Compression Performance

To conduct the compression studies, the piecewise constant Preisach density function with (uni-

form) discretization level 40 was taken as the “original” density function, and the approximation
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to it with discretization level 4 was found. Fig. 2.3 shows the uniform discretization and Fig. 2.4

shows discretization results based on J∞(D), J1(D), JKL(D), respectively. It can be noted from

the figures that in the non-uniform discretization scheme, the discretization is finer in the center

area since this is where the original density function has larger variations. However, when the cost

function is chosen as J∞(D) or J1(D), the center cells have very small area, which is actually un-

desirable. JKL(D) based compression comes with a better approximation of the “original” density

distribution.

Figure 2.3: Uniform discretization.

In order to examine the approximating performance of each discretization scheme, a randomly

chosen input sequence for the system shown in Fig. 2.5(a) was applied. The corresponding re-

sistance output in experiment was then obtained and compared with the predictions from the four

low-complexity models mentioned above. Fig. 2.5(b) shows the prediction errors for the four mod-

els. The model based on JKL was able to predict much better the resistance than the other three

schemes. The largest output error using the KL scheme is below 0.23log10 Ω, while uniform dis-

cretization approach results in errors larger than 0.57log10 Ω and other two approaches end up

with larger than 1.00log10 Ω. The effectiveness of the proposed approach in representing the true
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(a)

(b)

(c)

Figure 2.4: Non-uniform discretization: (a) Using maximum of information losses J∞ as cost

function. (b) Using sum of information losses J1 as cost function. (c) Using KL divergence JKL of

information losses as cost function.
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Figure 2.5: (a) Input temperature sequence for model validation. (b) Output error comparison

between uniform discretization, maximum of information loss, sum of information loss and KL

divergence of information loss.

density function of Preisach operator is evident.

Inverse control performance based on the four models was also examined. Given the desired

output sequence, a temperature input that achieves the given output can be calculated iteratively.

This calculated input sequence was applied to the system to verify the performance of the identified

model. Fig. 2.6(a) shows the desired sinusoidal output with decreasing amplitudes, and Fig. 2.6(b)

shows the corresponding inversion errors based on the four different models. It can be seen that

the inversion based on the proposed model is effective, with the largest error of 0.22log10 Ω, for

the total range of [−4.28,−2.34] log10 Ω. As time evolves the output error almost converges to

zero, and since the discretization level is only 4, the inversion performance can be considered very

good. In comparison, the inversion of the uniform discretization approach yields errors larger
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Figure 2.6: (a): Desired output of sinusoidal shape sequence. (b): Inverse compensation errors be-

tween uniform discretization, max of information loss, sum of information loss and KL divergence

of information loss.

than 0.56log10 Ω, and as large as 1.00log10 Ω for the other two approaches. This again shows the

advantage of the proposed KL divergence-based compression scheme.
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Chapter 3

Entropy-based Optimal Compression of the

Generalized Prandtl-Ishlinskii (GPI) Model

In this chapter, the optimal compression of the GPI model subject to a given number of play opera-

tors is presented. An information-theoretic tool, entropy, is adopted to capture the information loss

in replacing a group of weighted play operators with a single play operator. Prior to compression,

a scaling operation on the original weights is introduced to accommodate the fact that, given the

same weight value, a generalized play with a larger radius has less impact on the total output. The

optimal compression algorithm is reformulated as an optimal control problem and solved with dy-

namic programming, the computational complexity of which is shown to be much lower than that

of exhaustive search.

Extensive simulation results are presented to examine the performance of the proposed ap-

proach in approximating a GPI model consisting of a large number of play operators, where cases

with different types of weight distributions are explored. Simulation results show that, in general,

the entropy-based approaches deliver far better performance than a typically adopted scheme where

the play radii are assigned uniformly. The effectiveness of the proposed approach is further ver-

ified in the compression of an experimentally identified GPI model for the hysteretic relationship

between temperature and resistance of a VO2 film. Note that the proposed optimal compression

approach also works for the CPI model since it is a special case of the GPI model.
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3.1 Problem Formulation

Note that, for a GPI model, its output is a weighted superposition of outputs (states) of individual

play operators and hence is linear with respect to the weight parameters. As a result, one can

identify the weight parameters offline or online by minimizing the difference between the actual

output and the output of the estimated model. On the other hand, the play radii of a GPI model

determines the states of individual play operators, but the relationship between the radii and the

states are complex and involves the past history of the input, and one cannot express the output of a

GPI model directly in terms of its play radii. Consequently, determining the play radii based on the

output difference between the original model and the estimated model is difficult if not impossible.

Therefore, in this work we seek to minimize the difference in “weight distribution” (including both

play radii and their weights) between the original and reduced GPI operators, which would imply

that the output of the reduced model will be close to that of the original model, under all input

functions.

The number of play operators in the GPI model directly determines the computational and

storage cost in hysteresis modeling, parameter identification, and inverse compensation. Therefore,

it is taken as the measure of complexity for a GPI model. Consequently, the compression of a high-

fidelity GPI model with a large number (N) of play operators deals with finding a smaller number

(M, M < N) of play operators and the corresponding weights to best represent the original GPI

model. This problem is closely tied to optimal compression of the weight vector {p(r j)}N
j=1 in the

discrete case, which is formulated precisely.

Fig. 3.1 shows a nonnegative weighting function p(r) with N elements, p j = p(r j), 0 <= r1 <

r2 < · · ·rN < ∞. The compression of the original weighting function is to use a new weighting

function with (M, M <N) elements: p̂ j = p̂(r̂ j),0<= r̂1 ≤ r̂2 ≤ ·· · r̂M−1 ≤ r̂M <∞ to approximate
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the original weighting function.
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Figure 3.1: Schematic illustrating the compression of a weighting function. The solid-line seg-

ments are the original weighting function, and the dotted-line segments are the new weighting

function.

In order to compress the weighting function, the notion of partition is firstly introduced. Denote

D = {βk}M
k=0 as the set of partition indices (0 = β0 < β1 < · · ·< βM−1 < βM = N), that partitions

the weighting function into M groups. The original weights with indices βk−1+1,βk−1+2, · · · ,βk

belong in the k-th group, k = 1,2, · · · ,M. For each group, the original weighting function is ap-

proximated with only one element (shown in Fig. 3.1 as red dotted segments), and the new element

is characterized as

r̂k =
βk
∑

i=βk−1+1

p(ri)

βk
∑

j=βk−1+1
p(r j)

ri,

p̂(r̂k) =
βk
∑

i=βk−1+1

p(ri).

(3.1)

The optimal compression problem is to find the compression strategy D∗ = {β∗
k }M

k=0 that best

approximates the given weighting function. To facilitate the formulation of the problem, we con-

sider a function Fk as the information loss measure in approximating the distribution p(ri),βk−1+

1 ≤ i ≤ βk with p̂k(r̂k). The overall compression cost function can be chosen as either
M

∑
k=1

Fk or

maxk Fk.
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3.2 Optimal Compression Scheme

While a number of methods, such as evolutionary algorithms [61] and simulated annealing [62],

could be used to solve nonlinear optimization problems, these approaches are typically computation-

intensive and cannot guarantee globally optimal solutions. In this work, we exploit the structure

of the compression problem and reformulate it as an optimal control problem. The reformulation

allows us to use dynamic programming to obtain the (globally) optimal solution, as well as an-

alyze the complexity of the algorithm. Denote xk = βk as the state, and uk = βk − βk−1 as the

control input, k = 1, · · · ,M. The optimization problem is then reformulated as: finding inputs

u = (u1,u2, · · · ,uM−1), such that the total cost is minimized. Note that since β0 = 0 and βM = N

are fixed, uM will be determined automatically by u and thus is not a decision variable. The com-

pression cost Fk for each group is clearly determined by βk−1 and uk, or Fk = Fk(xk−1,uk). The

dynamic programming algorithm to be presented next considers the overall cost function J1 with

the form of
M

∑
i=1

Fi. The algorithm is similar for the case when the cost function is in the form of

maxi Fi. Specifically, we have

xk = xk−1 +uk,

J1(x0,u) =
M−1

∑
i=1

Fi(xi−1,ui)+ f (xM−1),

(3.2)

where f (xM−1) represents the “terminal cost” – the information loss for the last group. The optimal

control u∗ = (u∗1,u
∗
2, · · · ,u∗M−1) is defined as

u∗ = argmin
u

J1(x0,u). (3.3)
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Once the optimal control u∗ is found, the optimal compression strategy is obtained as: β∗
0 =

0,β∗
1 = β∗

0 +u∗1, · · · ,β∗
k = β∗

k−1 +u∗k , · · · ,β∗
M = N. The following proposition provides the algo-

rithm for finding u∗, the proof of which follows the standard dynamic programming principle [63].

Proposition 1. Consider a sequence of M −1 optimization problems, with the cost functions de-

fined as

Jk(xk−1,{ui}M−1
i=k

) =
M−1

∑
i=k

Fi(xi−1,ui)+ f (xM−1), (3.4)

k = 1, · · · ,M−1, and the corresponding value function as

Vk(xk−1) = min
{ui}M−1

i=k

Jk(xk−1,{ui}M−1
i=k

). (3.5)

Then the value functions along with the optimal control sequence {u∗i } can be obtained recursively

as follows:

VM−1(xM−2) = min
uM−1

FM−1(xM−2,uM−1)+ f (xM−2 +uM−1), (3.6)

· · ·

Vk(xk−1) = min
uk

Fk(xk−1,uk)+Vk+1(xk−1+uk), (3.7)

k = M −2, · · · ,2,1, and u∗k is obtained as the minimizing uk in the computation of Vk(xk−1), k =

1, · · · ,M−1.

Remark 1. Note that the procedure in Proposition 1 will generate {u∗k} as a state-dependent

policy. The original optimization problem has a fixed initial state of x0 = 0, which results in a

specific optimal control sequence when applied to the feedback policy.
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The dynamic programming approach has a significant advantage over the exhaustive search

in terms of computational complexity. Take the number of evaluations of information loss in

partitioned groups required by each algorithm as the metric of computational complexity. For

the dynamic programming approach, the terminal cost function f (xM−1) requires N evaluations

since xM−1 could take any values of {0,1, · · · ,N −1}, (3.6) requires N −1 evaluations, and (3.7)

requires N −M + k evaluations, 1 ≤ k ≤ M − 2, resulting in a total of
M(2N−M+1)

2 evaluations.

For the exhaustive search, on the other hand, there are
(N−1)!

(M−1)!(N−M)!
possible partitions for the

weights, and each partition requires M evaluations, resulting in a total of
(N−1)!M

(M−1)!(N−M)!
for the

number of evaluations, which is significantly larger than the complexity of the dynamic program

algorithm.

3.3 Information Loss Metrics: Entropy-based Measure

The discussions so far have assumed a generic function Fk that represents the information loss in

replacing the weight distribution of the kth group, {p(ri)}
βk
i=βk−1+1

, with a single weight p̂k(r̂k).

An information-theoretic tool, entropy, is exploited to define the information loss in compression.

Entropy [64] is a measure of the uncertainty in a random variable, which has been used exten-

sively in statistics [65] and signal processing [66]. For a discrete random variable G with probabil-

ity mass function (pmf) p̄(ri), i = 1,2, · · · ,L, the entropy is defined as

H(G) =−
L

∑
i=1

p̄(ri) log(p̄(ri)). (3.8)

The convention 0log0 = 0 is adopted. For a given L, the entropy of G is lowest when there

exists a k ≤ L, such that p̄(rk) = 1. On the other hand, the uniform distribution, where p̄(ri) = 1/L,

i = 1,2, · · · ,L, has the largest entropy.
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Intuitively, if the weight distribution of (multiple) play operators, when properly normalized, is

close to a uniform distribution, the compression loss is high; Conversely, if the group has a single

operator with weight dominantly larger than those of the rest operators, the compression loss is

expected to be small. These considerations make the entropy a natural candidate for measuring

the information loss. In addition, if the dominant play operators are located far away from r̂k, the

compression loss is also high, motivating the incorporation of the distances between the play radii

and the “centroid” r̂k into the cost function. Specifically, the following procedure is proposed to

compute an entropy-based measure for the information loss in approximating a discrete distribution

group p(ri), i = βk−1+1,βk−1+2, · · · ,βk:

1. Calculate the total weight in the group:

Tk =

βk

∑
i=βk−1+1

p(ri).

2. Get the normalized pmf for the group:

p̄i = p(ri)/Tk,

i = βk−1+1,βk−1+2, · · · ,βk.

3. Obtain the entropy for the normalized pmf:

Hk =−
βk

∑
i=βk−1+1

p̄i log p̄i.

4. The effect of the distances between play radii and the centroid needs to be incorporated; one

way to do this is to define the cost function for the k-th group as
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Ek = Tk ·

√

√

√

√

√

βk

∑
i=βk−1+1

(p̄i (ri − r̂k))
2 ·Hk,

where Tk is included to reflect the impact of the total weight for the group.

Note that while there might be other alternatives, we will show later in this work that the proposed

scheme is adequately effective. Finally, for a partition strategy D , the entropy-based overall cost

functions can be chosen as:

JESUM
(D) =

M

∑
k=1

Ek, (3.9)

JEMAX
(D) = max

k
Ek. (3.10)

The optimization algorithms based on the cost functions (3.9) and (3.10) are denoted as Entropy

Sum and Entropy Max, respectively.

3.4 Scaling of the Weights for the GPI Model

For a GPI model with a certain input range, the constituent play operators will have different ranges

of outputs, and thus have different levels of importance to the output of the GPI model even if their

weights are equal. Proper “scaling” of the weighting function is introduced to accommodate the

play radius-dependent importance.

Fig. 3.2 shows a generalized play operator with radius r, where the input range is [vmin,vmax],

and the initial condition w(0) = γL(vmin)+r. It can be easily seen that the output range of the play

operator is dependent on r; specifically, the output w ∈ [γL(vmin)+ r,γR(vmax)− r], with a total

change of γR(vmax)− γL(vmin)−2r. Accordingly, the following scheme is introduced to produce

a “scaled” weight distribution for the compression.
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Figure 3.2: Illustration of the radius-dependent output range for a generalized play operator.

Denote the actual weight as p, and the weight after scaling as p′, then for the play operator

with radius r j:

p′(r j) =
γR(vmax)− γL(vmin)−2r j

2
∗ p(r j). (3.11)

For a generalized play operator whose envelopes are in the form of hyperbolic-tangent func-

tions, when vmin →−∞ and umax →+∞, the output z∈ [−1+r,1−r]. It can be seen that 0≤ r ≤ 1.

The play operator will not produce any output change under a cyclic input when the radius r > 1,

since the output will never reach both envelopes due to the disjoint ranges of the envelopes. It is

for this reason that the radius is always chosen to be no larger than 1. The advantage of using the

scaled weights over the non-scaled weights in compression will be further demonstrated.

3.5 Simulation Results

The proposed optimal compression algorithms are tested in simulation for GPI models with differ-

ent characteristics for their scaled weighting functions.

Following [13, 28], the envelope functions for the generalized play operator are chosen to be
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Table 3.1: Parameters of the GPI model envelope functions.

aR bR aL bL

3.5 0 4.5 1

hyperbolic-tangent functions in the form of

γR(v(t)) = tanh(aRv(t)+bR), (3.12)

γL(v(t)) = tanh(aLv(t)+bL). (3.13)

For simplicity of demonstration, the non-hysteretic component D(v(t)) is set to be zero. The

parameter values of the generalized play operator are shown in Table 3.1. The original GPI model

consists of N = 30 play operators, with radii r j = j/(N + 1), j = 1,2, · · · ,N, and input range of

v ∈ [−1,1].

The compression goal is to use a new GPI model with M = 6 play operators to approximate

the original GPI model. Although the unscaled weights are directly related to the output, the

scaled weight distribution is considered. The output performance of the proposed approach will

be discussed. Four cases for the scaled weight distribution of the original model are considered, 1)

uniform, 2) one peak, 3) two peaks, and 4) random. In addition to the two compression schemes

presented in the previous section (Entropy Sum, Entropy Max), a uniform compression scheme,

where every five consecutive play operators are clustered into one group, is considered for com-

parison purposes.

In order to assess the output prediction performance of the reduced model, throughout the chap-

ter, the normalized RMSE is adopted to quantify the modeling performance under different com-

pression strategies. The error is obtained as follows: first, calculate the RMSE between the output
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Table 3.2: Compression performance comparison: the uniform case.

Scheme Partition indices Error

Uniform (0,5,10,15,20,25,30) 0.75%

Entropy Sum (0,5,10,15,20,25,30) 0.75%

Entropy Max (0,5,10,15,20,25,30) 0.75%

of each new GPI model and that of the original GPI model under the input shown in Fig. 3.3(a);

then divide the RMSE by the output range of the original model. Normalization of the RMSE

allows assessing and comparing the algorithms’ performance across different weight distributions.

3.5.1 Case 1: Uniform Distribution for the Scaled Weights

First, the following uniform distribution is considered for the scaled weights:

p′(r j) = 0.5, j = 1,2, · · · ,30. (3.14)

Fig. 3.3(a) shows the actual weight distribution (unscaled) and Fig. 3.3(b) shows the corresponding

scaled weight distribution. Fig. 3.4(a) shows an input sequence and Fig. 3.4(b) shows the input-

output relationship of the given GPI model. Note that the actual weighting function and the input-

output relationship will not be shown for other forms of weighting functions in the interest of

brevity; however, the hysteresis loops in other cases are also verified to be large.

The simulation results are summarized in Table 3.2. It is shown that, given the uniform dis-

tribution, the two entropy-based algorithms are able to compress the distribution uniformly, and

generate desirable performance.
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Figure 3.3: Weighting function (uniform case) of the GPI model: (a) Unscaled. (b) Scaled.

3.5.2 Case 2: Scaled Weights with One Prominent Peak

In the second case, the scaled weight distribution is assumed to have one peak, expressed as:

p′(r j) =
5√
2π

exp(−( j−15)2

15
), j = 1,2, · · · ,30. (3.15)

Fig. 3.5 shows the scaled weight distribution. Table 3.3 shows the compression performances based

on different approaches. From the simulation results, it is seen that Entropy Sum and Entropy Max

approaches are able to generate considerably better performance than the uniform compression

scheme. The peak of the original weighting function is in the middle region; the simulation results

show that the entropy approaches partition the weights densely in the middle region (with many

groups having only one or two elements).

33



0 1000 2000 3000 4000
−1

−0.5

0

0.5

1

Index

In
pu

t

(a)

−1 −0.5 0 0.5 1
−15

−10

−5

0

5

10

15

Input

O
ut

pu
t

(b)

Figure 3.4: (a) Input sequence. (b) Input vs output for the GPI model with uniform weight function.
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Figure 3.5: Scaled weighting function (one-peak case).
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Table 3.3: Compression performance comparison: the case of one peak.

Scheme Cut indices Error

Uniform (0,5,10,15,20,25,30) 0.34%

Entropy Sum (0,11,13,14,16,18,30) 0.08%

Entropy Max (0,9,12,14,16,18,30) 0.14%

3.5.3 Case 3: Scaled Weights with Two Prominent Peaks

In the third case, the scaled weighting function has two peaks, expressed as:

p′(r j) =











5√
2π

exp(−( j−8)2

8 ), j = 1,2, · · · ,16

5√
2π

exp(−( j−23)2

8 ), j = 17,18, · · · ,30.

(3.16)

Fig. 3.6 shows the scaled weight distribution. Table 3.4 shows the compression performances

based on the different compression approaches. From the simulation results, both of the proposed

approaches show very good performance, with about 40% less error comparing to the uniform

compression scheme.
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Figure 3.6: Scaled weighting function (two-peak case).

3.5.4 Case 4: Random Distribution for the Scaled Weights

Finally, we consider the case where the scaled weighting function has a random distribution as

shown in Fig. 3.7. Table 3.5 lists the corresponding simulation results. It can be seen that, under
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Table 3.4: Compression performance comparison: the case of two peaks.

Scheme Partition indices Error

Uniform (0,5,10,15,20,25,30) 0.42%

Entropy Sum (0,7,8,14,22,23,30) 0.27%

Entropy Max (0,6,8,11,21,23,30) 0.20%

Table 3.5: Compression performance comparison: the case of random distribution.

Scheme Partition indices Error

Uniform (0,5,10,15,20,25,30) 0.53%

Entropy Sum (0,5,9,13,18,24,30) 0.54%

Entropy Max (0,6,10,15,20,25,30) 0.53%

a random distribution, the entropy approaches compress the distribution almost uniformly, with

slightly better performance than the uniform compression scheme. A random distribution is sim-

ilarly difficult as a uniform distribution to compress, since there are usually no particular patterns

that facilitate compression.
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Figure 3.7: Scaled weighting function (the random case).

From the simulation results, overall, both of the proposed approaches show good compression

performance. When the pattern of the (scaled) weighting function is uniform or random, the opti-

mal compression almost degenerates to uniform compression, and the compression error is larger

comparing with other cases that have more features (peaks).
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3.5.5 Computational Time for the Algorithms

The computational time of the dynamic programming-based optimization is also compared with

that using exhaustive search. Due to the similar optimization process under different cost function

candidates, only Entropy Sum is considered in this comparison. A GPI model with N = 30 is

used, which has a scaled weight distribution as used in Section 3.5.2. The computations are run in

Matlab on a computer Lenovo Thinkpad T420 with 2.80 GHz CPU and 4.00 GB memory.

In order to compare the computational efficiency, the dynamic programming-based algorithm

and the exhausitive search-based algorithm are run 10 times for each setting of M, which is varied

from 2 to 7 in this study. The average running times are shown in Fig. 3.8. It can be seen that,

when N is fixed, the time cost under dynamic programming grows much slower than the exhaustive

search when M is increased. These results agree well with the complexity analysis in Section 3.2,

as shown in Fig. 3.9, which plots the number of information loss evaluations for the dynamic

programming and the exhaustive search methods, respectively. The computational advantage of

the dynamic programming approach is evident.
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Figure 3.8: Comparison of average optimization time. Note the log scale.
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Figure 3.9: Comparison of the number of information loss evaluations. Note the log scale.

3.5.6 Comparison with a Traditional Model Identification Approach

The effectiveness of the proposed optimal compression approach is further compared with a tra-

ditional model identification scheme (referred to as “output optimization” in this work), where a

model with the same complexity (six generalized play operators) is determined by minimizing the

output error under a given training input. While there are infinite number of possible choices for

the training input, a third-order reversal input sequence (shown in Fig. 3.10(a)) is adopted as a

representative example. An extensive search within all possible parameterizations of the 6 play

operators are conducted in Matlab using the function fmincon, to match the output of the original

model with 30 plays. The scaled weighting function for the original model has the same ran-

dom case as shown in Fig. 3.7 and the corresponding output sequence is shown in Fig. 3.10(b).

Fig. 3.10(c) shows the corresponding output prediction error under the Entropy Sum approach and

the output optimization approach. The RMSE errors of the Entropy Sum approach and the output

optimization approach are 0.165 and 0.088, respectively. While that latter indicates the output op-

timization approach could deliver better performance for a given input sequence, Fig. 3.11 shows

that the proposed approach is more robust in output prediction with respect to input variability. In

particular, simulation is run 50 times with different, randomly generated input sequences and the

corresponding output prediction performance is recorded. Fig. 3.11(a) and (b) shows one example
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Table 3.6: Identified parameters of the envelope functions.

aR bR aL bL aD bD d

0.201 -11.578 0.162 -10.262 0.029 -1.611 -3.257

for the 50 cases, while Fig. 3.11(c) summarizes the error statistics over the 50 runs.

3.6 Experimental Results

The hysteresis between resistance and temperature of a VO2 film was used as an example to show

the effectiveness of the proposed discretization scheme.

In order to get desirable modeling performance, the original GPI model has N = 30 play op-

erators. Similarly, their play radii are r j = j/N, j = 1,2, · · · ,N, respectively, and the envelope

functions for the generalized play operator are chosen to be hyperbolic-tangent functions in the

form of Eq. (3.12) and Eq. (3.13).

The non-hysteretic component D(v(t)) is chosen to be

D(v(t)) = tanh(aDv(t)+bD)+d. (3.17)

The full range of temperature input is [30, 90]◦C. The hysteresis behavior shown in Fig. 3.12

is asymmetric and partially saturated. The GPI model is identified based on the approach in [13].

The effectiveness of the GPI model is verified in Fig. 3.12. Table 3.6 and Fig. 3.13(a) show the

identified parameters for the envelope functions and the weights of the generalized play operators,

respectively. Fig. 3.13(b) shows the weight after scaling based on the actual weight. The weights

present a non-uniform distribution.
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Figure 3.10: (a) A third-order reversal input sequence. (b) The corresponding output sequence. (c)

The output prediction error between the Entropy Sum approach and output optimization approach.
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Figure 3.11: (a) A random input sequence, and (b) the corresponding output prediction error per-

formance. (c) The output prediction performance based on 50 random input sequences.
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Figure 3.13: (a) Identified weights for all the play operators of the GPI model. (b) The scaled

weights for the GPI operators.

3.6.1 Compression Performance

To conduct the compression studies, the identified GPI model is taken as the “original” distribu-

tion. The new GPI model consists of M = 5 play operators. The partition scheme under uniform

compression was {0,6,12,18,24,30}. Fig. 3.14 shows the play radii and weights for the M play

operators. Uniform compression fails to accommodate the weighting distribution, with an RMSE

of 1.10% for the modeling error.

The partition scheme under Entropy Sum was {0,7,14,20, 23,30}, and that under Entropy Max
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Figure 3.14: Parameters of the compressed GPI model: uniform compression.

Table 3.7: Modeling verification error comparison.

Scheme Non-scaled distribution Scaled distribution

Uniform 1.76% 1.45%

Entropy Sum 1.21% 1.05%

Entropy Max 0.87% 0.72%

was {0,4,10,17,22, 30}. Fig. 3.15(a),(b) show the compressed play operator radii and weights

based on Entropy Sum and Entropy Max, respectively. Both schemes worked much better than

the uniform compression case, with RMSE values of 0.73% and 0.76%, respectively, which were

about 32% smaller than that in the uniform case.

3.6.2 Model Verification

In order to further validate the proposed approach, a randomly chosen temperature input sequence,

shown in Fig. 3.16(a), was applied to the VO2 film, and the corresponding resistance output was

measured as shown in Fig. 3.16(b). Predictions of the resistance output were obtained based on

the compressed GPI models obtained with different schemes. The corresponding estimation errors

were calculated and shown in Fig. 3.16(c) and Table 3.7.

The model verification experiments further demonstrate that the proposed compression schemes

outperform the uniform compression. In Table 3.7, the modeling performance without considering
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Figure 3.15: Parameters of the compressed GPI model: (a). Entropy Sum. (b) Entropy Max.

the scaling effect is also included [67]. It is evident that the performance improves with proposed

scaling strategy; the results improve about 10-20% with the scaling.
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Figure 3.16: (a) A new temperature input sequence for model verification. (b) Corresponding

output sequence. (c) The output prediction error comparision of Entropy Sum Unscaled approach

and the Entropy Sum Scaled approach.
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Chapter 4

Compressive Sensing-based Preisach

Operator Identification

In this chapter, identification of the Preisach operator is studied under the compressive sensing

framework that requires much fewer measurements. The proposed approach adopts the DCT

transform of the output data to obtain a sparse vector. The model parameters can be efficiently

reconstructed using the proposed scheme. Sparser coefficients are obtained assuming the order of

all the output data are known, and a constraint least-squares method is further adopted to ensure

the reconstructed density vector contains no negative elements. The least-squares scheme has been

also realized, and is compared with the proposed approach. RMSE error is adopted to examine

the identified model parameters and model estimation performances. The proposed identification

approach has been shown to have better identification performance than the least-squares scheme

through both simulation and experiments involving a VO2-integrated microactuator.

4.1 Problem Formulation

Consider the Preisach operator Γ[v(·);ζ0](t)

u(t) = Γ[v(·);ζ0](t) =
∫

P0

µ(β ,α)γβ ,α [v(·);ζ0(β ,α)](t)dβ dα, (4.1)
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where v is the input, ζ0 denotes the initial condition, µ ≥ 0 is the density function, P = {(β ,α) :

β ≤ α} is the Preisach plane. The density is approximated by a piecewise constant function–

the density value µi j is constant within cell (i, j), i = 1,2, · · · ,L; j = 1,2, · · · ,L− i+ 1 [12]. An

example of Preisach operator density function discretization is shown in Fig. 4.1. Note that the

cells on the diagonal are assumed to have the same area as other cells in this chapter.

a

b

11m
12m 13m

14m

21m 22m 23m

31m 32m

41m

Figure 4.1: Illustration of a discretization of the Preisach density function, where the discretization

level L = 4.

The output of the Preisach operator (in the discrete-time setting) at time n is written as

ũ(n) = µ0 +
L

∑
i=1

L+1−i

∑
j=1

µi jsi j(n), (4.2)

where µ0 is a bias constant, µi j is the density value for cell (i, j), and si j(n) denotes the signed

area of the cell (i, j), representing the accumulative effect brought by all the hysterons within cell

(i, j).

To simplify the discussion, write all the model parameters into a column vector

w =

(

w1 w2 · · · wL(L+1)/2 µ0

)⊤
,
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where wk = µi j, k = (i−1)(2L− i+2)/2+ j−1. Apply an input sequence v[n],n = 1,2, · · · ,N,

with sufficient excitation and then determine the corresponding si j[n] by tracking the evolution of

the memory curve on the Preisach plane. Stack si j[n] into a row of a matrix: S(n,k) = si j(n), and

S(n,L(L+1)/2+1) = 1. The output vector of the model,

ũ =

(

ũ(1) ũ(2) · · · ũ(N)

)⊤
,

can be expressed as

ũ = Sw. (4.3)

Assume that the measured output under v[n] is expressed as

b =

(

b(1) b(2) · · · b(N)

)⊤
.

The parameters w can be determined such that ‖Sw− b‖2 is minimized with the non-negative

constraint imposed on all density values [25]. This approach is denoted as “Least Squares”.

When the input sequence for the Preisach operator identification is chosen in the form of

damped oscillations, as shown in Fig. 4.2 as an example for L = 30, the input sequence is known

to produce sufficient excitation for all the density values [12]. The input levels are right at the cell

walls, namely, each cell will be either 1 or -1 in terms of the signed area. This particular input se-

quence is denoted as the “damped oscillation” input sequence. The number of input values equals

to the number of model parameters (N = L(L+1)/2+1). It can be proved that the corresponding

S is a full-rank N ×N matrix. Note that only the “damped oscillation” sequence is considered in

this chapter, other input sequences also exist such that the corresponding S is a full-rank N ×N
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matrix.

0 100 200 300 400
−1

−0.5

0

0.5

1

Index

In
pu

t

Figure 4.2: The “damped oscillation” sequence for Preisach operator identification (L = 30).

When only M < N output measurements yb are available

yb =

(

b(n1) b(n2) · · · b(nM)

)⊤
= Ab,

1 ≤ n1,n2, · · · ,nM ≤ N, where A is an M ×N matrix whose M rows are randomly chosen from N

rows of an N ×N identity matrix, then

yb = A ·Sw. (4.4)

The number of measurements is less than the number of model parameters. The goal of this work

is to faithfully identify the Preisach operator weightings w based on limited measurements yb.

49



4.2 Compressive Sensing Scheme for Identifying the Preisach

Operator

4.2.1 Overview of Compressive Sensing

Compressive sensing is an alternative to Nyquist-Shannon sampling theory for acquisition and

reconstruction of sparse signals. The compressive sensing theory [68–71] states that any length-

N signal q that can be well approximated using K coefficients can be faithfully recovered from

M = O(K log(N/K)) random linear projections of the signal. Practically, many natural and man-

made signals are sparse or compressible in the sense that they have compact representations in

a transformed domain, through discrete Fourier transform (DFT) [72], DCT [73], and discrete

Wavelet transform (DWT) [74], etc. For example, in [73], audio signals were transformed using

one-dimensional DCT, and the sparse DCT coefficients were reconstructed using a compressive

sensing-based algorithm. The compressive sensing technique has been successfully applied in

signal processing [74–76], networks [77,78], machine learning [79], as well as system and control

[72, 80]. However, there has been little work, if any at all, reported on the use of compressive

sensing in hysteresis model identification.

The compressive sensing theory [68–71] states that, if a length-N signal p is K-sparse, which

means it contains no more than K non-zero entries, then it is possible to faithfully recover p from

its M = O(K log(N/K))≪ N random linear projections. In other words, consider

y = AΦp, (4.5)

where y is an M×1 vector of observations, A is an M×N measurement matrix, Φ is an N×N basis

transform matrix, and p is an N × 1 K-sparse signal to be recovered. It is proven that the sparse
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signal p can be recovered if the matrix AΦ satisfies the following restricted isometry property (RIP)

condition [70],

(1−δS)‖p‖2
2 ≤ ‖AΦp‖2

2 ≤ (1+δS)‖p‖2
2,

(4.6)

for all S-sparse signal p, where δS is the smallest isometry constant of matrix AΦ. Based on [68],

p can be recovered efficiently by solving the following l1 minimization problem,

argmin‖p‖1 subject to y = AΦp. (4.7)

When AΦ is a randomly sampled Gaussian matrix, Bernoulli matrix, or Fourier matrix, it has

shown to satisfy the RIP condition with very high probability [69]. Practically, many natural and

man-made signals are sparse or compressible in the sense that they have compact representations

under DFT [72] or DCT [73].

The most common DCT definition [73] for 1-dimensional signal x1,x2, · · · ,xN is

Xd =
N

∑
l=1

xl cos
π

N
(l+

1

2
)d, (4.8)

where d = 1,2, · · · ,N. The resulting N ×N DCT matrix Ψ is orthogonal, whose elements can be

written as

Ψdl = cos
π

N
(l +

1

2
)d. (4.9)
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4.2.2 Compressive Sensing for the Preisach Operator

A novel compressive sensing-based approach for identifying the Preisach operator based on partial

output measurements yb is proposed. In compressive sensing, a random measurement matrix is

usually adopted to faithfully recover the sparse signals. Unfortunately, compressive sensing cannot

be applied in the Preisach operator identification directly. First, the matrix S in Preisach operator

identification must follow certain patterns due to the Preisach plane structure. Second, since the

input sequence for identification must provide sufficient excitation, the flexibility of designing the

matrix S is further limited. Finally, the density vector w is not necessarily sparse in its original

domain.

When the input sequence for the Preisach operator identification is chosen as “damped oscil-

lation” input sequence shown in Fig. 4.2, the corresponding S is a full-rank N ×N matrix. The

following proposition is proposed.

Proposition 2. Consider a Preisach operator (written in the form of Eq. (4.4) with discretization

level L, apply the “damped oscillation” input sequence with N = L(L+ 1)/2+ 1 elements, by

tracking the evolution of the memory curve on the Preisach plane, the corresponding S is a full-

rank N ×N matrix.

Proof. Denote SL as the matrix S under the damped oscillation input sequence for identifying

the Preisach operator with discretization level L. The proposition can be proved by mathematical

induction as follows,

1. When L = 1,

rank(S1) = rank







0 1

1 1







2×2

= 2; (4.10)
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2. Assume that under “damped oscillation” input sequence with N = L(L+1)/2+1 elements,

rank(SL) = N;

3. Under damped oscillation input sequence with Z = (L+ 1)(L+ 1+ 1)/2+ 1 = N +L+ 1

elements, by reordering the rows and columns of corresponding SL+1,

rank(SL+1) = rank





























s1,1 · · · s1,N+L+1

...
. . .

...

sN+L+1,1 · · · sN+L+1,N+L+1





























Z×Z

=rank









































































































s1,1 · · · s1,N+L+1

...
. . .

...

sL+1,1 · · · sL+1,N+L+1

s2L+1,1 · · · s2L+1,N+L+1

sL+2,1 · · · sL+2,N+L+1

s2L+2,1 · · · s2L+2,N+L+1

...
. . .
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sN+L+1,1 · · · sN+L+1,N+L+1
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=rank













































0 · · · 1
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... . .
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1 · · · 1
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· · · · · · · · · (SL)N×N













































Z×Z

=Z. (4.11)
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The third equation is obtained by rearranging certain columns of the previous matrix, more

specifically, by rearranging columns with column index 1,L+ 2, · · · ,1+ (l−1)(2L−l+4)
2 , · · · ,1+

L(L+3)
2 , where l = 1,2, · · · ,L+1, to the left of the matrix.

So under “damped oscillation” input sequence, S is a full-rank matrix.

Exploiting the fact that many natural and man-made signals are sparse in a transformed fre-

quency domain, write

q = Ψ ·b = Ψ ·Sw, (4.12)

where Ψ is an N ×N DCT matrix. q is thus an N ×1 column vector contains the DCT coefficients

of Sw. It is found that q is approximately sparse in this work when the all the densities follow

uniform distributions independently, partially because of the damped oscillation structure of Sw.

Since S is a full-rank matrix, the density values w can be expressed as

w = S−1Ψ−1q, (4.13)

and Eq. (4.4) can be rewritten as

yb = ASS−1Ψ−1q = AΨ−1q. (4.14)

When Ψ is chosen as the DCT matrix, the sparse signal q can be reconstructed via compres-

sive sensing algorithm. The algorithm l1-MAGIC is adopted to efficiently reconstruct the sparse

signal q using a generic path-following primal-dual method [68]. The density parameter w can be

obtained through Eq. (4.14) afterwards. This approach is denoted as “CS”.
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The above compressive sensing-based approach only utilizes M input-output data to reconstruct

the density values w. If the order of N output data is also known, denote

border =

(

b(l1) b(l2) · · · b(lN)

)⊤
,

such that b(l1)≤ b(l2)≤ ·· · ≤ b(lN), then

qorder = Ψ ·border = Ψ ·Sorderw. (4.15)

The reconstruction scheme in [68] can still be adopted to identify the density w. qorder is found to

be more approximately sparse than q, partially because Sorderw is monotonically increasing, and

has more concentrated frequency components at low frequencies than that of Sw. It is verified in

simulation and experiments that this approach generates better model reconstruction and model

estimation performance. This approach is denoted as “CS Order”.

The density w, as obtained in Eq. (4.14), is not necessarily non-negative. In order to facilitate

the inverse compensation [9, 26] for dynamic hysteretic systems based on Preisach operator, the

density needs to be non-negative. Based on the aforementioned “CS Order” approach, a constraint

least-squares approach is further adopted as follows (denoted as “CS Order Non-negative”)

minw ‖ΨSorder ·w−qorder‖2
2 where w ≥ 0. (4.16)

When signal q is K-sparse and the measurements are without any noise, the density may be

reconstructed with high accuracy. However, in simulation and experiments, q is found to be ap-

proximately sparse. In practical applications, the measurements are with measurement errors and

noises. It is thus of practical importance to study the reconstruction performance for approximately
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sparse signals with measurement noises.

Proposition 3. Consider identifying the density w of a Preisach operator using compressive sens-

ing algorithm [68], based on the expression of Eq. (4.14). The measurement noise ε satisfies

‖AΨSorder ·w− yb‖2 ≤ ε , and let qs be the truncated signal corresponding to the s largest abso-

lute values of q, then the reconstruction of density w∗ obeys

‖w∗−w‖ ≤C1,s · ε +C2,s ·
‖q−qs‖1√

s
, (4.17)

where C1,s, and C2,s are positive constants.

Proof.

‖w∗−w‖2 = ‖S−1
order

Ψ−1q∗−S−1
order

Ψ−1q‖2

≤ ‖S−1
order

Ψ−1‖2 · ‖q∗−q‖2

≤ ‖S−1
order

Ψ−1‖2 ·
(

C
′
1,s · ε +C

′
2,s ·

‖q−qs‖1√
s

)

≤ C1,s · ε +C2,s ·
‖q−qs‖1√

s
, (4.18)

where the second inequality expression can be proved based on [71]. When a specific input se-

quence is chosen, the 2-norm of S−1
order

Ψ−1 can also be calculated.

Note that the general formulation of compressive sensing algorithm requires that the transfor-

mation matrix Ψ has a dimension of N×N. In order to utilize the compressive sensing framework

to identify the Preisach operator using Eq. (4.15), the dimension of the matrix S needs to be N×N,

which requires that the initial input sequence has N entries as well. For input sequence with a

different number of entries, or that with N entries but the corresponding matrix S is not invertable,
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Eq. (4.15) cannot be adopted directly. Moore-Penrose pseudoinverse [81] could potentially be

utilized as an approximation of the inverse of S. This work considers cases that the input sequence

has N entries and the corresponding S is invertable.

4.3 Simulation Results

Consider a Preisach operator with a zero bias µ0, and discretization level L = 30. Each of the

465 density values is generated following a uniform distribution on the interval [0,12]. Apply the

“damped oscillation” input sequence and obtain the corresponding output. The measured output

is simulated with added noise that follows a uniform distribution on the interval [-5,5], which is

about 0.23% of the largest output value. In order to quantitatively examine the relationship between

the reconstruction performance and the number of measurements, the compressive sensing-based

identification approach is compared with a constrained least-squares scheme. The constrained

least-squares method is realized with the Matlab command lsqnonneg to identify the vector of

parameters that meets the sign constraints [25]. For each number of measurements used in the

identification, simulation is run 1000 times (thus with different sets of density values and different

sets of chosen input-output data), and the performance is averaged among all of the results.

Fig. 4.3(a) shows a typical example of real q. It is seen that the dominant elements only cover

the low frequencies. The largest absolute value of elements of q is 8,665.8, and it is found that as

many as 363 elements are less than 1% of the largest elements of q. Fig. 4.3(b) shows a typical

example of real qorder. It is seen that the dominant elements also cover the low frequencies. The

largest absolute value of elements of q is 18,703.4, and it is found that as many as 415 elements are

less than 1% of the largest elements of q. It is verified that qorder is more approximately sparse than

q. It is anticipated and also verified that “CS Order” would achieve better model reconstruction and
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estimation performances than “CS”. Fig. 4.3(c) shows the reconstruction performance comparison

of q between “CS” and “CS Order”. It is evident that the “CS Order” would achieve much better

reconstruction performance of qorder. On average, the RMSE error of qorder based on “CS Order”

has about 17.3% of the RMSE error of q using “CS”.

Fig. 4.4(a) shows the reconstruction performance comparison of density w between “Least

Squares”, “CS Without DCT”,“CS”, “CS Order”, and “CS Order Non-negative”, where “CS With-

out DCT” directly uses the compressive sensing algorithm to identify the density w based on Eq.

(4.12). It is shown that except the “CS Without DCT”, all of the CS-related reconstruction ap-

proaches result in better density reconstruction performances than that of the “Least Squares”.

Among these CS-related approaches, “CS” is the worst, and “CS Order Non-negative” is con-

sistently the best. On average, the RMSE errors of reconstructed density based on “CS Order

Non-negative”, “CS Order”, and “CS” are 28.1%, 34.5%, and 73.1% of the error using “Least

Squares”, respectively. The “CS Without DCT” cannot faithfully reconstruct the density due to

the fact that the density vector is not approximately sparse, and the measurement matrix does not

follow the RIP condition, and is not considered in the following of the manuscript. Fig. 4.4(b)

shows the normalized modeling error comparison. The error is obtained as follows: first, calculate

the RMSE between the output of the identified Preisach operator and that of the actual output, then

divide the RMSE by the output range. Normalization of the RMSE facilitates the assessment of

the algorithm performance. It is shown that “CS Order Non-negative” consistently produces the

smallest modeling error, followed by “CS Order”, “CS”, and “Least Squares”. On average, the

RMSE errors based on “CS Order Non-negative”, “CS Order”, and “CS” are 18.3%, 22.6%, and

47.2% of the error using “Least Squares”, respectively.

Based on Proposition 3, the CS-related approaches have bounded reconstruction error under

noisy measurements. It is shown that when the magnitude of the measurement noise increases, the
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Figure 4.3: (a) Signal q showing the sparseness; (b) signal qorder is more approximately sparse

than q; (c) the reconstruction performance comparison based on “CS” and “CS Order”.
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Figure 4.4: (a) Density w reconstruction error comparison; (b) the modeling error comparison.
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Figure 4.5: (a) Density reconstruction error with varying measurement noise based on “CS”; (b)

the average identification run-time comparison.
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magnitude of the reconstruction error becomes larger. Denote the measurement noise follows a

uniform distribution on the interval [−ns
2 ,

ns
2 ], Fig. 4.5(a) shows the corresponding RMSE density

reconstruction error with varying amplitudes of measurement noise. Fig. 4.5(b) shows the average

run-time between the CS-related approaches and the least-squares algorithm. The computations

are run in Matlab on a computer with Intel(R) Core(TM) i7-2600 3.40 GHz CPU and 4.00 GB

memory. It is seen that when the number of measurements is increasing, “CS” and “CS Order”

are much more efficient than “Least Squares”. The ordering of the output consumes much less

time than the generic path-following primal-dual method to solve the compressive sensing-based

reconstruction algorithm. “CS Order Non-negative” is slightly more time-consuming than the

“Least Squares” approach, while it can ensure the identified density function contains no negative

elements. On average, the average identification run-time of “Least Squares”, “CS”, “CS Order”,

and “CS Order Non-negative” are 1.18s, 0.28s, 0.29s, and 1.99s, respectively.

To further validate the proposed approach, a random input sequence shown in Fig. 4.6(a) is

used, Fig. 4.6(b) shows the corresponding output corrupted with a noise that has the aforemen-

tioned distribution. Fig. 4.6(c) shows the normalized model estimation error comparison under the

random input. It is shown that “CS Order Non-negative” produces the smallest modeling error,

followed by “CS Order”, “CS”, and “Least Squares”. On average, the RMSE errors of recon-

structed density based on “CS Order Non-negative”, “CS Order”, and “CS” are 22.3%, 24.4%, and

48.8% of the error using “Least Squares”, respectively. For example, when the number of mea-

surements is 300, the average RMSE errors using “Least Squares”, “CS”, “CS Order”, and “CS

Order Non-negative” are 0.048, 0.024, 0.011, and 0.010, respectively.
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Figure 4.6: (a) A random input sequence for model validation; (b) corresponding output under the

random input sequence in (a); (c) model estimation error comparison.
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4.4 Experimental Results

VO2 is an interesting class of smart materials with a myriad of microactuation, optical, and mem-

ory applications. It undergoes an insulator-to-metal transition (IMT) at around 68 ◦C, during

which resistance [82], induced mechanical stress [26], and optical transmittance demonstrate pro-

nounced hysteresis. The proposed identification algorithm is verified in experiments for identi-

fying and characterizing the hysteresis between the voltage input and the deflection output of a

VO2-integrated microactuator.

4.4.1 Measurement Setup

The experimental setup used is shown in Fig. 4.7(a). The microactuator used in this setup consisted

of a silicon dioxide (SiO2) microcantilever with patterned VO2 film inside the structure and a pat-

terned metal layer (Au/Ti) on top. The VO2 film was used as the active actuation element in the

cantilever, while the metal layer was used to form the heating element and the traces for the VO2

resistance contacts. The measurement system was based on a laser scattering technique, using an

IR laser (λ=808 nm) and a position sensitive detector (PSD) to track the displacement of the can-

tilever. A charge couple device (CCD) camera was used for alignment and calibration purposes.

A data acquisition system and field programmable gate array (DAQ/FPGA) with a computer inter-

face was used to automate the control/monitor of electric signals. The power of the sensing laser

(222 mW) was calibrated to be the minimum possible to be sensed by the PSD without heating the

cantilever due to photon absorption. The voltage output (VD) of the PSD was linearly proportional

to the position of the laser. Using images captured by the CCD camera this voltage (VD) was

mapped to the deflection of the cantilever. The chip containing the microactuator was inside a side

braze packaging (wire-bonded), which was connected to the DAQ/FPGA. The current IH shown
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in Fig. 4.7(b) was used to control the cantilever’s temperature by Joule heating. The current was

generated using two resistances in series: the heater resistance and an external resistance, whose

only purpose was to limit the maximum current (12.78 mA) that can be applied to the system. An

input voltage from the DAQ/FPGA and the computer interface was used to generate this current.

b) Top View
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Figure 4.7: a) Side view schematic for the measurements setup for deflection of a microactuator

with an integrated heater; b) Top view of the VO2-based integrated actuator devices.

4.4.2 Identification and Verification

A VO2-integrated silicon microactuator is subject to two actuation effects when its temperature is

varied [26]. The first is the phase transition-induced stress, which makes the beam bend towards

the VO2 layer when the microactuator is heated. The deflection due to phase transition can be
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modeled by a Preisach operator. The second effect is the differential thermal expansion-induced

stress, which makes the beam bending away from the VO2 layer under heating. The latter effect is

modeled with a linear term. As a result, the hysteresis between the deflection and the temperature

is non-monotonic, and can be modeled as

ũ(n) = µ0 + cdv(n)+
L

∑
i=1

L+1−i

∑
j=1

µi jsi j(n). (4.19)

The model expressed in Eq. (4.19) can still be expressed similarly as Eq. (4.3) assuming the

discretization level L = 30, where w contains N = L(L+ 1)/2+ 2 = 467 elements, and can be

written as w =

(

w1 w2 · · · wL(L+1)/2 µ0 cd

)⊤
. Apply the following input sequence to the

system: the first 466 elements are the same as a damped oscillation sequence shown in Fig. 4.2, the

467th element of the input can be any value other than 0 to ensure that the corresponding matrix

S is invertable. S is a 467× 467 matrix, where S(n,k) = si j(n), S(n,L(L+ 1)/2+ 1) = 1, and

S(n,L(L+1)/2+2) = v[n]. Fig. 4.8(a) shows the non-monotonic hysteresis behavior between the

voltage input and the deflection output. Fig. 4.8(b) shows the corresponding density function (true

density) identified based on the 467 measurements shown in Fig. 4.8(a).

It can be proved that by applying the aforementioned input sequence, the rank of the corre-

sponding S is 467. Instead of utilizing all of the 467 corresponding output deflection measure-

ments, a part of the output measurements were randomly chosen for identification. For each

number of measurements used in the compressive sensing algorithms and least-squares scheme,

reconstruction algorithms are run 1000 times (thus with different sets of chosen input-output data),

and the performance is averaged among all of the simulations.

When the number of measurements used for identification is 300, Fig. 4.9(a)-(d) show typi-

cal density function reconstruction error performances. It is calculated that the RMSE error using
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Figure 4.8: (a) Input-output data for identifying Preisach operator (L = 30); (b) true density func-

tion identified based on 467 measurements.

“Least Squares”, “CS”, “CS Order”, and “CS Order Non-negative” are 0.122µm/V2, 0.116µm/V2,

0.096µm/V2, and 0.059µm/V2, respectively.

Fig. 4.10 shows the normalized modeling error comparison. It is shown that “CS Order Non-

negative” consistently produces the smallest modeling error, followed by “CS Order”, “CS”, and

“Least Squares”. On average, the RMSE errors based on “CS Order Non-negative”, “CS Order”,

and “CS” are 13.4%, 25.3%, and 76.8% of the error using “Least Squares”, respectively.

The effectiveness of the compressive sensing-based identification is further examined by com-

paring the model estimation performance under a random input shown in Fig. 4.11(a). The mea-

sured deflection output is shown in Fig. 4.11(b). Fig. 4.11(c) shows the model estimation errors

under the models identified with the compressive sensing schemes and the least-squares scheme,

respectively. On average, the RMSE errors of reconstructed density based on “CS Order Non-

negative”, “CS Order”, and “CS” are 72.9%, 78.4%, and 84.5% of the error using “Least Squares”,

respectively. For example, when the number of measurements used for identification is 300, the

average RMSE errors using “Least Squares”, “CS”, “CS Order”, and “CS Order Non-negative” are
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Figure 4.9: Density reconstruction error comparison based on (a) Least Squares; (b) CS; (c) CS

Order; (d) CS Order Non-negative approaches.
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Figure 4.10: The average RMSE modeling error comparison.

1.010µm, 0.891µm, 0.831µm, and 0.778µm, respectively.
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Figure 4.11: Density reconstruction error based on (a) a random input sequence for model valida-

tion; (b) output of the random input sequence in (a); (c) model estimation errors.
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Chapter 5

Modeling and Inverse Compensation of

Non-monotonic Hysteresis based on the

Preisach Operator

In this chapter, the systematic studies on the modeling and inverse compensation of non-monotonic

hysteresis exhibited by VO2-coated microactuators are presented. First, a physics-motivated model

that accounts for the two (opposite) actuation mechanisms is presented. The first mechanism is the

stress resulting from structural changes in VO2, which is modeled with a monotonic Preisach oper-

ator. The second mechanism is the differential thermal expansion effect. Since the thermal expan-

sion coefficient (TEC) of VO2 depends on the phase mixture of the material, a linear function of

the temperature is taken to efficiently model the phase fraction of VO2, which results in a quadratic

operator for the thermal expansion-induced actuation. The parameters of the model are identified.

Second, an efficient inverse compensation scheme is developed for the proposed non-monotonic

hysteresis model by adapting the scheme used in [9] for a Preisach operator with nonnegative,

piecewise constant density function. The effectiveness of the model and the inverse compensation

scheme is demonstrated in experiments, with comparison to two other approaches, one based on a

Preisach operator with a signed density function and the other based on a polynomial model.
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5.1 Experimental Characterization of VO2-coated Microactu-

ators

5.1.1 Material Preparation and Experimental Setup

A 172 nm thick VO2 layer was deposited by pulsed laser deposition on a 300 µm long silicon

cantilever (MikroMasch CSC12) with width and thickness of 35 µm and 1 µm, respectively. The

deposition was conducted inside a vacuum chamber. The deposition followed a similar procedure

as in previous experiments [36], where a krypton fluoride excimer laser (Lambda Physik LPX 200,

λ = 248 nm) was focused on a rotating metallic vanadium target with a 10 Hz repetition rate. The

background pressure was 10−6 Torr and throughout the deposition was kept at 20 mTorr with gas

flows of 10 (argon) and 15 (oxygen) standard cubic centimeter per minute (sccm).

Fig. 1.1 shows two superimposed scanning electron microscopy (SEM) pictures of the prepared

VO2-coated cantilever, when the substrate temperature was 30 ◦C and 90 ◦C, respectively. VO2 is

in pure M1 and R phases at those two temperatures. A total tip displacement change of about 70

µm is observed in Fig. 1.1, illustrating the large bending the microactuator is capable of generating.

The considerable amount of initial curvature at room temperature is due to the residual stress after

deposition. Since the change of curvature is of more interest, the curvature change from the initial

curvature is taken as the output.

In order to experimentally measure the tip deflection as a function of temperature, the setup

shown in Fig. 5.1 was used, which was similar to the one used before [36]. Here, the micro-

cantilever was glued with a highly thermal conductive silver paint to a glass substrate that was

directly in contact with a Peltier heater. The heater was controlled in closed loop with a commer-

cially available benchtop temperature controller (Thorlabs, TED-4015) connected to a temperature
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sensor (AD592), with a precision in temperature control of ±0.1 ◦C. A custom-made current con-

troller circuit was used to power an infrared laser (λ = 808 nm) with a maximum power of 20 mW.

The laser spot was focused on the tip of the cantilever and the reflected laser light was captured

by a one-dimensional position sensitive detector (PSD) (Hamamatsu S3270). The PSD outputs a

voltage proportional to the position of the reflected laser spot on its active area. Bending of the

VO2-coated cantilever produces an angular displacement on the reflected laser spot, which changes

the output voltage of the PSD. The laser intensity was kept at the lowest detectable by the PSD, in

order to obtain good signal-to-noise ratio while minimizing heating of the cantilever by the laser.

The output voltage from the PSD was measured with an analog input module (NI 9201), which

was attached to an embedded real-time controller (NI cRIO 9075), and a LabView program was

created in order to automate the deflection measurements.

Sensing Laser

PSD

Micro-cantilever

Peltier Heater

AD592

CCD

Optical 

Filter

TED4015

cRIO

Figure 5.1: Setup used for measuring the cantilever tip deflection as a function of temperature.

The measured tip deflection ∆z was converted to the curvature κ using the geometry illustrated

in Fig. 5.2. The radius of curvature, r = 1/κ , is related to ∆z via:
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∆z = sin(
δ

2
) ·AB = 2r · sin2(

L

2r
), (5.1)

where δ = L
r . For the microactuator studied in this work, the small angle approximation typically

used (∆z ≈ L2

2r ) will not be valid because of the large bending, and the transcendental equation

(5.1) is numerically solved for the curvature.

zD

d

L

r
B

A

Figure 5.2: Illustration of the geometric relationship between the curvature and the tip deflection

of a bent cantilever.

5.1.2 Characterization of Non-monotonic Hysteresis

A creep test was conducted and no obvious creep was found. The temperature was varied by a

step and then until constant, while the deflection was measured for the whole process. As Fig. 5.3

shows, the deflection under unchanged temperature values varied from [67.378, 67.667] µm and

[15.082,15.164] µm, respectively. These minute variations are mainly attributed to error in tem-

perature control (accuracy ±0.1◦C), hence creep is not considered.

A set of experiments were conducted to obtain the curvature of the VO2 microactuator as a

function of temperature. The temperature range was chosen to be from 21 ◦C to 84 ◦C, to fully

cover the phase transition regime. The temperature profile in time followed a pattern of damped

oscillations (not shown), to provide sufficiently rich excitation for the identification of the Preisach
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Figure 5.3: Deflection as a function of time through heating and cooling temperature steps. There

is no observable creep.

hysteresis model. Fig. 5.4(a) shows the measured nested hysteresis loops between the actuator

curvature and temperature. Notice that the apparent phase transition temperature is shifted from

the typical value of 68 ◦C. This is attributed to the heating effect by the deflection-measuring laser;

recall that the recorded temperature was only for the Peltier heater located underneath the sample.

In this work, the heat contribution from the measurement laser is considered to be constant (which

is a reasonable assumption), and thus the temperature of the Peltier heater is taken as the input.

Non-monotonic hysteresis can be clearly observed in Fig. 5.4(a). As the temperature is in-

creased, the curvature first decreases slightly, then increases abruptly, and finally decreases slightly

again when the temperature is sufficiently high. An analogous trend holds true when the temper-

ature is decreased. The non-monotonic behavior can be explained by two competing actuation

mechanisms. On one hand, changes in the crystalline structures during the M1 → R phase transi-

tion result in microcantilever bending toward the VO2 layer. Vanadium ions are reordered during

the phase transition, where one unit cell in the M1 phase corresponds to two unit cells in the R

phase. The crystalline plane parallel to the substrate changes from (011)M1
in the M1 phase to
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(110)R in the R phase. From the lattice parameters [83], it is calculated that the crystallographic

plane of VO2 that is parallel to the cantilever surface for this case ((011)M) decreases its area

by 1.7% (on heating), which generates a strain of approximately -0.083 [36], causing a drastic

bending towards the VO2 layer side. On the other hand, since the thermal expansion coefficient

(TEC) of VO2 for both the M1 phase and the R phase [83] are larger than that of silicon [84], the

differential thermal expansion-induced stresses result in an opposite bending effect from that of

the phase transition effect.

There are several additional interesting observations from Fig. 5.4(a). First, the curvature-

temperature relationship is hysteretic only in the intermediate temperature regime, and becomes a

single-valued function at both the low and high temperature ends. This provides support for the

two actuation effects discussed earlier; phase transition dominates the intermediate temperature

region, while at the low or high temperature ends, VO2 is in a single phase (M1 or R phase, respec-

tively), and the differential thermal expansion takes dominance. Second, the slope of curvature

versus temperature at the low-temperature end is different from that at the high-temperature end,

suggesting that the TEC of VO2 changes with the material phase. This is consistent with what can

be found in literature [83].

Extensive experiments are conducted to characterize the repeatability of the actuation behavior,

and the hysteresis loops measured on different days (with the same temperature input sequence)

are found to be nearly identical (shown in Fig. 1.2).
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5.2 Non-monotonic Hysteresis Model

5.2.1 Actuation Effect due to Phase Transition

The proposed model for the curvature output κ of the VO2-coated cantilever comprises the con-

tribution κP due to the phase transition and the contribution κE due to the differential thermal

expansion. The phase transition contribution is monotonicially hysteretic with respect to the tem-

perature T , thus will be modeled by a Preisach operator [27,85] with non-negative density function

µ:

κP(t) = Γ[T (·);ζ0](t)

= c0 +
∫

P0

µ(β ,α)γβ ,α [T (·);ζ0(β ,α)](t)dβ dα, (5.2)

here c0 is some constant bias, T (·) denotes the temperature history, T (τ), 0 ≤ τ ≤ t, P0 is called

the Preisach plane P0
△
= {(β ,α) : Tmin ≤ β ≤ α ≤ Tmax}, where [Tmin,Tmax] denotes the temper-

ature range for phase transition, and finally, γβ ,α denotes the basic hysteretic unit (hysteron): for a

pair of thresholds (β ,α) and an initial condition ζ0(β ,α) ∈ {−1,1}, the output of the hysteron is

defined as:

u(t) = γβ ,α [T (·);ζ0(β ,α)] =



























+1 if T (t)> α

−1 if T (t)< β

u(t−) if β ≤ T (t)≤ α

, (5.3)

where T (·) is the temperature input history T (τ), 0 ≤ τ ≤ t, and u(t−) = limε>0,ε→0 u(t − ε).

Note that P0 can be divided into two regions according to the outputs of hysterons, and the

boundary of the two regions (called memory curve and denoted ψ) represents equivalently the state
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and thus determines the output of the Preisach operator. For this reason, the initial state function

ζ0 can be replaced by an initial memory curve in the Preisach plane.

5.2.2 Differential Thermal Expansion Effect

When the temperature increases (decreases, resp.), a material typically expands (shrinks, resp.).

For a two-layer beam, the difference in the thermal expansion of individual layers results in bend-

ing. The VO2-coated silicon cantilever curvature κE due to differential thermal expansion at a

temperature T can be derived following standard analysis [86]:

κE =−
6(1+m)2(CVO2

−CSi)(T −T0)

h
(

3(1+m)2+(1+mw)(m2+ 1
mw)

) , (5.4)

where h is the total thickness of the beam, m is the ratio of the VO2 layer thickness to that of the

silicon layer, w is the ratio of the modulus of elasticity of the VO2 layer to that of the silicon layer,

CVO2
and CSi are the TECs of the VO2 and silicon, respectively, and T0 is the room temperature

(20 ◦C). In (5.4), it is defined that κE is positive when the beam bends toward the VO2 layer.

As mentioned earlier, the TEC of VO2 in the M1 phase is different from that in the R phase.

Since the phase transition spans through the temperature range [Tmin,Tmax], both phases coexist

within that temperature range. If CM1
and CR are the TECs of VO2 in the M1 and R phases,

respectively, and θ(T ) is the material fraction of the R phase at a particular temperature T , then

the effective TEC of VO2 during the phase transition can be represented with respect to T as:

CVO2
= (1−θ(T ))CM1

+θ(T )CR. (5.5)

In general, the R phase fraction θ is hysteretic with respect to the temperature T . To make the

problem tractable, θ is approximated by a linear function of T , which is supported by experimental
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observations [87]:

θ =



























0, if T < Tmin

T−Tmin
Tmax−Tmin

, if Tmin ≤ T ≤ Tmax

1, if T > Tmax.

(5.6)

Combining (5.4) and (5.5), we rewrite κE as:

κE =−(k0(1−θ(T ))+ k1θ(T ))(T −T0), (5.7)

where k0 =
6(1+m)2(CM1

−CSi)

h
(

3(1+m)2+(1+mw)(m2+ 1
mw)

) and k1 =
6(1+m)2(CR−CSi)

h
(

3(1+m)2+(1+mw)(m2+ 1
mw)

) . Since CM1
<

CR [83], k1 > k0. With the approximation (5.6) for θ(T ), the differential thermal expansion-

induced curvature has a quadratic dependence on T .

By adding (5.2) and (5.7), we obtain the total curvature with a new hysteresis operator Ω:

κ(t) = κP(t)+κE(t) = Ω[T (·);ζ0](t)

△
= c0 +Γ[T (·);ζ0](t)− (k0(1−θ(T (t))))(T (t)−T0)

+k1θ(T (t))(T(t)−T0). (5.8)

Note that for Ω, only the contribution κP is memory-dependent, so Ω shares the same state (or

memory curve) as Γ. In particular, they will share the same initial memory curve.
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5.3 Model Identification and Validation

5.3.1 Parameter Identification

The parameters of the model (5.8) include the density function µ of the Preisach operator, and the

constants cp, k0, and k1. For the identification of a Preisach density function, a discretization step

is typically involved. The discretization scheme adopted in this work approximates the density by

a piecewise constant function, where the density value is constant within each lattice cell but varies

from cell to cell [6].

The input range is discretized uniformly into M levels, which results in M(M + 1)/2 cells,

leading to a total of K = M(M+1)/2 weight parameters. The actual operating range for the input,

[T ′
min, T ′

max], is considered larger than the phase transition region [Tmin, Tmax]. In other words,

T ′
min < Tmin < Tmax < T ′

max.

In a discrete time setting, the contribution κP[n] at time n is:

κP[n] = cp +
M

∑
i=1

M+1−i

∑
j=1

µi jsi j[n], (5.9)

where si j[n] represents the signed area of cell (i, j), µi j represents the density of cell (i, j). Note

that the signed area of each cell is defined as the area occupied by hysterons with output +1 minus

that occupied by hysterons with output −1. For ease of presentation, the cells (i, j) are ordered

with a single index l = 1,2, · · · ,K, and the density and signed area of the l-th cell are denoted (with

abuse of notation) by µl and sl , respectively. Eq. (5.9) is rewritten as:

κP[n] = c0 +
K

∑
l=1

µlsl[n]. (5.10)

When the input T [n] is in [T ′
min, Tmin], all hysterons attain the value of −1 and the Preisach
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operator is at the negative saturation, κP[n] = c0 − κ0, where κ0 = ∑K
l=1 µl . Similarly, positive

saturation is reached when the temperature T [n] is within [Tmax,T
′
max].

On the other hand, the contribution κE [n] is:

κE [n] =−(k0(1−θ(T [n]))+ k1θ(T [n]))(T [n]−T0). (5.11)

Combining (5.10) and (5.11), we obtain the total curvature output as:

κ [n] = cp +
K

∑
l=1

µlsl [n]− (k0(1−θ(T [n]))+ k1θ(T [n]))(T [n]−T0). (5.12)

Preisach density functions are assumed to be nonnegative, µl ≥ 0. In addition, k0 and k1 are

positive from their physical meanings. Finally, cp > 0 since VO2-coated microcantilevers have

positive curvature bias. A constrained least-squares method, realized with the Matlab command

lsqnonneg, is utilized to identify the vector of parameters, [ µ1 µ2 µ3 · · · µK cp k0 k1
]T ,

that meets the sign constraints.

5.3.2 Experimental Results

To effectively identify the model parameters, the input needs to provide sufficient excitation for

all cells of the Preisach operator. One type of such input sequences takes the form of damped

oscillations, which produces nested hysteresis loops and is adopted in this work. Based on em-

pirical knowledge, the temperature of the closed-loop-controlled Peltier device can settle around

a set temperature within about 3 s. A wait time of 8 s was chosen between temperature setpoints

to ensure that the thermal steady state has been reached. While the experiment will remain to be

quasi-static if the waiting time is longer than 8 s, it is not advisable to make it much shorter.
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Figure 5.4: Proposed model. (a): Measured non-monotonic curvature-temperature hysteresis and

that based on the proposed model. (b): Modeling error for the entire temperature sequence.

The full range of temperature input [T ′
min, T ′

max] is [21, 84] ◦C. From Fig. 5.4(a), the phase

transition region [Tmin, Tmax] is determined to be [30, 70] ◦C. The level of discretization M for

the Preisach plane is chosen to be 20. Fig. 5.4(a) compares the measured hysteresis loops and

those based on the identified model, and Fig. 5.4(b) shows the corresponding modeling error for

the entire temperature sequence, which is mostly bounded by 30 m−1, compared with the total

curvature change range [−104, 1846] m−1. Fig. 5.5 shows the identified density function of the

Preisach operator. cp, k0, and k1 have been identified to be 1026.7 m−1, 2.8 m−1K−1, and 4.3

m−1K−1, respectively.

For comparison purposes, two additional models for the non-monotonic hysteresis are consid-
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Figure 5.5: Identified Preisach density function for the proposed model.

ered: a Preisach operator with a signed density function, and a nonlinear single-valued function

represented by a high-degree polynomial.

The signed Preisach operator is identified, where there are no sign constraints placed on the

Preisach densities. The level of discretization M for the Preisach plane is also chosen to be 20,

but now is for the entire input range [T ′
min, T ′

max] = [21,84] ◦C. Fig. 5.6 shows the modeling error,

which is larger than the proposed model. It is interesting to notice that the negative density values

of the signed Preisach operator are primarily located at the β = α line (see Fig. 5.7). This provides

support for the proposed model; after all, the non-hysteretic, negative component in the proposed

model that accounts for differential thermal expansion could be represented as negative densities

located on the α = β line.

For the single-valued nonlinear approximation, a polynomial of degree 12 is chosen, the coef-

ficients of which are found through a polynomial fitting between curvature measurements and the

model predictions. It is not surprising that this model results in the largest modeling error among

the three models explored, which is around 500 m−1 (Fig. 5.8). This model fails to account for

the hysteresis effect.
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Figure 5.6: Modeling error with the signed Preisach operator for the entire temperature sequence.
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Figure 5.7: The negative of the identified density values for the signed Preisach operator. The

negative is taken here so that the negative elements of the density function can be seen (on top);

the positive elements are now flipped to the bottom of the plane, which are not visible here.

0 500 1000 1500 2000 2500 3000
−600

−400

−200

0

200

400

600

Index

M
od

el
in

g 
er

ro
r 

(m
−

1 )

Figure 5.8: Modeling error with a polynomial model for the entire temperature sequence.
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Figure 5.9: (a): A randomly chosen temperature input sequence for model validation. (b): Errors

in predictions by different models under the input sequence.

In order to further validate the proposed model, the VO2 actuator is subjected to a randomly

chosen temperature sequence, shown in Fig. 5.9(a), and the output curvature data (not shown) is

then collected. Fig. 5.9(b) shows the model prediction errors. The maximum prediction errors

are 108.1, 108.8, and 478.1 m−1 for the proposed model, the signed Preisach operator, and the

polynomial model, respectively. It is clear that, with an error of less than 5.6% over the curvature

range of 1950 m−1, the proposed model is effective in capturing the complex, hysteretic behavior

of the VO2 actuator. While the signed Preisach operator is able to provide a modeling accuracy

comparable with the proposed model, it is not amenable to efficient inversion and will not be

pursued further.

5.4 Inverse Compensation

There have been a number of inversion-related approaches for hysteresis compensation reported

in the literature. For example, the direct inverse Preisach operator method [88] aims to identify

a Preisach operator as the inverse operator based on empirical output-input data. The empirical
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temperature vs. curvature hysteresis loops for VO2 actuators (with the horizontal/vertical axes in

Fig. 5.4(a)) exhibit sharp slope changes, making it difficult to approximate by a Preisach oper-

ator even with a prohibitively fine discretization scheme. Iterative Learning Control [89, 90] has

proven effective in compensating both hysteresis and dynamics with relatively low requirement

on modeling accuracy, but it only applies to periodic references and requires sensory feedback for

the learning process. While the proposed inversion algorithm is noncausal, only the next desired

output and the input history are required to obtain the input.

We propose to compensate the hysteresis effect in VO2 by constructing a properly defined

inverse of the model presented in earlier sections. The non-monotonic nature of the proposed

hysteresis model presents several challenges in the inversion problem. In the continuous-time

setting, there is great difficulty in establishing the existence and/or the uniqueness of a continuous

input function given a desired, continuous output function. In the discrete-time setting, which is

the case of practical interest, the concept of time-continuity is no longer relevant since the desired

output function is given as a sequence of values for the operator to achieve, and input interpolation

between the sampling times is typically used to realize a quasi-continuous output for the physical

system. For a monotonic hysteresis operator, for any desired output value (within the output range)

yd [n+1] at next time instant n+1, there always exists an input value v[n+1] for n+1, such that,

if the input varies monotonically from the current value v[n] to v[n+ 1], the output y would also

change monotonically from its current value y[n] to y[n+1], which is equal or close to yd [n+1].

This, however, is no longer true for a non-monotonic hysteresis operator as the one considered in

this work – One may not find a single input value, monotonic interpolation to which would result in

the desired output value. Therefore, a sequence of input values needs to be found to achieve a given

desired output value; without proper constraints, the latter problem would admit infinitely many

solutions. A constraint on this problem is imposed to minimize the implementation complexity
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and assure proper output behavior: the number of elements in the computed input sequence is

minimal. Specifically, for the proposed non-monotonic hysteresis model, the inversion problem is

formulated as follows: given the current initial memory curve ψ(0) for the operator Ω, with the

associated temperature input T (0), operator output κ(0) = Ω[T (0);ψ(0)], and a target output value

κ̄ , find a new input sequence T̄ with minimal number of elements, such that the final value of

Ω[T̄ ;ψ(0)] is equal to κ̄ .

The proposed inversion algorithm is adapted from the one in [9] for the inversion of a mono-

tonic Preisach operator with a piecewise constant density function. The algorithm in [9] exploits

the monotonicity of the operator and the piecewise constant nature of the density, and finds the

desired input by monotonically varying the input iteratively. Assuming that the input is being

increased, with the value of the k-th iteration being T (k) and the corresponding memory curve be-

ing ψ(k), another increment of d (d ≤ min{d
(k)
1 ,d

(k)
2 }) in the input would result in the following

change in the output of the Preisach operator:

Γ[T (k)+d;ψ(k)]−Γ[T (k);ψ(k)] = a
(k)
2 d2+a

(k)
1 d, (5.13)

where d
(k)
1 > 0 is such that T (k)+d

(k)
1 would equal the next discrete input level, and d

(k)
2 > 0 is

such that T (k)+d
(k)
2 would erase the next corner of the memory curve; see Fig. 5.10 for illustration.

In (5.13), ak
1 and a

(k)
2

are nonnegative constants associated with ψ(k) and the density values.

The core idea in [9] for inverting the Preisach operator is that, if d ≤ min{d
(k)
1 ,d

(k)
2 } can be

found that solves

a
(k)
2

d2 +a
(k)
1

d = ȳ−Γ[T (k);ψ(k)], (5.14)

where ȳ is the desired output, then the required input is obtained as T (k) + d; otherwise, let
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T (k+1) = T (k)+min{d
(k)
1 ,d

(k)
2 } and continue the iteration.

maxT

minT

'y

( )

1

kd

( )

2

kd

( )kT

( )ky

a

b

Figure 5.10: Illustration of the variables d
(k)
1 and d

(k)
2 used in inversion.

Since the curvature output κ starts to decrease (increase, resp.) when T > Tmax (T < Tmin,

resp.) because κP becomes positively (negatively, resp.) saturated, the maximum range of curva-

ture output can be achieved by restricting the temperature T to the range [Tmin,Tmax].

The curvature contribution from differential thermal expansion is given by:

κE = Q[T ]
△
=

(

k0 −
(k1 − k0)Tmin

Tmax−Tmin

)

T0

−T

(

k0 −
T0+Tmin

Tmax−Tmin
(k1 − k0)

)

−T 2 k1− k0

Tmax−Tmin
. (5.15)

Consequently, the change in κE for an increment d at T (k) is obtained as:

Q[T (k)+d]−Q[T (k)] =−c2d2 − c
(k)
1

d, (5.16)
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where c
(k)
1

= k0 −
T0+Tmin

Tmax−Tmin
(k1 − k0)+

2(k1−k0)
Tmax−Tmin

T (k), and c2 =
k1−k0

Tmax−Tmin
. Based on T0 ≤

Tmin ≤ T and k1 > k0 (Chapter 5.2.2), it can be shown that both c
(k)
1 and c2 are positive.

Combining (5.13) and (5.16), we obtain:

Ω[T (k)+d;ψ(k)]−Ω[T (k);ψ(k)] = (a
(k)
2

− c2)d
2+(a

(k)
1

− c
(k)
1

)d. (5.17)

While a
(k)
1 ≥ 0, a

(k)
2 ≥ 0, c

(k)
1 > 0, c2 > 0, the signs of both a

(k)
1 −c

(k)
1 and a

(k)
2 −c2 could be either

positive or negative, which implies that an increment d in the temperature does not necessarily

lead to an increase in curvature. Analogous statements can be made when the input decreases.

Take a special example of the input being increased to some value T ′ (with the corresponding

memory curve ψ ′) and then decreased by a small d > 0, in which case a
(k)
1

= 0, and Ω[T ′ −

d;ψ ′]−Ω[T ′;ψ ′] = (a
(k)
2 − c2)d

2 + c1d. Since the linear term dominates the quadratic term for

small d, the output κ will increase immediately following the reversing of T at T ′. Similarly, the

curvature will decrease immediately following the reversing of a decreasing input. Interestingly,

these predictions are confirmed by the experimental data, as can be seen clearly from Fig. 5.4(a).

The following proposition will be instrumental in developing the inversion algorithm.

Proposition 4. Consider the non-monotonic hysteresis model Eq. (5.8). Let κmax and κmin denote

the maximum output and minimum output of the model, respectively. Then κmax can always be

achieved by first increasing the temperature T to Tmax and then decreasing it monotonically to

some value, and κmin can always be achieved by decreasing T to Tmin and then increasing it to

some value.

Proof. For any temperature T , the memory curve consisting of a single vertical segment (inter-

secting the line α = β at T ) dominates any other memory curves at the same temperature, in the

sense that the corresponding set P+
△
= {(β ,α) : γβ ,α = +1} in the Preisach plane is maximal for
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the given T . Consequently, the corresponding output κP of the Preisach operator (with nonnegative

density function) is largest under the dominant memory curve. See Fig. 5.10 for illustration; and

compare the two memory curves ψ ′ (dominant) and ψ(k) for the same temperature T (k).

The contribution κE depends only on the current temperature (no memory). Therefore, for

a given temperature T , the maximum curvature output κ can always be achieved with an input

sequence that results in a dominant memory curve at T . Such a dominant memory curve is created

by decreasing the temperature from Tmax to T . The other case follows from a similar argument.

The curvature output κ at Tmax and Tmin is denoted as κ+ and κ−, respectively. Due to the pos-

itive/negative saturation, κ+ and κ− are uniquely defined and independent of the initial condition

of the operator Ω. The following assumption is made:

Assumption 1 : κmin < κ− ≤ κ+ ≤ κmax. (5.18)

The assumption is expected to hold for all VO2-based micro bending actuators. In particular, for

the sample used in this work κmax = 1836 m−1, κ+ = 1828 m−1, κ− = − 20 m−1, and κmin = −75

m−1.

5.4.1 Inverse Compensation Algorithm

For brevity purposes, only the case κ̄ > κ(0) is discussed; the case κ̄ < κ(0) is treated in a sym-

metric manner. If κ̄ > κ(0), the discussion is divided into two sub-cases: (1) κ̄ ≤ k+, and (2)

κ+ < κ̄ ≤ κmax. For the first case, an iterative procedure modified from [9] is detailed; for the

second case, the required input will be a two-step sequence and the procedure is outlined. Specifi-

cally,

If κ̄ ≤ κ+:

89



• Step 1: k := 0;

• Step 2:

1. Determine d
(k)
1

> 0 such that T (k)+d
(k)
1

equals the next discrete input level;

2. Determine the minimum d
(k)
2 > 0 such that T (k) + d

(k)
2 would erase the next cor-

ner of the memory curve ψ(k), which is generated under the iterative input sequence

{T (0),T (1), · · · ,T (k)};

3. Evaluate the coefficients a
(k)
1

, a
(k)
2

, c
(k)
1

, c2 for Eq. (5.13) and Eq. (5.16), whose values

are determined by ψ(k) and T (k) and vary from iteration to iteration. Solve the equation

κ̄ −Ω[T (k),ψ(k)]

= (a
(k)
2

− c2)d
2 +(a

(k)
1

− c
(k)
1

)d (5.19)

for d. If Eq. (5.18) has two positive solutions, let d0(k) be the smaller solution; if

Eq. (5.18) has one positive solution, let d
(k)
0 equal that solution; if Eq. (5.18) has no

positive solutions, let d
(k)
0 = 1000 (a number larger than (Tmax−Tmin)/M but otherwise

arbitrary); This scheme ensures the uniqueness of the solution.

4. Let d(k) =: min{d
(k)
0 ,d

(k)
1 ,d

(k)
2 }, T (k+1) = T (k)+d(k), κ(k+1) = Ω[T (k+1);ψ(k)];

5. If d(k) = d
(k)
0 , go to Step 3; otherwise let k := k+1 and go back to Step 2.

• Step 3: T̄ := T (k+1) and stop.

If κ+ < κ̄ ≤ κmax: Inversion can be realized by first applying the temperature Tmax to saturate

the Preisach operator, and then decreasing input iteratively following a similar scheme.
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Note that the inversion algorithm requires knowing the current initial memory curve ψ(0).

As for the inversion of a Preisach operator [27], this requirement is typically satisfied by setting

the initial memory curve at time n = 0 to a (known) configuration that corresponds to positive or

negative saturation of the Preisach operator Γ, by applying Tmax or Tmin, respectively. The memory

curve at any future time n > 0 can then be inferred based on the curve at n−1 and the sequence of

input values applied after time n−1. The following proposition summarizes the properties of the

proposed inversion algorithm.

Proposition 5. The proposed inversion algorithm produces the input T̄ satisfying Ω[T̄ ;ψ(0)] = κ̄

in no more than nc(ψ
(0))+M iterations, where nc(ψ

(0)) denotes the number of corners in ψ(0),

M is the discretization level. Furthermore, T̄ has no more than two elements.

Proof. The case where κ̄ > κ(0) is proved in detail. First, consider the case κ̄ < κ+. Since

the operator Ω is continuous (i.e., its output changes continuously with the input), there must

exist T̄ ∈ [T (0),Tmax] such that Ω[T̄ ;ψ(0)] = κ̄ . The inversion algorithm then searches for the

exact solution in contiguous segments within [T (0),Tmax], where the segments are defined by the

discrete input levels and the memory curve ψ(0). The number of such segments is no greater than

nc(ψ
(0))+M, which provides the upper bound for the iteration steps. The case of κ+ < κ̄ ≤ κmax

can be proved following similar and simpler arguments. Applying first Tmax erases all the memory

curve corners, so it is only needed to search within segments defined by the discrete input levels.

The maximum iteration steps will be M in this case. The last statement of the proposition is evident

from the description of the algorithm.

From Proposition 5, the efficiency of the proposed inverse compensation algorithm in this work

is comparable to that of the inversion algorithm for a Preisach operator [9].
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5.4.2 Experimental Validation

The performance of the proposed inversion algorithm has been examined in open-loop curvature

tracking experiments. For comparison, the single-valued polynomial model has also been inverted

through a look-up table. The desired curvature is chosen to be from −63 m−1 to 1814 m−1 to test

the effectiveness of the inverse compensation algorithm for a wide curvature range.

Fig. 5.11(a) shows the curvature outputs obtained under the two inversion schemes. Fig.

5.11(b) shows the corresponding inversion errors. The inversion of the proposed model is proven to

be effective, with the largest curvature error of 78 m−1, which is only 4.1% of the whole curvature

range. In comparison, the inversion of the non-hysteretic polynomial model produces a maximum

error of 734.2 m−1. The RMSE value is also calculated to quantify the tracking error. The RMSE

of the proposed inversion is only 26.7 m−1, compared to 320.6 m−1 for the polynomial case. The

last observation from Fig. 5.11(b) is that when the magnitude of the desired curvature changes, the

proposed inversion scheme can still maintain a small curvature error, while the inversion based on

the polynomial model produces a large error.
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Figure 5.11: (a): Open-loop inverse control performance for the proposed model and the polyno-

mial model. (b): Inverse compensation errors.
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Chapter 6

Modeling and Inverse Compensation of

Hysteresis using an Extended GPI (EGPI)

model

In this chapter, an EGPI model is proposed to capture sophisticated hysteresis as observed in VO2.

The model consists of a nonlinear memoryless function and a GPI model, the play operators of

which have the same envelope functions. The EGPI model is tested in modeling asymmetric and

non-monotonic hysteresis between the curvature output and the temperature input of a VO2-coated

microactuator, demonstrating 40% less modeling error than a GPI model. The advantages of the

proposed model are further verified in modeling the asymmetric, partially saturated hysteresis be-

tween the resistance output and the temperature input of a VO2 film. A novel inversion algorithm is

then derived based on the fixed-point iteration framework. The convergence condition of the pro-

posed algorithm is further derived. Finally, both simulation and experimental results are provided

to support the effectiveness of the inversion algorithm.

6.1 EGPI model for Non-monotonic Hysteresis

The GPI model can capture asymmetric hysteresis with saturation, and it has an analytical inversion

[28] as long as the envelope functions of all the generalized play operators are of the same form.
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We propose adding a nonlinear memoryless function D(·) to the GPI model:

u(t) = D(v(t))+
N

∑
j=0

p(r j)F
γ
r j
[v](t), (6.1)

This model is called the EGPI model. Fig. 6.1 shows a GPI model and an EGPI model with

identical weights of generalized play operators. It is shown that the EGPI model can better model

complex hysteresis. By choosing appropriate memoryless functions, the EGPI model can also

capture non-monotonic hysteresis.
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Figure 6.1: A GPI model and an EGPI model with identical weights of generalized play operators.

6.2 Inverse Compensation Algorithm

The goal of inverse compensation is to cancel out the hysteresis nonlinearity by constructing an

inverse hysteresis model. A fixed-point iteration-based inversion algorithm for an EGPI model is

proposed.

Denote ud as the desired output of the EGPI model. Then the EGPI model is expressed as

ud = D(v)+Ψ[v]. (6.2)
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where D(v) is the memoryless component and Ψ[v] is the GPI hysteresis model. Since the inversion

of Ψ[v] is available [28], rewrite Eq. (6.2) as

v = Ψ−1[ud −D(v)]. (6.3)

Unlike the inversion of GPI model, ud −D(v) is used as the input for the inverse EGPI model.

The right part of the above equation can be solved with a known input v; however, v is also the

desired solution. To solve the problem, we first recall some background materials.

Contraction mapping [91]: Let (X ,d) be a metric space. A map T : X → X is called a contrac-

tion mapping on X , if there exists q ∈ [0,1) such that: d(T(x),T(y))≤ qd(x,y) for all x,y ∈ X .

Proposition 6. Let (X ,d) be a non-empty complete metric space with a contraction mapping T :

X → X. Then T admits a unique fixed point x∗ in X (i.e. T (x∗) = x∗). Furthermore, x∗ can be found

as follows: start with an arbitrary element x0 in X and define a sequence xn by xn = T (xn−1), then

xn → x∗ [91].

From Proposition 6, if Ψ−1[ud −D(v)] is a contraction mapping in terms of v, the inversion can

be obtained by iterating vk = Ψ−1[ud −D(vk−1)], k = 1,2, · · · ,n, · · · until |vn−vn−1|< σ , σ > 0.

The following proposition provides a sufficient condition for the convergence of the inversion

algorithm.

Proposition 7. Denote Ψ−1[ud] as the inversion of the GPI model, where ud is the desired output.

Then the operator Ψ−1[ud −D(v)] is a contraction mapping on [vmin,vmax], if

min
v
{dγR

dv
,
dγL

dv
} · p(r0)>

dD

dv
. (6.4)
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Proof. When u1 > u2:

|Ψ−1[u1]−Ψ−1[u2]|

= |γ−1
R ◦Π−1[u1]− γ−1

R ◦Π−1[u2]|

≤ maxu{
dγ−1

R
du

} · |Π−1[u1]−Π−1[u2]|

≤ maxu{
dγ−1

R
du

} · p̂(r0) · |u1−u2|

= maxu{
dγ−1

R
du

} · |u1−u2|/p(r0). (6.5)

The second inequality of Eq. (6.5) holds, since

|Π−1[u1]−Π−1[u2]|

= Π−1[u1]−Π−1[u2]

= p̂(r0) · (u1−u2)+
N

∑
i=1

p̂(ri)(Fr̂i
[u1](t)−Fr̂i

[u2](t))

≤ p̂(r0)(u1−u2)

= p̂(r0) · |u1−u2|. (6.6)

The inequality of Eq. (6.6) holds since p̂(ri) < 0, for i ≥ 1 (See Eq. (B.17) in Appendix) and

Π−1[u1]≥ Π−1[u2].

Similarly, for the case of u1 < u2:

|Ψ−1[u1]−Ψ−1[u2]| ≤ max
u

{dγ−1
L

du
} · |u1−u2|/p(r0). (6.7)
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Combing the above two cases,

|Ψ−1[ud −D(v1)]−Ψ−1[ud −D(v2)]|

≤ max
u

{dγ−1
R

du
,
dγ−1

L

du
} · dD

dv
· |v1− v2|/p(r0)

= max
v

{1/
dγR

dv
,1/

dγL

dv
} · dD

dv
· |v1− v2|/p(r0)

=
dD

dv
· |v1− v2|/p(r0)/min

v
{dγR

dv
,
dγL

dv
}. (6.8)

Thus, Ψ−1[ud −D(v)] is a contraction mapping when the following inequality is satisfied:

min
v
{dγR

dv
,
dγL

dv
} · p(r0)>

dD

dv
. (6.9)

For CPI model, since dγR/dv = dγL/dv = 1, so the convergence condition degenerates to

p(r0)>
dD

dv
. (6.10)

For either CPI model or GPI model, since dD/dv = 0, no iteration is needed.

Note that, from Proposition 7, the convergence of the proposed algorithm depends on the pa-

rameters of the hysteresis model.

6.3 Experimental Results: Modeling

The modeling performances of the EGPI models involving the curvature and temperature hysteresis

relationship of a VO2 coated cantilever, and the resistance and temperature hysteresis relationship

of a VO2 film are shown.
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6.3.1 Curvature-temperature Hysteresis of a VO2-coated Microactuator

As discussed in Chapter 5, the VO2-coated silicon micro-cantilevers are subject to two actuation

effects when its temperature is varied. First, the stress due to thermally induced phase transition of

VO2 makes the beam bend towards the VO2 layer, a process that is inherently hysteretic. Second,

the differential thermal expansion effect generates stress in the opposite direction. As a result, the

hysteresis between the bending curvature and the temperature is non-monotonic.

Following similar treatment as that in Chapter 5, a 172 nm thick VO2 layer was deposited on

a silicon cantilever with length of 300µm. The microcantilever was glued to a glass substrate that

was directly in contact with a Peltier heater. A PSD and a laser were used to measure the deflection

of the microcantilever. The curvature was then obtained based on the PSD measurement.

In order to capture the hysteresis, the envelope functions for the extended generalized play

operator are chosen to be hyperbolic-tangent functions in the form of

γR(v(t)) = tanh(aRv(t)+bR), (6.11)

γL(v(t)) = tanh(aLv(t)+bL). (6.12)

The non-hysteretic component is expressed as

D(v(t)) = p0 sin(ω · v(t))+ c1. (6.13)

The number of the generalized play operators is chosen to be N = 15, and the play radii are is

chosen as r = i/N, i = 0,1, · · · ,N −1. The parameters identified for the GPI model and the EGPI

model are shown in Table 6.1. The weights of the GPI model and the EGPI model are different due

to the effect of the nonlinear memoryless function. The identified weights p(ri), i = 0,1, · · · ,N−1
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Table 6.1: Parameters of the GPI model and the EGPI model for hysteresis of a VO2-coated mi-

croactuator.

aL bL aR bR p0 ω c1

Generalized 0.11 -5.19 0.13 -6.94 0 0 914.20

Extended 0.18 -9.61 0.14 -7.19 40.1 0.17 923.91

of both models are not included in the interest of brevity.

Note that given the envelope functions form, the identified EGPI model may not optimally

model the hysteresis. The non-hysteretic component is identified as follows: first a GPI model

is adopted to model the hysteresis, then the non-hysteretic component is chosen based on the

remaining modeling error of the GPI model. The GPI model is modeled by the summation of

weighted generalized play operators and an offset c1.

In order to to cover the whole phase transition range, the temperature range was chosen to be

from 20 ◦C to 80 ◦C. In particular, we varied the temperature in repeated heating-cooling cycles

with the temperature range decreased for each cycle. Fig. 6.2(a) and (b) show the modeling perfor-

mance of GPI model and that of the EGPI model, respectively. Compared with the GPI model, the

proposed model can capture the asymmetric and non-monotonic hysteresis more accurately. The

RMSE and the absolute maximum of the error are selected to quantify the modeling performance.

The RMSE of the GPI model is 38.5 m−1, and the RMSE of the EGPI model is 26.4 m−1. The

largest error of the GPI model is 148.9 m−1, while that of the EGPI model is 89.6 m−1. There-

fore, the EGPI model can capture the asymmetric and non-monotonic hysteresis behavior more

accurately, with 31 % and 40 % smaller error in terms of RMSE and the largest modeling error,

respectively.
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Figure 6.2: The performance of modeling curvature-temperature hysteresis of a VO2-coated mi-

crocantilever based on: (a) GPI model. (b) EGPI model.
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Table 6.2: Parameters of the GPI model and the EGPI model for hysteresis of a VO2 film.

aL bL aR bR p0 aD bD c2

Generalized 0.14 -8.5 0.16 -9.5 0 0 0 -3.23

Extended 0.16 -10.3 0.20 -11.6 0.4 0.03 -1.6 -3.26

6.3.2 Resistance-temperature Hysteresis of a VO2 Film

A VO2 layer was deposited by pulsed laser deposition. The film was heated with a Peltier heater.

The experimental setup in this work was similar to the one used in Chapter 2. The resistance of

the film was measured through two aluminium contacts patterned on the VO2 film.

Similarly, the temperature profile in time followed a pattern of damped oscillations. It is shown

in Fig. 6.3 that the measured resistance (Z) changes by approximately two orders of magnitude.

Furthermore, in order to have non-negative weights for the hysteresis models, − log10 Z is taken as

the output. The hysteresis behavior shown in Fig. 6.3 is asymmetric and also partially saturated.

Following [13, 28], the envelope functions are selected to be hyperbolic-tangent functions. The

memoryless function is selected as the sum of a hyperbolic-tangent function and an offset:

D(v(t)) = p0 · tanh(aDv(t)+bD)+ c2. (6.14)

The number of play operator is chosen to be N = 30, and the radii are chosen to be r = i/N, i =

1, · · · ,N. The GPI model is modeled by the summation of the same number of weighted gener-

alized play operators and an offset c2. The identified parameters of the GPI model and the EGPI

model are shown in Table 6.2. The weights of the GPI model and the EGPI model are different

due to the effect of the nonlinear memoryless function. The identified weights of both models are

not included in the interest of brevity.

Fig. 6.3 (a) and (b) show the modeling performance based on the GPI model and the proposed
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Figure 6.3: The performance of modeling the resistance-temperature hysteresis of a VO2 film

based on: (a) GPI model. (b) EGPI model.

model, respectively. The RMSE and the maximum absolute error of the GPI model are 0.031

and 0.082 log10 Ω, respectively, while the corresponding values for the EGPI model are 0.012 and

0.041 log10 Ω, respectively. The GPI model has 158% and 100% larger RMSE error and maximum

absolute error, respectively.

Fig. 6.4 (a) and (b) show a random temperature sequence and its corresponding resistance

output. The model estimation errors based on the GPI model and the EGPI model, respectively,

are shown in Fig. 6.4 (c). The RMSE and the average absolute error of the GPI model are 0.034
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and 0.027 log10 Ω, respectively, while the corresponding values for the EGPI model are 0.012 and

0.009 log10 Ω, respectively. The effectiveness of the EGPI model in capturing the asymmetric and

partial saturated hysteresis is thus further demonstrated.

6.4 Inverse Compensation Results

Examples are shown to illustrate the effectiveness of the inverse algorithm both in simulation and

experiments.

6.4.1 Simulation

Consider an EGPI operator expressed as a memoryless function and a CPI model, i.e.,

γR(v(t)) = v(t), (6.15)

γL(v(t)) = v(t). (6.16)

The memoryless component is chosen as

D(v(t)) = p0 cos(v(t)). (6.17)

Note the envelope function and memoryless component are chosen in the above form as an

illustrative example. The radii and their corresponding weights of the play operators are shown in

Table III. D(v(t)) is chosen to be 5cos(v(t)). The convergence condition for the given model is

satisfied since
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Figure 6.4: Model verification of the resistance-temperature hysteresis in a VO2 film: (a) a random

temperature sequence. (b) corresponding resistance output. (c) Modeling comparison between the

GPI model and EGPI model.
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Table 6.3: Parameter of the EGPI model

i 1 2 3 4 5 6

ri 0 0.2 0.4 0.6 0.8 2

p(ri) 6 2 1 2 4 4

min{dγR

dv
,
dγL

dv
} · p(r0) = 6 > 5 ≥ dD

dv
. (6.18)

Fig. 6.5(a) shows a randomly chosen input sequence, and Fig. 6.5(b) shows the input and

model output relationship. Fig. 6.6 (a) shows the inversion of the model based on the proposed

algorithm, and Fig. 6.6(b) shows the resulting relationship between desired output and calculated

output. The good linearity demonstrates the effectiveness of the inverse algorithm.

The average number of iterations is 8.38 when the convergence criterion σ is chosen to be

0.0001, which shows the efficiency of the algorithm. It is found in simulation that if σ is enlarged

to be 0.01, the average number of iteration decreases to 5.31. It is also verified that when the value

of p0 is reduced, the inversion algorithm may not converge; on the other hand, if p(r0) remains

sufficiently large, the EGPI algorithm will always converge.

6.4.2 Experimental Verification

The proposed inversion algorithm is also tested in experiments to compensate the resistance-

temperature hysteresis in the VO2 film. It is verified that when the number of generalized play

operators is more than 5, the modeling performance will not improve significantly while incurring

higher computational cost. Therefore, a simpler and more efficient model with 5 generalized play

operators and a nonlinear term is utilized. The parameters can be found in Table 3.6 and [82].

It is found that when v ∈ [43.2, 74.2] ◦C, the convergence requirement will be satisfied.
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Figure 6.5: Simulation verification of the inverse algorithm. Hysteresis relationship: (a) Input

sequence. (b) Input-output of the EGPI model.
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Figure 6.6: Compensation of hysteresis in simulation: (a) Input-output of the inverse EGPI model.

(b) The relationship of the desired output and the actual output after hysteresis compensation.
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Figure 6.7: (a). Inverse compensation performance in experiment. (b). Inversion compensation

error for the EGPI model.

Note that this covers the typical operating range for VO2. Outside the region [43.2, 74.2] ◦C,

the convergence requirement may fail, since when v → ∞,dγ/dv → 0 faster than dD/dv, and

dγ/dv ≪ dD/dv, thus making Eq. (6.4) difficult to meet.

Fig. 6.7 shows the inverse compensation performance and the inversion error. The absolute

maximum inversion error is around 0.135 log10 Ω, which still demonstrates the effectiveness of

the proposed compensation approach.
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Chapter 7

A Composite Hysteresis Model in

Self-Sensing Feedback Control of

VO2-integrated Microactuators

In this chapter a composite hysteresis model is proposed for self-sensing feedback control of VO2-

integrated microactuators. The deflection of the microactuator is estimated with the resistance

measurement through the proposed model. To capture the complicated hysteresis between the re-

sistance and the deflection, we exploit the physical understanding that both the resistance and the

deflection are determined by hysteretic relationships with the temperature. Since direct tempera-

ture measurement is not available, the concept of temperature surrogate, representing the constant

current value in Joule heating that would result in a given temperature at the steady state, is ex-

plored in the modeling. In particular, the hysteresis between the deflection and the temperature sur-

rogate and the hysteresis between the resistance and the temperature surrogate are captured with a

generalized Prandtl-Ishlinskii (GPI) model and an extended generalized Prandtl-Ishlinskii (EGPI)

model, respectively. The composite self-sensing model is obtained by cascading the EGPI model

with the inverse GPI model. For comparison purposes, two algorithms, based on a Preisach model

and an EGPI model, respectively, are also used to estimate the deflection based on the resistance

measurement directly. The proposed self-sensing schemes is evaluated with proportional-integral
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(PI) control of the microactuator under step and sinusoidal references, and its superiority over the

other schemes is demonstrated by experimental results.

7.1 Experimental Procedures

7.1.1 VO2-integrated Actuator Fabrication

The microactuator used in this work consisted of a silicon dioxide (SiO2) microcantilever with

patterned VO2 film inside the structure. The fabrication process flow for this device is shown

in Fig. 7.1. The process starts with the deposition of 1µm layer of SiO2 using plasma-enhanced

chemical vapor deposition (PECVD) at temperature of 300◦C on a 300µm thick silicon (Si) wafer.

This SiO2 layer was used as the substrate to generate VO2 with highly oriented crystalline struc-

ture, to achieve maximum actuation effect [92]. A VO2 layer (270 nm) was deposited by pulsed

laser deposition (PLD) [56] and patterned with reactive ion etch (RIE). The patterned VO2 film

was used as the active actuation element in the cantilever. Another SiO2 layer (400 nm) was de-

posited by PECVD at 250◦C to isolate the VO2 from the metal layer (to be processed next) and

patterned with RIE to open the contact to the VO2. The lower temperature was used to mitigate the

adverse effects of exposing VO2 films to high temperatures. Two openings on the top side of the

SiO2 were made to expose the VO2 in selected regions. Two Ti (40 nm)/Au (160 nm) layers were

deposited by evaporation and patterned by lift-off techniques. The first one was to partially fill the

opening in the SiO2, and the second one was to form the heating element and the traces for the

VO2 resistance contacts. Certain areas of SiO2 with thickness of 1.4 µm were etched with RIE to

define the geometry of the cantilever and expose the Si for the releasing step. XeF2 gas was used

to do an isotropic etch of the Si and release the cantilever.

In these devices, the VO2 film was fully integrated in the fabrication process flow of the device.
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The gold metal layer used for both resistance measurement and actuation of the VO2 film was

deposited at room temperature after the VO2 film was deposited and patterned. This resulted in an

direct electrical contact between the metal layer and a uniform VO2 film. In previous Chapters,

the VO2 film was deposited at high temperatures on platinum contact pads that were accessed by

vias through a SiO2 film that separated the metal layer and the VO2 film in regions other than the

contact pad. This not only created a step in the VO2 film thickness at the electrical contact, but also

a VOx (x different than 2) layer between the film and the contact pad. Thus, the VO2 films used

in this chapter were of better quality in terms of uniformity and stoichiometry, and the resistance

measurements on the fully-integrated VO2 devices included only the VO2 thin film.

Note that the actuator is a bimorph bender consisting of VO2 and SiO2 layers. Thermally

induced phase transition in VO2 will generate internal stress that causes drastic bending of the

structure toward the VO2 layer. In addition, differential thermal expansion of the two materials

results in an opposite bending effect. The combination of the two actuation effects leads to a

non-monotonic hysteretic behavior between the deflection and the temperature.

7.1.2 Experimental Setup

The experimental setup was same as Fig. 4.7(a). The system is based on the laser scattering

technique, using an IR laser (λ=808 nm) and a position sensitive detector (PSD) to track the dis-

placement of the microactuator (shown in Fig. 7.2). A charge couple device (CCD) camera was

used for alignment and calibration purposes. Note that while the CCD camera has a limited pixel

resolution (1.3 µm), the resulting calibration error mainly introduces a scaling factor close to 1 for

the relative displacement measurement, and thus it has minimal impact on the characterization and

comparison of different self-sensing schemes in this work. A dSPACE system was used for data

acquisition and control implementation. The power of the sensing laser (222 mW) was calibrated
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Figure 7.1: Fabrication process flow for the VO2-integrated actuator. a) Deposition of SiO2 (1

µm) by PECVD; (b) deposition of VO2 (270 nm) by PLD; (c) patterning (etch) of VO2 by RIE;

(d) deposition of SiO2 (0.4 µm) by PECVD; (e) patterning (etch) of SiO2 by RIE; (f-g) deposition

of Ti/Au by evaporation and patterning by lift-off; (h) RIE of SiO2 for device pattern; (j) cantilever

released by XeF2 isotropic etching of Si.
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to be the minimum possible to be sensed by the PSD without heating the cantilever due to photon

absorption. The voltage output (VD) of the PSD was linearly proportional to the position of the

laser. With the images captured by the CCD camera, this voltage (VD) was mapped to the deflec-

tion of the microactuator. The chip was inside a side braze packaging (wire-bonded), which was

connected to the dSPACE. The current IH shown in Fig. 4.7(b) was used to control the temperature

of the microactuator by Joule heating. The current was generated using two resistances in series:

the heater resistance and an external resistance, whose only purpose was to limit the maximum

current that can be applied to the system. The VO2 resistance (RV ) was measured in situ by using

a constant current and monitoring the voltage across the resistance – the magnitude of the constant

current (21 µA) was chosen so that it would not heat the VO2 considerably, but could be measured

by the dSPACE system.

65  m

425  m

Figure 7.2: The VO2-integrated microactuator used in this work, with length 425µm and width

65µm.

7.1.3 Measurement of Hysteretic Behavior

In order to obtain the hysteresis measurement, a sequence of quasi-static input values are applied,

and for each input value, the corresponding output (resistance or deflection) at the steady state is

recorded. In this work, the term “index” refers to the numbering of the quasi-static input values

as well as that of the corresponding steady-state output values. Fig. 7.3(a) shows the current

input with the form of damped oscillations. The measurement was taken under a quasi-static

condition, where each current value was held for 10 ms since the heating dynamics had a time
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Figure 7.3: (a) The hysteresis between the resistance and the current; (b) the hysteresis between

the deflection and the current.

constant of less than 2 ms (see Section V). Fig. 7.3(b) shows the corresponding resistance of the

VO2 microactuator. The total resistance range is [11.19, 231.75] kΩ, with the current ranging

from 3.68 mA to 8.49 mA. There is asymmetric hysteresis between the resistance and the current,

which shows a monotonic behavior and will be modeled with a GPI model. Fig. 7.3(c) shows the

non-monotonic hysteresis relationship between the deflection output and the input current of the

VO2-integrated microactuator, which will be modeled with an EGPI model. The total deflection

range is [48.13, 72.15] µm.

The deflection and resistance values were measured simultaneously, and Fig. 7.4(a) shows the

hysteretic relationship between the deflection and the resistance of the microactuator. Fig. 7.4(b)

shows the resistance input, which follows a pattern of damped oscillations. Closer examination

(shown in Fig. 7.4(c)) of the hysteresis curve reveals a subtle behavior where the hysteresis loops

do not demonstrate a strict “nested” nature under the damped oscillations of the resistance. For

example, branches 1 and 2 form a major hysteresis loop, while the minor hysteresis loop formed

by branches 3 and 4 is only partially inside of the major hysteresis loop formed by branches 1 and
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2. It can be shown that such non-nested hysteresis cannot be captured by a typical single hysteresis

model (e.g., a Preisach operator or a GPI model with non-negative weighting functions).

Fig. 7.5 shows the hysteresis loops between the deflection and the current, and between the

deflection and the resistance, at different frequencies of the input current. One can see that the

shape of the hysteresis loop between the deflection and the current changes dramatically with

the frequency, while the hysteresis loop between the deflection and the resistance has much less

variation with frequency. This indicates the promise of using resistance to achieve self-sensing of

deflection.

7.2 Proposed Composite Model for Self-sensing

7.2.1 Main Idea

We use hysteresis models identified under a quasi-static condition (Fig. 7.3) to derive a self-sensing

model that is applicable under dynamic conditions. The justification for such an approach is as fol-

lows. Note that the phase transition in VO2 (including both the mechanical property change and

the electrical property change) is induced solely by the temperature change. And the phase change

dynamics is very fast, at the order of nanoseconds [93]. Therefore, the hysteresis between the

resistance and the temperature can be considered rate-independent for the frequency range of in-

terest in this work. Similarly, the hysteresis between the deflection output and the temperature is

rate-independent, within the frequency range where the structural dynamics of the cantilever is not

excited. Consequently, within that same frequency range, the hysteresis between the deflection

output D and the resistance Z is rate-independent, which is a key point behind our proposed ap-

proach. We note that the D-Z hysteresis in Fig. 7.5(b) shows mild rate-dependency, which can be

largely attributed to the structural dynamics of the cantilever, which cannot be entirely ignored at
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Figure 7.4: (a) The hysteresis between the deflection and the resistance; (b) the resistance se-

quence; (c) zoom-in plot of the hysteresis between the deflection and the resistance, revealing a

non-nested structure.
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Figure 7.5: The hysteresis between the deflection and the current under varying input frequencies;

(b) The hysteresis between the deflection and the resistance under varying input frequencies.
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the tested frequencies.

Another key idea in the proposed method is the notion of temperature surrogate, which is

a single-valued, strictly increasing function of the temperature. The purpose of applying quasi-

static current inputs during model identification is to achieve the steady-state temperature for each

value of current input, so that the relationships between resistance/deflection and temperature can

be established. Since direct measurement of VO2 temperature (which would require a dedicated

sensor) is not available, the applied quasi-static current input value, i, becomes a surrogate for the

steady-state temperature T as i is a single-valued, increasing function of T , namely, i= g(T ). Since

the hysteresis between deflection D and T and the hysteresis between resistance Z and T (when

structural dynamics of the cantilever is not excited) are rate-independent, so are the hysteresis

between D and g(T ) and the hysteresis between Z and g(T ). This is why, even under dynamic

conditions, we can infer the surrogate temperature g(T ) from the measurement Z, and then use

g(T ) to calculate D.

Even though the explicit expression g(T ) for the temperature surrogate is not required for the

implementation of the proposed self-sensing algorithm, for illustration purposes, we provide one

example based on a simple thermal model of Joule heating [94]:

dT (t)

dt
=−d1(T (t)−T0)+d2i2(t), (7.1)

where d1 and d2 are positive constants related to the density, volume, specific heat, heat transfer

coefficient, resistance, and surface area of the VO2 microactuator, and T0 is the ambient tempera-

ture.

For a constant current i, the steady-state temperature T under (1) can be computed as
d2
d1

i2(t)+

T0, which implies

118



i =

√

d1

d2
(T −T0) = g(T ). (7.2)

Note that the function g(T ) in (7.2) is indeed single-valued and strictly increasing, and thus is

a legitimate surrogate for T . This notion of temperature surrogate is at the heart of our proposed

self-sensing scheme. It is found in finite-element simulation with COMSOL that the thermal distri-

bution is approximately uniform for the majority part of the cantilever, so treating the quasi-static

current as a surrogate of the temperature is acceptable.

In the proposed self-sensing scheme, the deflection feedback is estimated based on the resis-

tance measurement in two steps: first, the temperature surrogate g(T ) is obtained from the resis-

tance measurement based on a inverse GPI model; second, the deflection estimate is obtained from

the temperature surrogate g(T ) based on an EGPI model. A brief review of the GPI model and the

EGPI model is provided below, and the reader is referred to [13, 20, 95] for more details on this

subject.

7.2.2 Temperature Surrogate g(T ) based on a GPI Model

In order to capture the asymmetric hysteresis behavior between temperature surrogate g(T ) and

the resistance output Z, a GPI model is adopted.

Z(t) =

N1

∑
j=0

p1(r j)F
γ1
r j

[g(T )](t)+ c1, (7.3)

where c1 denotes the bias. g(T ) can be expressed as the following inversion model
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g(T ) =



























γ−1
R ◦Π−1 ◦ (Z(t)− c1), if Z(t)> Z(t−)

γ−1
L ◦Π−1 ◦ (Z(t)− c1), if Z(t)< Z(t−),

î(t−), if Z(t) = Z(t−)

(7.4)

7.2.3 Estimated Deflection D̂ Based on an EGPI Model

An EGPI model is adopted to capture the non-monotonic hysteresis behavior between the temper-

ature surrogate g(T ), which can be calculated in the previous subsection, and the deflection output

D:

D(t) =

N2

∑
j=0

p2(r j)F
γ2
r j

[g(T )](t)+ c2g(T )+ c3, (7.5)

where c2 is a constant related to the thermal expansion coefficients of the microactuator structure,

and c3 denotes a constant bias. The form of the model is chosen based on [95]. In [95], the non-

monotonic hysteresis between temperature and deflection a VO2 microactuator was modeled by

the summation of a GPI model and a memoryless function.

Note that in actual operations of the actuator, the current input is not quasi-static in general

and does not have a fixed relationship with the temperature. Therefore, even though the current

input is readily available (as a control signal), one cannot simply use the known current value to

estimate the deflection. However, the joint use of Eq. (7.4) and Eq. (7.5) will be able to produce the

deflection estimate even under dynamic conditions, since the scheme operates by first estimating

the temperature state g(T ). The discussion is also supported by comparing the hysteresis loops

of the deflection and the current, and that of the deflection and the resistance, where the rate-

dependency is much milder (Fig. 7.5(b)).
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7.3 Model Identification and Verification

7.3.1 Model Identification

To effectively identify the model parameters, the input needs to provide sufficient excitation for

individual elements of the hysteresis models. In this work an input with the form of damped os-

cillations is used, which produces nested hysteresis loops for the resistance-current and deflection-

current relationships. For comparison purposes, an EGPI model, a single Preisach operator, and

a high-order polynomial model are adopted to directly model the relationship between the deflec-

tion and the resistance. The performance of each self-sensing scheme is measured by the average

and maximum absolute prediction errors. The calculation complexity is also examined using the

average time of each self-sensing calculation.

The numbers of the generalized play operators in the GPI model N1+1 and in the EGPI model

N2 +1 are both chosen to be 6, the radii are chosen as r = (i−1)/6, i = 1,2, · · · ,6. The numbers

of play operators of the GPI model and the EGPI model are chosen such that the identified model

could provide adequate accuracy with reasonable computation time. When the number of play

operators is chosen to be 6, the average modeling error is less than 1 µm, over the total deflection

range [1.62, 58.65] µm. Increasing the number further does not seem to produce appreciable

improvement in modeling accuracy. The parameters of the GPI model include play radii, envelope

functions, and weights. When the number of plays is larger, the number of model parameters also

is larger, posing difficulties in model identification. In practice, it is common to pre-define some

of the parameters and the identified model could still accurately capture the hysteresis behavior.

For example, in Chapter 6, and [13], play radii were pre-defined in a similar way as adopted in this

chapter. In order to capture the hysteresis between the temperature surrogate and the resistance, the

envelope functions for the generalized play operator are chosen to be hyperbolic-tangent functions
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Table 7.1: Identified parameters of the GPI model.

c1 -132556.3

aL 519.7

aR 624.9

bL -2.984

bR -3.656

p1 (0.415, 0.648, 0.325, 0, 0.081, 0.618)

in the form of:

γR(v(t)) = tanh(aRv(t)+bR), (7.6)

γL(v(t)) = tanh(aLv(t)+bL). (7.7)

Hyperbolic-tangent functions could effectively capture the complicated asymmetric hysteresis with

output saturation in VO2 microactuators. The hyperbolic-tangent functions have also been adopted

to model other types of hysteresis behaviors and [13] and their effectiveness have been verified.

The model parameters are identified through minimization of an error-squared function be-

tween the actual deflection and the model using the Matlab optimization toolbox [13]. Table 7.1

and Table 7.2 show the parameters of the GPI model and the EGPI model, respectively. Note that

for the GPI model, all the generalized play operators have the same envelope functions.

Fig. 7.7(a) shows the performance of the proposed self-sensing scheme, and Fig. 7.7(b) shows

the prediction error. The average and maximum absolute errors with the composite model are 0.95

µm and 4.01 µm, respectively, over the total deflection range [1.62, 58.65] µm. The average time

for each self-sensing calculation is 0.16 ms. The computations were run in Matlab on a computer

Lenovo Thinkpad T420 with 2.80 GHz CPU and 4.00 GB memory.
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Table 7.2: Identified parameters of the EGPI model.

c2 -8874.3

c3 143.29

aL (982.5, 1754.8, 2169.2, 838.1, 1864.7, 1623.2)

aR (1202.6, 1376.2, 1243.0, 1173.7, 788.8, 788.8)

bL (-6.49, -11.13, -11.56, -6.24, -6.46, -15.52)

bR (-8.67, -12.15, -10.12, -7.42, -10.83, -11.21)

p2 (27.24, 5.35, 3.18, 12.84, 1.00, 26.68)
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Figure 7.6: (a) The comparison between the GPI model prediction and experimental measurement

for the asymmetric hysteresis between the resistance output and the current input; (b) the compar-

ison between the EGPI model prediction and experimental measurement for the non-monotonic

hysteresis between the deflection output and the current input.

Fig. 7.7(a) shows the performance of the proposed self-sensing scheme, and Fig. 7.7(b) shows

the prediction error. The average and maximum absolute errors with the composite model are 0.95

µm and 4.01 µm, respectively, over the total deflection range [1.62, 58.65] µm. The average time

for each self-sensing calculation is 0.16 ms. The computations were run in Matlab on a computer

Lenovo Thinkpad T420 with 2.80 GHz CPU and 4.00 GB memory.

The Preisach model is a popular and effective hysteresis model [9, 12, 85]. A Preisach model

consists of weighted superposition of delayed relays. Practical parameter identification involves
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Figure 7.7: (a) Performance of the self-sensing scheme using the composite model; (b) the self-

sensing error based on the composite model.

discretization of the Preisach density function in one way or another, and one effective method is to

approximate the density with a piecewise constant function [9]. A non-monotonic hysteresis model

that combines a monotonic Preisach model with a memoryless operator is adopted to directly

model the hysteresis between resistance and deflection. The number of discretization level of the

model is chosen to be 10. Fig. 7.8(a) shows the modeling performance of the Preisach model.

The average and maximum absolute errors are 1.19 µm and 6.68 µm, respectively. The average

time needed for each self-sensing calculation is 0.68 ms. Therefore, the Preisach model results

in much longer calculation time and producing less accurate modeling performance as compared

to the proposed approach. Moreover, the modeling performance shows that the Preisach model

cannot capture the non-nested hysteresis loops.

An EGPI model that combines a GPI model with a memoryless operator is also adopted for

modeling comparison. The number of generalized play operators of the model is chosen to be 6.

Fig. 7.8(b) shows the modeling performance of the EGPI model. The average and maximum abso-

lute errors are 1.26 µm and 4.65 µm, respectively. The average time needed for each self-sensing

calculation is 0.11 ms. Therefore, the EGPI model results in comparable calculation time but pro-
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Figure 7.8: Performances of the self-sensing schemes using (a) a Preisach model; (b) an EGPI

model; (c) a high-order polynomial model.
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duces less accurate modeling performance as compared to the proposed approach. Moreover, the

modeling performance shows that the EGPI model cannot capture the non-nested hysteresis loops.

Due to the similar modeling accuracy as the Presiach model, the EGPI model is not adopted for

model verification or control experiments.

A eighth-order polynomial model is identified to approximate the complicated hysteresis rela-

tionship between the deflection and the resistance, as shown in Fig. 7.8(c). It can be seen that a

polynomial model fails to capture the hysteresis relationship, and the average and maximum abso-

lute errors in self-sensing are 2.66 µm and 6.48 µm, respectively, while the average time needed

for each self-sensing estimation is only 0.004 ms. Although the polynomial model takes much

less time than the composite model, its modeling performance is much worse than the proposed

approach.

We have shown that, for some chosen designs, the proposed composite hysteresis model-based

self-sensing scheme outperforms the Preisach model-based schemes in both precision and effi-

ciency, and outperforms the EGPI and polynomial model-based schemes in precision with higher

computational complexity. On the other hand, it is known that the error performance of each

scheme depends on the complexity of each model. Here a more in-depth comparison is provided

by varying the complexity of each scheme. Fig. 7.9 compares the self-sensing performance and

computational time of each model when the “level” of each is varied from 6 to 10. Here the term

“level” refers to the number of generalized play operators for the GPI model and the EGPI model,

the discretization level for the Preisach model, and the degree of the polynominal model, respec-

tively. It can be seen that the composite model consistently has the lowest modeling error among

the four schemes. Furthermore, its computational complexity is only slightly higher than that of the

EGPI model-based schemes. Additionally, unlike other schemes, the proposed model can capture

the subtle deflection-resistance hysteresis behavior where the hysteresis loops do not demonstrate
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a strict “nested” nature under the damped oscillations of the resistance.
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Figure 7.9: Model accuracy and the running time comparison between the composite model, the

Preisach model, the EGPI model, and the polynomial model.

7.3.2 Model Verification

In order to further validate the proposed approach, the VO2-integrated microactuator is subjected to

a randomly chosen current input sequence, shown in Fig. 7.10(a), under each of the three schemes.

For each index, the current is held for 10 ms. Here the numbers of generalized play operators

in the GPI model and the EGPI model for the proposed scheme is 6, the discretization level for

the Preisach model is 10, and the order of the polynomial model is 8. Fig. 7.10(b) shows the

experimental measurement of the deflection and Fig. 7.10(c) shows the self-sensing errors under

each scheme. The average absolute errors are 1.10 µm, 1.45 µm, and 2.35 µm, respectively, under

the composite model, the Preisach model and the polynomial model. The maximum absolute errors

are 2.88 µm, 4.55 µm, and 5.91 µm, respectively, under the composite model, the Preisach model

and the polynomial model. The effectiveness of the proposed model is thus further verified.
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Figure 7.10: (a) A randomly chosen current input sequence for self-sensing model verification; (b)

the experimental deflection measurement under the random current input sequence; (c) errors in

predictions by different self-sensing approaches.
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7.4 Self-sensing-based Feedback Control

The block diagram for the physical closed-loop system is shown in Fig. 7.11. The input of the

controller is the deflection error between the reference and the self-sensed deflection. The output of

the controller is the current. The heating dynamics is modeled as a first-order system and the time

constant is identified to be 1.8 ms based on a series of step response experiments. Proportional-

integral tuning is conducted in simulation. The following proportional-integral parameters was

chosen to ensure desirable step response and fast sinusoidal-tracking performance: Kp = 1.4×

10−3, KI = 2.03×10−5.

Dynamics

c-

[A x ;0](t)
+

-

+

+

k

k1/ s

PI+-
Reference 2( )×

1

0.0018s 1+
Hysteresis I

Deflection

Sensed deflection

Hysteresis II

Self-sensing

Resistance

Figure 7.11: Block diagram of the closed-loop control system with self-sensing.

7.4.1 Step Reference Tracking

A step reference-tracking experiment has been first conducted. Each reference setpoint has dura-

tion of 1 s. Fig. 7.12 shows the experimental performance in terms of the reference and the actual

deflection measured by the external PSD. Note that although the self-sensed deflection is used in

the feedback control, the actual deflection is of more relevance. The average absolute tracking

errors under the composite model, the Preisach model, and the polynomial are 1.11 µm, 2.21 µm,

and 3.12 µm, respectively. The step reference-tracking experiment demonstrates the effectiveness

of the proposed composite self-sensing model.
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Figure 7.12: Experimental performance of tracking a step reference under different self-sensing

schemes.

7.4.2 Sinusoidal Reference Tracking

The next experiment involves the tracking of a sinusoidal signal. The reference signal, shown in

Fig. 7.13(a), has frequency of 0.1 Hz. Fig. 7.13(b) shows the tracking performance of the three

self-sensing approaches. It is calculated that the controllers based on the composite self-sensing

approach, the Preisach model, and the polynomial model result in average absolute errors of 0.69

µm, 1.28 µm, and 2.79 µm, respectively. The results show the effectiveness of the proposed

self-sensing approach for feedback control.

7.4.3 Multi-frequency Reference Tracking

Experiments on tracking multi-frequency signals have been further conducted. The reference sig-

nal is chosen as 4sin(2πt)−6sin(2π10t)+30, which is shown in Fig. 7.14(a). Fig. 7.14(b) shows

the tracking performance of the three self-sensing approaches. It is calculated that the controller

based on the composite self-sensing approach results in an average absolute error of 2.43 µm,

which is 20.1% and 44.1% less than those under the Preisach model and the polynomial model-

based schemes, respectively. The results show that the controllers result in larger tracking error
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Figure 7.13: (a) A sinusoidal reference signal for tracking control of the VO2-integrated microac-

tuator; (b) experimental tracking errors under different self-sensing schemes.
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Figure 7.14: (a) A multi-frequency reference signal for tracking control of the VO2-integrated

microactuator; (b) experimental tracking errors under different self-sensing schemes.

comparing with the tracking of a lower-frequency signal (Fig. 7.13), which is likely due to the

mild frequency-dependence of the deflection-resistance hysteresis (Fig. 7.5) that is not captured in

these models.
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Chapter 8

Robust Control of VO2 Microactuators

using Self-Sensing Feedback

In this chapter, self-sensing-based robust control of VO2 microactuators is studied. Although the

resistance change is due to an insulator-to-metal-transition (IMT) and the mechanical change is

due to a structural-phase-transition (SPT), these two mechanisms are strongly coupled. Thus,

self-sensing is achieved by mapping deflection to resistance with a high-order polynomial. By em-

ploying this technique, not only the impact of hysteresis can be reduced due to the highly coupled

deflection and resistance changes in VO2, but the measurement setup is also greatly simplified.

The robust controller takes into account the error in modeling temperature-deflection hysteresis,

and environmental disturbances. The controller takes into consideration the error between the de-

sired and actual deflection values in order to precisely control the microactuator. The performance

of the robust controller is also compared to a PID controller.

8.1 Experimental Procedures

8.1.1 VO2 Deposition

The VO2 thin film was deposited, through pulse laser deposition, on a chip containing a Si micro-

cantilever with length, width, and thickness of 300, 35, and 1 µm, respectively. The microactuator
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chip was attached to a Si test piece and was placed in a vacuum chamber with a mixed gas pressure

of argon (40 %) and oxygen (60 %) at 20 mTorr and maintained through a 30 min deposition. A

ceramic heater, controlled at 600 ◦C, was used to heat the sample during deposition. Although

the temperature at the sample was not directly measured, a calibration done before the deposition

approximates the temperature at 550 ◦C. The sample was also rotated throughout the deposition

to ensure uniform temperature and thickness distribution. A krypton fluoride excimer laser was

focused on a rotating vanadium target 5 cm apart from the sample with an intensity of 350 mJ and

a repetition rate of 10 Hz. After deposition, the VO2 thickness was measured to be 172 nm. To

determine the quality of the VO2, the resistance of the film on top of the test chip was measured as

a function of temperature through a heating-cooling cycle (20-85 ◦C) (vide infra). A drop of two

orders of magnitude in film resistance is observed, which is similar to resistance changes reported

in the literature for stoichiometric polycrystalline VO2 on Si substrates [96].

8.1.2 Measurement Setup

The measurement setup is similar as Fig. 5.1. The VO2-coated Si microactuator (shown in cross-

sectional view) was attached to the same test piece used during deposition, which was also Si

coated with the same VO2. This test piece was needed in order to create the electrical connections

to the VO2 and measure its resistance. These contacts were located next to the microactuator chip

and fabricated by evaporating aluminum through a custom-made metal mask. A voltage divisor

(not shown in the schematic) was used in order to measure the resistance of the VO2 film.

To measure the deflection of the device, a sensing laser (λ= 808 nm, 0.5 mW) was focused

on the tip of the microactuator and the reflected light was then focused on the active area of a

PSD. A charged-coupled device camera was used to aid in the alignment of the laser. The PSD

output was a voltage proportional to the deflection of the microactuator, which was calibrated by
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sideview images of the cantilever at different deflection values. In particular, the calibration of

the PSD reading was done by first assigning the initial deflection of the cantilever at 20 ◦C as

0 µm. Then the sample was heated to 85 ◦C, which resulted in the maximum deflection of the

cantilever, 70 µm, as measured from the side view images of the cantilever. The total voltage

change in the PSD output from 20 to 85 ◦C was 7.8 V, resulting in a measurement sensitivity

of 0.111 V/µm. We note that the PSD used in this work had a resolution of 0.2 µm for the

laser spot displacement, while the range for the laser spot displacement was 13.875 mm when

the temperature varied from 20 to 85 ◦C. This means that the PSD reading was highly accurate

since the output resolution was 1.4×10−5 of the operational range. A Peltier heater was used to

control the temperature of the sample. The temperature at the heater was measured with a platinum

temperature sensor. A data acquisition card and field programmable gate array (DAQ/FPGA) was

used to access the PSD output, the resistance of the VO2 film, and the temperature sensor output.

The DAQ/FPGA system was programmed to either: 1) control the temperature of the Peltier in

closed loop in order to measure the deflection of the microactuator and the VO2 resistance of

the test piece simultaneously, or 2) control, using PID or robust controller, the deflection of the

microactuator by self-sensing the deflection through resistance. For both cases, the DAQ/FPGA

controlled the magnitude of the current signal sent to the Peltier heater. All the variables were

controlled and observed in a computer connected with the DAQ/FPGA system.

8.2 Self-Sensing Deflection

Fig. 8.1 shows the major heating-cooling cycle of the microactuator deflection and film resistance

as a function of temperature. The deflection in this work is defined as the tip displacement change

relative to the initial position. A total deflection of 70 µm and a resistance drop of two orders
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of magnitude were measured during the VO2 transition through a temperature span of 15 ◦C.

Both variables were simultaneously measured, and by mapping deflection with resistance, it was

observed that the hysteresis between the deflection and the resistance was insignificant, enabling

the use of the resistance of the film in the test piece to estimate the deflection without the need of

physically measuring its value.

Figure 8.1: (a) VO2 film resistance, and (b) VO2-coated microactuator actual deflection as a func-

tion of temperature through a heating-cooling cycle (20-85 ◦C). Both variables were simultane-

ously measured.

The deflection-resistance mapping is shown in Fig. 8.2(a), which also includes a ninth-degree

polynomial used to estimate the deflection in the experiments. This model was obtained from

fitting the average of the heating and cooling curves and was used as the deflection sensing mech-

anism in the closed-loop deflection control experiments done in this work. The maximum errors

between the heating/cooling curves and the self-sensing model are shown in Fig. 8.2(b). For a wide

range of the resistance, the deflection estimation error was lower than 2 µm whereas slightly larger

estimation error was found at the two ends. It is observed that some hysteresis remains. This is

believed to be due to the slightly different energy requirements between the IMT and the SPT [87].

This hypothesis is supported by the fact that this difference in energy requirements has been found
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to be more pronounced at the onset of the phase transition, which would correspond to the higher

resistance-low deflection region in Fig. 8.2(a). Hereinafter, the estimated and measured deflection

values will be addressed as self-sensed and actual deflections, respectively.et al.

-coated microactuator actual Fig. 3. (a) VO -coated microactuator actual deflection as a function of VO
Figure 8.2: (a) VO2-coated microactuator actual deflection as a function of VO2 film resistance

during the heating-cooling cycle. A polynomial function of degree 9 was used to model the

deflection-resistance mapping. (b) Maximum model error obtained from the major heating and

cooling curves.

Two types of controllers will be considered and compared: 1) a PID controller, which only

considers the error between the controlled variable (in this case self-sensed deflection) with the

desired reference signal, and 2) a robust controller, which aside from considering the error from

the controlled variable, also accommodates the error brought by the self-sensing model, noises,

and system uncertainties.

8.3 Robust Controller Design

Following H∞ design techniques [97], an H∞ controller was designed to accommodate perturba-

tions, noises, and model uncertainties in deflection tracking.
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8.3.1 Modeling of VO2 Microactuator

The block diagram for the simplified physical closed-loop system with self-sensing is shown in

Fig. 8.3(a) and the modeled closed-loop system augmented with weighted uncertainties is shown

in Fig. 8.3(b). The variable yre f is defined as the desired deflection output. The input of controller

K(s) is the deflection error defined as the difference between yref and the self-sensed deflection

yself. The controller output is the current Ic , which is corrupted by Id that account for environ-

mental disturbances d. A(s) denotes the transfer function for the Peltier heater with temperature

T as its output. The hysteresis between temperature T and actual deflection of the VO2 cantilever

y is modeled by the summation of a linear relationship Kc and a noise n1. The VO2 film resis-

tance is defined as R. The self-sensing error is taken into consideration through a noise n2. The

functions Wu, Wd , Wn1
, Wn2

, and We are weighting functions that represent the importance of the

corresponding signals. For example, Wu reflects the control effort constraints and We accounts for

actual deflection performance. The variables ũ and ẽ are weighted input and weighted deflection

error, respectively.

Figure 8.3: Block diagrams of the (a) simplified physical closed-loop control system with self-

sensing and (b) closed-loop system augmented with weighted functions.
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The temperature dynamics due to the Peltier heater are modeled by a first-order system and a

time delay represented by a first-order Padé approximation [98]

A(s) =

(

−τd
2 s+1

τd
2 s+1

)

( −A0

τs+1

)

(8.1)

where τ is the time constant associated with the system transient, A0 is the gain, and τd is

the time constant associated with the system delay. In this work, the deflection transfer function

was assumed to have no dynamics since the time constants associated with heat transfer through

the cantilever and drag produced by air are much lower than that of the Peltier heater dynamics.

Hence, the Peltier heater dynamic response was considered the dominant dynamic in the system

under study.

A series of open-loop step input experiments were conducted to identify the system parameters

and the results are shown in Table 8.1. These were done by manually controlling the current

through the Peltier and measuring the temperature transients. The initial current value for each

experiment was zero, which corresponded to 25 ◦C (room temperature). Only heating steps were

considered in this parameter identification and a parameter δ was used as an uncertainty parameter

due to the differences from heating and cooling with δ ∈ [−1,1]. From the measured data, the

time constant τ and the gain A0 of the plant model were calculated to be 25(1 + 0.2δ ) and 50

◦C/A, respectively. The 0.2 factor that multiplies δ is chosen to cover the range of measured time

constants, which span from 20 to 30 s. The time delay τd , which is defined here as the time

interval between a change in the input current to the system and the temperature response to that

signal (dead time), was experimentally measured to be 0.375 s.

There exists a considerable amount of hysteretic nonlinearity between temperature and de-

flection of the VO2 microactuator. Although there are several models that capture the hysteresis
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Table 8.1: Steady-state values of step experiments for system identification.

CurrentI(A) Temperature T (◦C) Time constant τ (s)

-0.2 (heating) 39.7 20.8

-0.4 (cooling) 49.2 27.4

-0.6 (heating) 59.1 22.6

-0.8 (cooling) 70.1 28.2

memory effects in microactuators, due to the complexity consideration in online processing, the

hysteresis nonlinearity in this work was approximated as follows:

y = KeT +n1Wn1
(8.2)

where Kc is the rate of change in deflection as a function of temperature across the transition, which

was identified to be 5.9 µm/◦C. The second term in the sum represents the hysteresis modeling

error. The self-sensed deflection was then modeled by

ysel f = KeT +n1Wn1
+n2WWn2

(8.3)

where the third term in the sum represents the self-sensing error obtained with the high-order poly-

nomial in Fig. 8.3(a). By considering these modeling errors and the remaining weighting functions

in Fig. 8.3(b), a robust control framework can be designed that accommodates environmental dis-

turbances, modeling errors, and uncertainties while effectively controlling the actual deflection of

the VO2-based microactuators.
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8.3.2 Robust Controller Design

Fig. 8.4(a) shows the system framework after a linear fractional transformation (LFT), which fa-

cilitates the H∞ controller design process. The transfer functions ∆(s), P(s), and K(s) denote the

uncertainty, interconnection matrix, and controller, respectively. The interconnection matrix is

denoted as follows:

P(s) =







P11(s) P12(s)

P21(s) P22(s)







where the lower LFT is defined as Fl(P,∆l) = P11 +P12∆l(I − P22∆l)
−1P21 and, similarly, the

upper LFT as Fu(P,∆u) = P22 +P21∆u(I − P11∆u)
−1P12 with compatible dimensions. The H∞

control design objective is to find a controller K(s), such that, given γ > 0, it minimizes the H∞

norm of the transfer function from the input W =

(

d n1 n2 yre f

)⊤
, which includes the noises,

disturbance, and reference signal, to the output z=

(

ẽ ũ

)⊤
, which includes the control effort and

tracking error, by solving

‖Fl(Fu(P(s),0),K(s))‖∞ < γ (8.4)

where Fu(P(s),0) represents the nominal model and ‖ · ‖ denotes the H∞ norm.

Choosing appropriate weights is very crucial in robust control design. The main guidelines

in this work are as follows: 1) the control effort weight Wu and disturbance rejection weight Wd

are very important across a wide frequency range in order to deal with disturbances with arbitrary

frequencies; 2) the actual deflection performance weight We is also given importance, especially

at low frequencies since the frequency of the desired deflection signal is relatively low due to the

relative big time constant of the temperature dynamics; and 3) the noise weightings Wn1
and Wn2
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Figure 8.4: (a) Framework of H∞ control for the system and (b) robust performance test by aug-

menting the uncertainty ∆ to M.

are more important at higher frequencies since noises will usually have higher frequencies than

those of the reference signals. With these guidelines, the transfer functions for the weights are

chosen as follows:

Wu = 0.12
(s+1)

( s
10 +1)

, (8.5)

Wd = 0.1
( s

2 +1)

(s+1)
, (8.6)

We = 0.09
1

( s
10 +1)

, (8.7)

Wn1
= 0.002

(s+1)

( s
100 +1)

, (8.8)

Wn2
= 0.002

(s+1)

( s
100 +1)

. (8.9)

Based on the model parameters and the weighting functions for the model in Fig. 8.3(b), the

system can be expressed in the following state-space representation, P(s) = C(sI −A)−1B+D,

where
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A =















































−0.04 0 0 50 0 0 −50

0 −10 0 50 0 0 0

−0.24 0 −10 0 1 0 0

0 0 0 −5.33 0 0 10.67

0 0 0 0 −100 0 0

0 0 0 0 0 −100 0

0 0 0 0 0 0 −1















































,

B =















































0.008 0 0 2.5 0 50

0 0 0 0 0 10.8

0.048 −0.2 0 0 1 0

0 0 0 −5.33 0 −10.67

0 19.8 0 0 −0 0

0 0 19.8 0 0 0

0 0 0 −0.05 0 0















































,

C =























1 0 0 0 0 0 0

0 0 0.9 0 0 0 0

0 −1 0 0 0 0 0

−0.24 0 0 0 1 1 0























,
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D =























−0.2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1.2

−0.048 −0.2 −0.2 0 1 0























.

The transfer function of the controller is calculated based on the algebraic Riccati equation

K(s) =
−918(s+1.1)(s+5.3)(s+8.2)(s+100)

(s+40830)(s+89)(s+1)(s+4.4±1.6i)
. (8.10)

In order to implement the resulting controller in Eq. (8.10) it is changed to its discrete z-

transform with a sampling time of 125 ms. This sampling time was more than an order of magni-

tude faster than the closed-loop control response of the system, which ensured a fully reconstructed

signal. The variable γopt is the optimum over all γ such that the controller is admissible, and it was

calculated to be 0.118.

In order to verify the robustness of the closed-loop system, there are two specifications to

test: robust stability and robust performance. Black-Nichols diagram has been utilized to analyze

the robust stability in [99], whereas small gain theory [100] and µ synthesis [97, 101] have been

utilized to analysis robust stability and robust performance. The latter is a unified approach for

analyzing robust stability and robust performance with multiple sources of uncertainties, which

is advantageous over the small gain theory approach. Thus, µ synthesis is adopted in this work,

which is represented in Fig. 8.4(b).

To test for system robust stability, denote

M(s) = Fl(P(s),K(s)) =







M11(s) M12(s)

M21(s) M22(s)






,
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if ‖M11‖∞ < 1
β

and β > 0 are always satisfied for all ∆(s) with ‖∆‖∞ < β , then the system is

robustly stable. For the system shown in Fig. 8.3(b), it is verified that ‖M11‖∞ = 0.26, which

makes the system robustly stable since ‖∆‖∞ = ‖δ‖∞ < 1. To test for robust performance, assume

M(s) have q1 +q2 inputs and p1+ p2 outputs, M11(s) has q1 inputs and p1 outputs, and denote

∆p =

















∆ 0

0 ∆ f






: ∆ ∈ ∆,∆ f ∈Cq2×p2











where ∆p = δ ∈ [−1,1] in this work and ∆ f is shown in Fig. 8.4. A structured singular value can

be defined as follows:

µ∆p(M) =
1

min[σ(∆) : ∆ ∈ ∆det(I −M∆) = 0]
(8.11)

where σ(∆) is the largest singular value of ∆.

If for all ∆(s) with ‖∆‖∞ < β and β > 0, supw∈R µ∆p(M( jw))≤ 1/β is always satisfied, then

the system has robust performance. Based on D-K iterations, supw∈R µ∆p(M( jw)) is found to be

0.32, for the case presented here. Hence, the robust performance of the designed robust controller

is verified.

8.4 Experimental Result

Experimental results are provided using the H∞ controller for step and multisinusoidal reference

inputs with and without added noise to the current generator. Its performance is compared to

that of a PID controller in order to show its robustness to noises and perturbations, as well as the

control effort advantages over the PID controller. We have chosen a PID controller instead of

a proportional-derivative controller for the comparison, because, for the dynamics shown in the
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system, a PD controller would result in nonzero steady-state error for step references even under

ideal conditions. The RMSE has been selected to quantify the tracking error in all the experiments,

although the average steady-state error has been also calculated for experiments with step reference

inputs. Standard deviation (SD) was used to measure the control effort in the multisinusoidal

reference input experiment with and without noise.

The parameters of the PID were tuned in simulation based on the same nominal model shown

in Fig. 8.3(b). Since most of the potential applications for the presented microbenders will require

high-precision and fast response, the PID controller wasdesigned to have an overshoot of less than

2%, which would ensure accuracy during the transients, and to have a settling time of smaller

than 10 s, which would ensure relatively fast response given that the time constant of the Peltier

dynamics was approximately 25 s. The resulting controller parameters were: proportional gain

Kp = 0.059, integral gain Ki = 0.004, and derivative gain Kd = 0.0136. The obtained transfer

function for the controller was transformed to its discrete counterpart in the z-transform with the

sampling time of 125 ms for implementation, similar to the robust controller case.

8.4.1 Step Reference Tracking

Experiments with step reference inputs were designed so that themicroactuator followed a set of

three different setpoints, each with duration of 15 s, programmed in the DAQ/FPGA. The goal of

these experiments was to study the transient behavior and steady-state error of the robust controller

and compare those to the performance of PID controller. Fig. 8.5(a) and (b) shows the experimental

performance in terms of the actual deflection and self-sensed deflection. Although the controlled

variable is the self-sensed deflection and a better steady-state performance is observed in Fig. 8.5(b)

for the PID, Fig. 8.5(a) shows that the actual steady-state deflection under the robust controller

is closer to the setpoint for every step value, whereas it has a higher difference under the PID
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controller. The actual steady-state deflection errors and control efforts are shown in Fig. 8.6(a) and

(b).

analyze the robust stability in [39], whereas small gain the-

synthesis [34], [41] have been utilized to analysis

robust stability and robust performance. The latter is a unified

approach for analyzing robust stability and robust performance

with multiple sources of uncertainties, which is advantageous

synthesis is adopted

(12)

are always satisfied for all

, then the system is robustly stable. For the

system shown in Fig. 4(b), using the controller in (11), it is ver-

, which makes the system

in-

A. Tracking of Step Reference Input

Figure 8.5: (a) Actual, and (b) self-sensed microactuator deflection under self-sensed, closed-loop

PID and robust control through a series of step reference inputs.
et al.

Fig. 7. (a) Actual deflection error and (b) controller effort for the PID and

B. Tracking of Multisinusoidal Reference Input

Fig. 8. Microactuator deflection response to a multisinusoidal reference input
under PID and robust control.

C. Noise Rejection for Multisinusoidal Reference Tracking

Figure 8.6: (a) Actual deflection error and (b) controller effort for the PID and robust control

approaches through the step reference tracking experiment.

Table 8.2 compares the RMSE of the actual deflection and the average (over three setpoints)

steady-state deflection error. Although the largest tracking error for both controllers is similar,

the RMSE and average steady-state error under the robust controller are 3.66% and 36%, respec-

tively, less than those of the PID. This proves that the designed robust controller outperforms the
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Table 8.2: Controller comparison for step reference tracking.

Approach RMSE (µm) Average steady-state error (µm)

PID 6.28 1.11

Robust 6.05 0.62

PID controller in effectively and robustly reducing the steady-state error of the microactuator’s

actual deflection by considering the self-sensing modeling error. In practice, the actual deflection

performance is of relevance, thus only the actual deflection is provided.

The advantages of the robust controller in terms of settling time over the PID controller can be

noticed from Fig. 8.5(a), although there is higher overshoot with the robust controller. A closer

examination of the controller efforts, quantified here as the amount of current change, reveals that

the robust controller performs slightly higher work than the PID for longer time duration (see Fig.

8.6(b)), which explains the transient differences.

8.4.2 Multi-frequency Signals Reference Tracking

Experiments involving multisinusoidal reference inputs were carried out to study the performance

of the microactuator under continuous input changes. For this experiment, the sum of three differ-

ent sinusoidal waveforms with frequencies of 0.001, 0.005, and 0.01 Hz, maximum amplitude of

20 µm and an offset of 35 µm was chosen as the input signal. Fig. 8.7 shows the actual deflection

of the microactuator as a function of time with PID and robust control. From the observed data, it

is seen that the robust controller performance is better than that of the PID. This is more evident

by looking at the tracking errors and control efforts under the two controllers, which are shown in

Fig. 8.8(a) and (b), respectively.

The values for RMSE and SD calculated for this experiment are summarized in Table 8.3. It
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B. Tracking of Multisinusoidal Reference Input

Fig. 8. Microactuator deflection response to a multisinusoidal reference input

C. Noise Rejection for Multisinusoidal Reference Tracking

Figure 8.7: Microactuator deflection response to a multisinusoidal reference input under PID and

robust control.

et al.

Fig. 7. (a) Actual deflection error and (b) controller effort for the PID and
robust control approaches through the step reference tracking experiment.

and average steady-state error under the robust controller are

3.66% and 36%, respectively, less than those of the PID. This

proves that the designed robust controller outperforms the PID

controller in effectively and robustly reducing the steady-state

error of the microactuator’s actual deflection by considering the

self-sensing modeling error. In practice, the actual deflection

performance is of relevance, thus only the actual deflection is

The advantages of the robust controller in terms of settling

time over the PID controller can be noticed from Fig. 6(a),

although there is higher overshoot with the robust controller. A

B. Tracking of Multisinusoidal Reference Input

Fig. 9. (a) Actual deflection error and (b) controller effort for the PID and

C. Noise Rejection for Multisinusoidal Reference Tracking

Figure 8.8: (a) Actual deflection error and (b) controller effort for the PID and robust control

approaches in the multisinusoidal reference tracking experiment.
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Table 8.3: Controller comparison for multisinusoidal reference tracking.

Approach Largest error (µm) RMSE (µm) Control effort SD (mA)

PID 3.00 1.24 49.1

Robust 3.07 1.02 48.2

can be calculated that the robust controller has around 18% less tracking RMSE and 1.8% less

control effort than the PID controller. The effectiveness of the robust controller in reducing the

steady-state error of the actual deflection is again verified experimentally.

8.4.3 Noise Rejection for Multi-frequency Signals Reference Tracking

In order to study the robustness of the H∞ controller to environmental disturbances, modeled in

Fig. 8.3(b) as Id , a white noise signal with maximum value of ± 0.01 A and band-limit of 8 Hz

was added to the controller effort. The same input signal used in the multisinusoidal reference

input experiment without noise was adopted for this study (see Fig. 8.7). The white noise ampli-

tude corresponded to 25% of the total current change observed in Fig. 8.8(b), which represented

an overestimate of reallife noise signals due to current variations. Fig.8.9(a) shows the actual de-

flections of the microactuator with the noisy input under robust and PID control. It is seen from

the observed data that the closed-loop deflection system under the H∞ controller performs robustly

against noise disturbances better than with the PID. This difference in performance is evident in

Fig. 8.9(b) where the largest error between actual deflection and reference input with robust control

is 3.07 µm and for PID is 4.28 µm. This translates to a 28% decrease in the largest error for the

robust controller. While the largest tracking error for PID controller under noisy tracking is 43%

larger than the noiseless tracking case, the robust controller ends with not evident deterioration in

the largest tracking error. Fig. 8.10(a) shows the control effort applied by both controllers in these
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Table 8.4: Controller comparison for multisinusoidal reference tracking with noise.

Approach Largest error (µm) RMSE (µm) Control effort SD (mA)

PID 4.28 1.47 33.6

Robust 3.07 0.96 31.6

experiments and, for clarity, a separate plot in Fig.8.10(b) shows the Peltier input, which includes

the controller effort and the white noise. Table 8.4 shows the RMSE and control effort SD values

for this experiment. For the system with robust control, the RMSE is 34.7% less than with PID,

and the control effort SD is 6% less. Although the robust control RMSE in this experiment is

close to the one obtained without noise (see Table 8.3), an increase of 18.6% is observed for the

system under PID control. This verifies the robust performance and stability of the controller to

compensate for deflection control, not only for modeling errors, but also against environmental

disturbances.

Fig. 10. (a) Microactuator deflection response and (b) error under a multisi-

Figure 8.9: (a) Microactuator deflection response and (b) error under a multisinusoidal reference

input under PID and robust control with induced white noise in current input to the system.

In addition to the RMSE and the maximum tracking errors, we have further conducted fast

Fourier transform of the tracking errors under the PID and H∞ controllers, for the scenarios with

and without injected actuation noises. As shown in Fig. 8.11, the tracking error under the H∞
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Fig. 11. (a) Control effort and (b) Peltier input for a multisinusoidal reference

Fig. 12. Frequency spectrum analysis of the tracking errors under the ro-
bust controller and the PID controller, for scenarios with and without injected
actuation noise.

experiment. For the system with robust control, the RMSE is

34.7% less than with PID, and the control effort SD is 6% less.

Although the robust control RMSE in this experiment is close

to the one obtained without noise (see Table III), an increase

of 18.6% is observed for the system under PID control. This

verifies the robust performance and stability of the controller to

compensate for deflection control, not only for modeling errors,

but also against environmental disturbances.

we have further conducted fast Fourier transform of the tracking

errors under the PID and H

and without injected actuation noises. As shown in Fig. 12, the

tracking error under the H

the PID controller for all frequency components. This is true for
Figure 8.10: (a) Control effort and (b) Peltier input for a multisinusoidal reference input under PID

and robust closed-control with induced white noise in current input to the system.

controller is lower than that under the PID controller for all frequency components. This is true for

both the cases with and without noise.

Fig. 10. (a) Microactuator deflection response and (b) error under a multisi-
nusoidal reference input under PID and robust control with induced white noise

Fig. 12. Frequency spectrum analysis of the tracking errors under the ro-Figure 8.11: Frequency spectrum analysis of the tracking errors under the robust controller and the

PID controller, for scenarios with and without injected actuation noise.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this work, the modeling, identification, and control of hysteretic systems have been explored. A

few new contributions have been made to the modeling and control of VO2 microactuators.

First, tools from information theory are utilized to optimally compress the Preisach operator

and the GPI model under a given complexity constraint. The compressed hysteresis models achieve

high fidelity while maintaining relatively low calculation and storage complexity. While due to the

particular setting of the Preisach plane, the optimal compression of the Preisach operator involves

an exhaustive search, the optimal compression of the GPI model is reformulated as an optimal

control problem and solved with dynamic programming. The proposed schemes are verified with

simulation results as well as experimental results, where the hysteresis between VO2 resistance

and temperature is modeled.

Second, identification of the Preisach operator is studied under the compressive sensing frame-

work that requires fewer measurements. The proposed approach adopts the DCT transform of

the output data to obtain a sparse vector, where the order of all the output data is assumed to be

known. The model parameters can be efficiently reconstructed using the proposed scheme. The

least-squares scheme is also implemented as a comparison. The proposed identification approach

is shown to have better performance than the least-squares scheme through both simulation and

experiments involving a VO2-integrated microactuator.
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Third, a physics-motivated non-monotonic hysteresis model that accounts for the two compet-

ing actuation mechanisms is presented. The first mechanism is the stress resulting from structural

changes in VO2, which is modeled with a monotonic Preisach operator or a GPI model. The second

mechanism is the differential thermal expansion effect. Efficient inverse compensation schemes are

developed for the proposed non-monotonic hysteresis models.

Fourth, self-sensing feedback control for VO2 microactuator is studied. The proposed com-

posite self-sensing approach exploits the physical understanding that both the resistance and the

deflection have different hysteretic relationships with the temperature. A concept of temperature

surrogate is exploited in the algorithm. The self-sensing scheme is validated experimentally in

feedback control, where a proportional-integral controller is used.

Finally, an H∞ robust controller is designed and implemented for precision deflection control,

where the uncertainties produced by the hysteresis between the deflection and the temperature input

and the error in the self-sensing model are accommodated. Here we take a simpler self-sensing

approach that models the deflection as a polynomial function of the resistance. The proposed

robust control approach is experimentally demonstrated to be able to mitigate the impact of the

self-sensing error and other disturbances.

9.2 Future Work

First, for the compressive sensing-based identification of the Preisach operator, the transforma-

tion of the density will be further studied to generate sparser signals. The use of Moore-Penrose

pseudoinverse [81] will be studied for cases where the input sequence has a different number of

entries from the number of model parameters and where the matrix S is not invertable. Compres-

sive sensing-based identification will also be explored for other hysteresis models, such as the GPI
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model.

Second, we will examine the performance of the composite self-sensing scheme in advanced

control of VO2 microactuators. For example, robust control methods will be explored to minimize

the impact of the self-sensing error on the tracking performance. In addition, the current compos-

ite self-sensing model is rate-independent. While it has demonstrated good performance overall

in tracking control, the mild rate-dependence suggests that a rate-dependent (for example, accom-

modating the structural dynamics of the actuator), composite hysteresis model could offer further

enhanced tracking performance at higher frequencies.
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Appendix A

Review of the Preisach Operator

For a more detailed treatment of Preisach operator, readers are referred to [9, 11, 12].

Preisach Operator

A Preisach operator consists of a weighted superposition of a continuum of basic hysteretic ele-

ments, called Preisach hysterons. A generic Preisach hysteron, γβ ,α , is a delayed relay character-

ized by a pair of thresholds (β ,α). The output evolves with the input v, where an initial condition

ζ0(β ,α) ∈ {−1,1} is needed to fully describe the behavior of γβ ,α :

γβ ,α [v(·);ζ0(β ,α)] =



























+1 if v > α

−1 if v < β

ζ0(β ,α) if β ≤ v ≤ α

, (A.1)

where v(·) denotes the input history v(τ), 0 ≤ τ ≤ t.

The output of a Preisach operator Γ, with input v and initial condition ζ0 = {ζ0(β ,α),β ≤ α}

can then be represented as:

u(t) = Γ[v;ζ0](t) =

∫

P0

µ(β ,α)γβ ,α [v;ζ0(β ,α)](t)dβ dα, (A.2)

where µ is a measurable density function typically assumed to be nonnegative. Each point (β ,α) in
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the Preisach plane, defined as P = {(β ,α) : β ≤α}, is identified with the hysteron γβ ,α . Because

of the input range constraints or physical saturation (e.g., complete phase transition beyond certain

input range for VO2), it often suffices to consider µ with finite support {(β ,α) : vmin ≤ β ≤ α ≤

vmax} in P . The state of the Preisach operator, namely, the outputs of all hysterons can be captured

by memory curve, a staircase-structured line in P separating hysterons with output +1 from those

with output −1.

Discretization of Preisach Operator

The density function µ of hysterons is the parameter of the Preisach operator. For parameter

identification, a discretization step is typically involved to obtain a finite number of parameter

values. For the Preisach operator, one scheme is to approximate the operator with a finite number

of hysterons located at the center of uniformly spaced lattice cells in the Preisach plane [12]. This

is equivalent to approximating the weighting function by a sum of impulse functions located at

the cell centers, which results in a discontinuous output under a continuous input. An alternative

scheme, still based on uniform discretization of the Preisach plane, approximates the density by a

piecewise constant function – the density value is constant within each lattice cell but could vary

from cell to cell [7]. Fig. A.1 shows an example of uniform discretization of Preisach plane. Under

this scheme, the Preisach operator has M(M + 1)/2 density parameters, where M is the level of

uniform discretization along α (or equivalently, β ) direction in the Preisach plane. This scheme

produces a continuous output under a continuous input; furthermore, efficient schemes for the

identification [25] and inversion [9] are available.

The output of the Preisach model (in the discrete-time setting) at time n can be expressed as:
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a

(1,1) (1, 2) (1, 3) (1, 4)

(2,1) (2, 2) (2, 3)

(3,1) (3, 2)

(4,1)

maxvminv

maxv

1b 2b 3b

minv

Figure A.1: Illustration of uniform discretization of the Preisach plane, where the discretization

level M = 4.

ũ(n) = uc +
M

∑
i=1

M+1−i

∑
j=1

µi jsi j[n], (A.3)

where uc represents a constant contribution from hysterons outside the active Preisach plane, µi j

is the density value for cell (i, j), and si j[n] represents the signed area of the cell (i, j), namely,

its area occupied by hysterons with output +1 minus that occupied by hysterons with output −1.

The calculation complexity is O(M2), and when M is large, the calculation and storage cost can be

prohibitive.

Inversion

A predominant class of control approaches involve approximate cancellation of the hysteresis ef-

fect through inversion [6, 9, 10]. By constructing an approximate (right) inverse to the Preisach

operator (Fig. A.2), the hysteresis effect can be (mostly) cancelled.
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GĜ
refy u y

Figure A.2: Inverse compensation of hysteresis.

The inversion scheme used in [9] exploits the piecewise constant structure of the density func-

tion and the piecewise monotonity property of the operator. While the scheme was initially devel-

oped for a Preisach operator with uniform discretization of the Preisach plane, it is easily modified

to accommodate an operator with nonuniform discretization, without increasing computational

complexity.
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Appendix B

Review of the Prandtl-Ishlinskii Models

A brief overview of the classical Prandtl-Ishlinskii (CPI) model and generalized Prandtl-Ishlinskii

(GPI) models are provided. Readers are referred to [13–15, 22] for more details.

Classical Prandtl-Ishlinskii (CPI) Model

The CPI model consists of a weighted superposition of basic play (or stop) operators. The CPI

model is limited to modeling symmetric and non-saturated hysteresis. As illustrated in Fig. B.1(a),

the play operator is characterized by its radius r. For a given input function v(t), the output w(t) of

a play operator with radius r and initial condition w(t−) is defined as

w(t) = Fr[v](t) = fr(v(t),Fr[v](t
−)), (B.1)

where

fr(v(t),w(t
−)) =



























max(v(t)− r,w(t−)), if v(t)> v(t−)

min(v(t)+ r,w(t−)), if v(t)< v(t−)

w(t−), if v(t) = v(t−)

, (B.2)

and t− = limε>0,ε→0 t − ε .
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The output of a CPI model is expressed as an integral in the following form:

yP(t) =

∫ Rp

0
p(r)Fr[v](t)dr, (B.3)

where p(r) is the weighting function of the Prandtl-Ishlinskii model, which is usually chosen to be

non-negative, and Rp represents the maximum play radius.

For practical implementation, the CPI model is represented as a weighted summation of a finite

number of play operators as follows:

yP(t) = p(r0)v+
N

∑
j=1

p(r j)Fr j
[v](t), (B.4)

where r j > 0 is the play radius of the j-th play operator, p(r j) is the corresponding weight, and N

denotes the number of play operators.

Generalized Prandtl-Ishlinskii (GPI) Model

The GPI hysteresis model can capture complex hysteresis loops with both asymmetry and output

saturation [13–15, 28].

Following a similar treatment as in [13,28], a generalized play operator with radius r is defined

by (see Fig. B.1(b))

w(t) = F
γ
r [v](t) = f

γ
r (v(t),F

γ
r [v](t

−)), (B.5)
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Figure B.1: Input-output relationships of (a) a classical play operator with radius r; (b) a general-

ized play operator with radius r (shown as solid curves).

where f
γ
r (t,w(t)) is defined as

f γ
r (v(t),w(t

−)) =































max(γL(v(t))− r,w(t−)), if v(t)> v(t−)

min(γR(v(t))+ r,w(t−)), if v(t)< v(t−),

w(t−), if v(t) = v(t−)

(B.6)

where γL(·), and γR(·) are two envelope functions that are strictly increasing. The envelope func-

tions describe the properties of the play operators. For any radius r ≥ 0 and input v(t), the condition

γL(v(t))+ r ≥ γR(v(t))− r needs to be satisfied in order to meet the order preservation property of

hysteresis behavior [27].

The output of a GPI model can be expressed in the integral form as

yP(t) =

∫ Rp

0
p(r)F

γ
r [v](t)dr. (B.7)

Similar to the CPI case, a discrete-version of the GPI model can be written as

yPγ (t) =
N

∑
j=0

p(r j)F
γ
r j
[v](t). (B.8)
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When γL(v(t)) = γR(v(t)), the GPI model can be utilized to model symmetric hysteresis; when

D(·) is linear and γL(v(t)) = γR(v(t)) = v(t), the GPI model degenerates to a CPI model.

Inversion

Denote Ψ as the GPI model, which can be written as

yd = Ψ[v](t) =
N

∑
j=0

p(r j)F
γ
r [v](t), (B.9)

where yd is the desired output of the GPI model, and denote Ψ̂−1 as its approximate inverse. Then

ideally,

y = Ψ◦ Ψ̂−1[yd ](t)≈ yd , (B.10)

is satisfied, where y is the actual output of the GPI model Ψ, and yd is the desired output of the

generalized model. Note that in inverse compensation, yd is used as the input for the inverse model

Ψ̂−1. “◦” denotes the composition of functions or operators. One can write

y(t) = Ψ[v](t) =



























Ψ[v](t) = Π◦ γR(v(t)), ifv(t)> v(t−)

Ψ[v](t) = Π◦ γL(v(t)), ifv(t)< v(t−).

y(t−) ifv(t) = v(t−)

(B.11)

where Π denotes the classical PI model.

Due to the invertibility of the envelope functions γL and γR, Eq. (B.11) can be expressed as
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v(t) =



























γ−1
R ◦Π−1 ◦ y(t), if y(t)> y(t−)

γ−1
L ◦Π−1 ◦ y(t), if y(t)< y(t−).

v(t−), if y(t) = y(t−)

(B.12)

The inverse of the GPI model is written as [28]

Ψ−1[yd ](t) =



























γ−1
R ◦Π−1[yd ](t), if yd(t)> yd(t

−)

γ−1
L ◦Π−1[yd ](t), if yd(t)< yd(t

−),

Ψ−1[yd ](t
−) if yd(t) = yd(t

−)

(B.13)

where Π−1 is the inversion of the CPI model, the expression of which can be found in [20].

The inverse of the CPI model Π with form of Eq. (B.4) is another CPI operator with different

parameters:

Π−1[y](t) = p̂(r0)y(t)+
N

∑
i=1

p̂(r̂i)Fr̂i
[y](t), (B.14)

where

r̂ j = p(r0)r j +
j−1

∑
i=1

p(ri)(r j − ri), j ≥ 1, (B.15)

p̂(r0) =
1

p(r0)
, (B.16)

and

p̂(r̂i) =− p(ri)

(p(r0)+
i

∑
j=1

p(r j))(p(r0)+
i−1
∑

j=1
p(r j))

, (B.17)

for i = 1, · · · ,N.
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VO2-coated buckled microbridges,” J. Microelectromech. Syst., vol. 20, no. 3, pp. 558–560,

2011.
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