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ABSTRACT

ROBUST CONTROL OF SYSTEMS WITH PIECEWISE LINEAR HYSTERESIS

By

Mohamed Mohamed Edardar

Hysteresis nonlinearity is found in many control system applications such as piezo-actuated

nanopositioners. The positioner is represented as a linearsystem preceded by hysteresis. This

hysteresis nonlinearity is usually modeled by operators inorder to simulate their effects in the

closed-loop system or to use their inverse to compensate fortheir effects. In order to reduce the

hysteresis effect, an approximate inverse operator is usedas a feedforward compensator. The first

part of our work considers driving an upper bound on the inversion error using the hysteresis

model. This bound is a function of the input references, which is much less conservative than

constant bounds. It is used in designing the closed-loop control systems.

The second part is to design feedback controller to achieve the desired performance. Three

different methods are used throughout this work and a comparison between them is also provided.

First, we use the conventional proportional Integral (PI) control method, which is extensively used

in commercial applications. However, in our method we add a feedforward component which

improves the performance appreciably. Second, a sliding-mode-control (SMC) scheme is used

because it is one of the very powerful nonlinear robust control methods. Other schemes like high

gain feedback and Lyapunov redesign have close results to SMC and hence it is not included in this

work. The third control is H∞ control. It is a robust linear control method, which deals with un-

certainty in the system in an optimal control structure. Unlike the PI controller, the H∞ controller

uses the features of the linear plant in the design which allows to accomplish more than the simple

PI controller. Mainly, it can shape the closed-loop transfer function of the system to achieve the



design objectives.

Including the operators in the closed-loop system, makes ithard to obtain explicit solutions of

the dynamics using conventional methods. We exploit two features of piezoelectric actuators to

provide a complete solution of the tracking error. First, the hysteresis is approximated by a piece-

wise linear operator. Second, the linear plant has a large bandwidth which allows using singular

perturbation techniques to put the system in a two time-scale structure. We show that the slope of

a hysteresis loop segment plays an important role in determining the error size. Our analysis also

shows how error is affected by increasing the frequency of the reference input. We verify that the

accumulation of the error, which is propagating from segment to another is bounded and derive its

limit. We provide a comparison between simulation and the analytic expressions of the tracking

error at different frequencies. Experimental results are also presented to show the effectiveness of

our controllers compared with other techniques.
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Chapter 1

Introduction

1.1 Background

Hysteresis nonlinearities exist in many control applications, especially those involving smart material-

enabled actuators or sensors [2]. Examples of smart materials are piezoelectrics [3], magnetostric-

tives [1], shape memory alloys [2, 4], electro-active polymers [5], magentorhelogical fluids [1], and

conjugated polymers [6]. In recent years, nanotechnology has attracted many researchers because

it has wide applications. One of the pivotal requirements ofnanotechnology is nanopositioning.

Piezoelectric actuators are commonly used in nanopositioning applications such as scanning tun-

neling microscopes (STM) and atomic force microscopes (AFM). They have large bandwidth and

can produce large mechanical force [7, 8]. They are typically used for positioning in the range

of 10 µm to 100µm [7]. However, because piezoelectric materials are ferroelectric, they exhibit

non-desirable behaviors such as hysteresis, creep, and vibrations [9]. Hysteresis, which is depicted

in Fig. 1.1, is a nonlinear phenomenon that not only exists insmart materials but also in various

areas, such as: biology, geology, mechanics, and economics. It presents challenges in both under-

standing and control of such systems. Modeling, analysis, and control of systems with hysteresis

has received great attention over the last two decades [7].

To effectively control a system with hysteresis, the first important task is to characterize the

hysteresis nonlinearities. Hysteresis models can be roughly classified into physics-based mod-
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Figure 1.1: Major and minor hysteresis loops. For interpretation of the references to color in this
and all other figures, the reader is referred to the electronic version of this dissertation.

els and phenomenological models. Physics-based models arebased on first principles of physics

[10]. Phenomenological models are used to produce behaviors similar to those of the physical

system without necessarily providing physical insight into the problem. A dominant class of

phenomenological hysteresis models are formed through weighted superposition of elementary

hysteresis units, and notable examples of such models include the Preisach model [11] and the

Prandtl-Ishlinskii (PI) model [12]. The Preisach model is parametrized by a pair of threshold vari-

ables, whereas the PI model is parametrized by a single threshold variable.

With the developments in various hysteresis models, it is natural to seek means to fuse these

hysteresis models with the available control techniques tomitigate the effects of hysteresis. One

of the most common approaches in coping with hysteresis is toconstruct an inverse operator [1]

and integrate it with feedback techniques, as illustrated in Fig. 1.2 .

2
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Figure 1.2: A general control framework for systems preceded by hysteresis [1]

1.2 Piezoelectric Actuators

The piezoelectric effect was first discovered in 1880 [7]. Itwas found that squeezing certain mate-

rials (Piezein) resulted in electric charge. However, the use of piezo-electric materials as actuators

exploits the converse effect, i.e., the application of electric voltage results in mechanical strain. The

main design parameters that characterize the performance of an actuator are displacement range,

force, bandwidth (frequency range), size, weight, and power consumption. Piezoelectric actuators

have excellent operating bandwidth and can generate large mechanical forces in a compact design

for small amounts of power, but they have a relatively small displacement range.

Due to the key role played by piezoelectric actuators and theincrease interest in using model-

based control design of these devices, interest in understanding the dynamics of these actuators

has increased. Two of these dynamics are linear which are creep and vibrations the other one is

nonlinear which is hysteresis.

1.3 Hysteresis Models

Models of hysteresis have evolved from two different branches of physics: ferromagnetism [13]

and plasticity theory [14]. The roots of both branches go back to the end of th 19th century [15].
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The core of this theory is formed by the so-called hysteresisoperators which describe hysteretic

transducers as a mapping between function spaces. It is onlyin the 1970’s when researchers

started to couple the mathematical theory of ordinary differential equation with hysteresis opera-

tors [16, 17]. In the 1990s, engineers employed this theory on a larger scale to develop modern

strategies for the linearization of hysteretic nonlinearities with an inverse feedforward controller

[15]. To successfully exploit the full potential of piezoelectrical transducers in control schemes, it

is essential to understand and model their behavior accurately. When the output is plotted against

the input, the plots for increasing or decreasing inputs aredifferent and form a loop. See Fig 1.1.

Early models used polynomials to capture the major loops in the I/O response. However, such

approaches fail to capture the inner (minor) loops.

The Preisach operator [18] was used for modelling and linearization of complex hysteretic non-

linearities occuring in solid-state actuators with the inverse feedforward control approach [19, 20].

But the main drawbacks of the Preisach operator are the strong sensitivity of the identification

procedure against input-output data and unknown model errors and the fact that in general the

compensator of the Preisach operator has to be calculated numerically. Recent papers also refer-

ence the so-called Prandtl-Ishlinskii (PI) operator [21, 15, 12, 22] which belongs to an important

subclass of the Preisach operator [23]. The main advantagesof this approach are reduced model

complexity of the PI-operator in comparison with the Preisach operator and the fact that the com-

pensator of an invertible Prandtl-Ishlinskiii operator can be calculated analytically. This allows an

efficient implementation of the compensator for real time application.
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Figure 1.3: The relay operator with parametersα andβ .

1.3.1 Preisach Operator

The Preisach model [24, 25, 26, 27, 28, 29, 30] for electromagnetic hysteresis dates from 1935

[31]. This model uses a superposition of simple independentrelay operators shown in Fig 1.3. It

has been successful in the modeling of hysteresis observed in ferromagnetic, magentostrictive, and

piezoelectric materials. However, in designing with thesesmart materials, one has to determine the

density function for the preisach operator by using input-output behavior of the material at hand

[32].

In the past, several researchers have addressed the problemof identifying the preisach density

function. Mayergoyz [18] first described a method to identify the density function in the proof

of his representation theorem. However, this method has limited applicability in practice when

the output signal is corrupted by noise, as it involves a differentiation of the output signal. There

are other methods to determine the density function. The most popular involves discritizing the

Preisach plane, and identifying step-function approximation to the actual density function via a

linear least-squares method. Haffmann and Meyer [33] were perhaps the first to use this method.
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Figure 1.4: The play operator with threshold paramterr.

In this method, no assumptions are made about the actual density function [32]. In [32], the authors

consider the basic problem of identifying the Preisach density function when there is not sufficient

experimental data. They use singular value decomposition along with a linear least squares method

to efficiently identify the best approximation to the density function. In this method, they do

not need to process a large amount of data to obtain the density function. In [25], Hysteresis is

modeled by Preisach operator with a piecewise uniform density function. It addresses recursive

identification and adaptive inverse control of hysteresis.Two classes of identification schemes are

proposed and compared, one based on the hysteresis output, the other based on the time-difference

of the output. In [24], a model that predicts the expansion ofpiezoceramic actuators when subject

to dynamic-voltage excitations is developed as an extension of the classical Preisach model. The

model is presented in a recursive form that is suitable for real-time implementation.

6



1.3.2 Prandtl-Ishlinskii (PI) Operator

The PI operator dates to 1944 [31], and was proposed as a modelfor plasticity-elasticity. The

foundation of this model is using elementary hysteresis operators, which have simple mathematical

structures. One of the most familiar and most important elementary hysteretic mapping between

the input signalV and the outputU is so called play or backlash operator, which is shown in Fig.

1.4 and described by the following equation. The output of a PI operator [12] can be represented

as

Γ[V] = wTHr [V,z0](t) (1.1)

where,Hr = [Hr0 Hr1 . . .Hr,n−1]
T is the vector of individual play operators,wT = [w0 w1 . . .wn−1]

is the vector of weights for individual play operators,rT = [r0 r1 . . . rn−1] with 0= r0 < r1 <

.. . < rn−1 < ∞ represents the set of thresholds for the play operators,zT0 = [z00 z01. . .z0,n−1]

denotes the initial condition of the PI operator, andn is the number of play operators.

The play operator is defined by

Hri [V,z0] = max{V − ri ,min{V + ri ,z0i}} (1.2)

wherei = 0,1, . . . ,n.

K. Kuhnen published several papers that describe modeling hystresis by PI-operator [34, 15, 21,

12, 35]. In [34, 35], a simultaneous compensation of the hysteresis and creep transfer character-

istics of a piezoelectric stack actuator by interposing an inverse system in an open loop control is

described. The maximum linearity error caused by hysteresis and creep effects is lowered by an

order of magnitude. It is limited to systems with one input signal.

In [21], an approach introduces the compensation of the hysteretic stack transducers by an
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adaptive inverse hysteretic control. Starting with a linear characteristic, the weights of an inverse

hysteretic observer are identified during operation by a stable adaptive law and transformed to

the controller parameter. Linear dynamics of the actuator are not considered in this approach.

Another compensator design method for invertible complex hysteretic nonlinearities is described

in [15]. The parameter identification of this model can be formulated as quadratic optimization

problem which produces the bestL2-norm approximation for the measured input-output data of

the real hysteretic nonlinearity. Special linear inequality constraints for the parameters guarantee

the unique solvability of the identification problem and theinvertiblity of the identified model.

This leads to robustness of the identification procedure against unknown measurement errors and

unknown model errors. The corresponding compensator can bedirectly calculated and thus effi-

ciently implemented from the model by analytic transformation laws. This method was applied

on magnetostrictive actuator and reduced error 10 times. In[12], the author extends his work by

modifying the operator in order to remove the main drawback of the PI operator, which is its sym-

metric characteristic. A one-sided dead zone operator is added to modify the PI-operator and make

it asymmetrical.

1.4 Hysteresis Inverse Compensation

The control methods that deal with hysteresis are classifiedinto open-loop inverse compensation or

feedback control methods, which usually include the inverse operator. Inverse open-loop methods

[15, 12, 36] demonstrate that they can reduce the tracking error appreciably, but they are suscep-

tible to model uncertainties and environmental changes. Therefore, a general approach in coping

with hysteresis is to construct an inverse operator and integrate it with feedback techniques, as

illustrated in Fig. 1.2.
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1.5 Feedback Control

Two major groups of feedback control are the classical integral control and modern methods using

adaptive and robust control. The main challenge in feedbackdesigns is performance improvement

while maintaining the stability of the overall system in thepresence of parameter uncertainty and

unmodeled high-frequency vibrational modes [37]. Controltechniques include high gain feedback

[38, 39], adaptive control [25, 40, 41], and robust control [42, 43, 44, 45, 46]. Next, we review the

application of these techniques to systems with hysteresis.

1.5.1 Adaptive Control

A main concern in feedback control is stability. Stability analysis for hysteretic systems involv-

ing adaptation is presented in [47, 25, 36, 48] under variouspersistent-excitation-type conditions

on the reference signals. In [36] Tao and Kokotovic present amodel-reference adaptive inverse

scheme for a linear system preceded by a piecewise-linear hysteresis model, and establish global

boundedness of the closed-loop signals. In [25], Tan and Baras establish asymptotic tracking for

an adaptive inverse algorithm and characterize the parameter convergence behavior for a system

modeled by a Preisach operator (without dynamics). Tan and Khalil [48] present a two-time-scale

averaging framework for systems with hysteresis, and show that, with slow adaptation, a model-

reference adaptive inverse control scheme can achieve arbitrarily small tracking and parameter

estimation error when the initial parameter error is sufficiently small. Chenet al. [47] prove

boundedness of the closed-loop signals under a pseudo-inverse-based adaptive control scheme for
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a class of uncertain discrete time systems preceded by hysteresis.

1.5.2 Robust Control

Robust control methods for hysteresis control include for example integral control [49, 50, 51, 52,

53, 43], servo-compensators [54, 55], sliding-mode control (SMC) [56, 57, 58, 59, 60, 61], and H∞

Control [62, 63, 64, 65]. In these methods, researchers avoid the complex adaptation algorithms

and typically assume that a bound on the inversion error is known. For the servocompensator

method [55], Esbrooket al. show that forT-periodic inputs, trajectories converge to exponentially

stableT-periodic solutions. In the SMC methods, Shenet al. [56] and Bashash and Jalili [57] use

Lyapunov functions to show stability or ultimate boundedness. In [1], Tan and Baras apply anl1

robust control scheme to a magnetostrictive actuator to accommodate control input constraints and

minimize the tracking error.

In order to obtain good tracking performance, most H∞ control methods are implemented in

the Two-Degree-of-Freedom (2DOF) framework. In [62], a novel approach is proposed in which

no hysteresis inversion is included. Usually feedforward control is augmented with feedback con-

trol to account for adverse effects such as dynamic variations and disturbances. The philosophy of

existing 2DOF is to first design a feedback controller to satisfy the regulation requirements, e.g.

internal stability, attenuation of disturbance/noise effects; then design a causal, stable feedforward

controller to improve tracking performance by using, for example optimal control techniques. On

the contrary in [62], the proposed design method starts withthe design of a robust inversion-based

feedforward controller which achieves a guaranteed tracking performance for bounded dynamic

uncertainties. The bound on the tracking error of the feedforward control is utilized in the H∞

robust feedback control.
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In [66], a 2DOF controller for a piezoelectric tube scanner for high speed force microscopy is

designed. The closed-loop operation is performed by H∞-controller. The scanner simultaneously

tracks the last scan line by a model-based feedforward controller. Experimental results obtained at

15 Hz line-scan rate exhibit a maximum control error reducedby a factor of about 6 in comparison

with the commercial one.

In [67], the authors study fundamental trade-offs between positioning resolution, tracking

bandwidth, and robustness to modeling uncertainties in 2DOF control designs for nanoposition-

ing systems. They show that the primary role of feedback is providing robustness to the closed

loop devices whereas the feedforward component is mainly effective in overcoming fundamental

algebraic constraints that limit the feedback-only design. In this paper they present three different

designs and compare between them. Experimental results show a significant improvement over

optimal feedback-only designs

1.5.3 Integral Control

The main advantage of integral control is that it provides high-gain feedback at low frequencies;

therefore, integral controllers can overcome creep and hysteresis effects and lead to precision po-

sitioning (since the vibrational dynamics is not dominant at low frequency) [68]. In this sense,

traditional PID feedback controllers, or double integral for tracking ramp, are well suited for

nanopositioning [51] and are popular in SPM applications [69]. In the existing research, most

of the work is focused on modeling the hysteresis using different operators, then using a feed-

forward compensation to reduce the non-linearity. The roleof the PI-controller is to compensate

for the remaining inversion error. In [52], pure integral control with time-varying gain is studied,

with additional dynamics included in the loop. Only constant inputs are considered. It is shown

that the system is well-posed and that, if certain conditions are satisfied, the steady state tracking
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error is zero. In [49], the system is assumed to satisfy certain assumptions, which are related to

monotonicity and a Preisach model is used. For arbitrary reference signals, the closed-loop sys-

tem is bounded-input-bounded-output (BIBO) stable with a finite gain of one. It is shown that the

absolute value of the error decreases monotonically for a constant reference signal. In this case,

provided that the desired output is within the limits of the system output, zero steady state error is

guaranteed. A bound on the time required to achieve a specified error is also obtained. The authors

claim that the results apply to a wide class of hysteretic systems and only a simple bound on the

controller parameter is required. The results show robust position control, even in the presence of

model errors. In addition, more details about trajectoriesof the closed-loop system for a constant

input are given. In [50], PID control of a second-order system that include a hysteretic component

is studied. Under certain conditions, it is shown that the system asymptotically tracks a constant

input. One key assumption in these results is that the systemhas a monotonic input/output be-

havior. Other papers presented PID controller as the feedback controller without providing system

analysis. In [61], an adaptive control scheme combining neural network with traditional PID con-

troller is proposed to improve the performance of precession mechanism in STMs. Parameters in

the PID controller are modified through adjusting the weightvalues in the neural network with the

function of self-learning and adaptability.

PID controller is also used in [53], which is one of the first papers that incorporate a feedfor-

ward loop in the system in order to reduce hysteresis effect.The inversion in [53] is inserted at

a point different from that of the general scheme. They verify their method through experimental

results.

Through this survey of the referenced papers or other existing work, we found, to the best of

our knowledge, that there is no analysis that presents an explicit expression of the tracking error. In

our work we derive an expression of the tracking error, whichcan be used to study the interaction
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of hysteresis parameters, uncertainties, control gains and frequency, and how they determine the

size of the tracking error.

1.6 The Research Objective

Our research focuses on the control analysis and design for linear systems preceded by piecewise

linear hysteresis operators. The goal is to achieve the smallest tracking error for the frequency

range of interest. We seek explicit expressions of the inversion error and use them to design

and compare different robust control methods and to use bounds on the inversion error to derive

expressions for the tracking errors.

1.7 Research Overview

This research focuses on control of systems that include hysteresis in cascade with linear dynam-

ics. Specifically, it deals with control schemes in which an inverse-operator precedes the hysteresis.

This brings two important issues, which this research addresses. First, what is the size of the inver-

sion error when uncertainties of the hysteresis model is considered. Second, how to use the bound

on this inversion error to design a controller that can reduce the tracking error.

The importance of this topic comes from two factors; First, hysteresis non-linearity appears in

a wide range of applications including most of smart material applications such as piezoelectric

actuators. Second, existing results for finding analyticalbounds on the inversion error and the use

of such bounds in the control design are not available. In most cases, they are choosing these

bounds by tuning them in simulations or experiments.

An important assumption in our work is that the hysteresis loop has piecewise linear segments.
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This assumptions is justified because many hysteresis models have this property. With that, we

derive analytical expressions of the bound on the inversionerrors in the presence of models uncer-

tainties. Two cases are considered, depending on the parameters we use to represent the hysteresis

model. In one method we deal with the PI operator and use the thresholds and the weights of the

play operators to determine the bound. In the other method weuse the slopes and intercepts of

the hysteresis loop segments. We then consider using these bounds in the analysis and design of

different robust control methods.

We are interested in three classes of robust controllers. First, The commercial Proportional-

Integral controller. Although, this controller is a tuningcontroller it provides good experimental

results. Our work shows that when the linear dynamics are fast and we add a feedforward con-

trol to the system, it results in a very good tracking performance. The analysis of the tracking

performance provides us with explicit solutions of differential equations. In these expressions, we

can determine the effect of different components such as parameter uncertainties, operator param-

eters, frequency, and control gains on the tracking performance. Second, we explore Sliding Mode

Control (SMC) as one of the major methods in robust nonlinearcontrol. We compare the results

when we use the bounds obtained from the threshold-weights method and slope-intercept method

in feedback design by simulations and experiments. Third, we consider H∞ linear control. We

compare using H∞ control when the inverse operator is not used as the size of the uncertainty is

larger than when the inverse operator is used. We also compare the H∞-controller with conven-

tional Proportional-Integral controller.

Form these comparison between different methods using analytical analysis, simulations and

experiments we arrived at some interesting results. First the inversion bounds are less conserva-

tive when we used the slope-intercept method. This was important for the SMC design. Having

large bounds lead to the requirement of large control signals which are usually limited in real ap-
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plications and also it reduces the possible positioning range. In sliding-mode control we found

analytically and also by the simulation that by increasing the frequency the tracking error has the

following behavior. It increases at very low frequency, which is usually the operation range that

most of current positioners use, then it almost stays constant, then it starts to decrease at the range

which is close to resonance frequency and finally it increases again. This behavior differs from

the Proportional-integral controller in the third stage where we did not see the decreasing in the

tracking error. In the experiment, we only examined a low frequency range for the safety of the

piezo-actuator where we found that the tracking error has qualitatively similar behavior to the sim-

ulation. We also included a rate limiter in the experiment which affects the frequency response

and adds more error, particularly, when we increased the frequency. For the H∞ control, we found

that it has a better performance when the inverse operator was included. We also found that it

outperformed the PI controller for a moderate range of frequency, but it did worse at very low and

high frequency. That range can be chosen by designer which depends also on the plant dynamics.

1.8 Dissertation Layout

The remainder of this dissertation is organized as follows.In Chapter 2, we derive bounds on

the inversion error using two methods and compare them. We call the first one the slope-intercept

method, and the other the weight-threshold method. In Chapter 3, we describe a PI control scheme.

We use the analysis of the inversion error based on the slope-intercept method to quantify the

tracking of the closed-loop system when a Proportional-Integral PI controller is used. Separation

of the controller variables from the plant variables is accomplished by using singular perturbations

techniques. The development of the solution around one hysteresis loop in the presence of a

periodic input is obtained. The interaction between different components and their effects on the
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solutions are discussed. We explore how to use the inversionbounds to design more sophisticated

nonlinear controllers in Chapter 4, where sliding-mode-control (SMC) is considered. Stability

analysis and tracking performance are also presented. Chapter 5 presents a linear robust method

which considers the plant dynamics in the design. This method relies on H∞ optimal control

design. We provide simulation comparisons for the three method in Chapter 5. In Chapter 6,

conclusions are drawn on the research and recommendations are proposed for future work.
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Chapter 2

Hysteresis Model and Inversion Error

2.1 Introduction

This chapter is divided into two parts. In the first part, we discuss how to derive bounds on the

inversion error. We will present two different methods and show how they relate to each other.

These bounds will be used in the following chapters in designand analysis of different feedback

control methods. In the second part of this chapter, we will examine these bounds by running

simulations for open-loop system. First, we will measure the hysteresis loops of the PI model and

compare it with real hysteresis, which has been obtained from experimental data. Then we will

perturb the model and measure the size of the inversion error. We will compare this error with

model error. Then we compare the inversion errors with analytical bounds, which are derived in

the first part.

2.2 Characterization of the inversion error

We calculate a bound on the inversion error using two methods. In the first, we assume that the

hysteresis nonlinearity has piecewise linear characteristics; in other words, all hysteresis loops

(major loops and minor loops) consist of linear segments, where each segmentsi has a slopemi

and an interceptγi with the output axis, andi = 1,2, · · · , l , wherel is the number of segments.

17



Figure 2.1: Illustration of a hysteresis loop with piecewise linear characteristics.

See Fig. 2.1 for illustration. The bound on the inversion error is calculated using the slopes and

intercepts of linear segments. We refer to this method as theslope-interceptmethod. Note that

this method is not confined to the PI operator; indeed, it applies to wide class of models used

in the literature, including the piecewise linear model adopted in [36], the Prandtl-Ishlinskii (PI)

operator [21, 15], the modified PI operator [12], and the Krasnoselskii-Porkovskii (KP) operator

[70] among others. The second method applies only to PI operator and the bound is derived from

weights of the play operators with different thresholds. Werefer to it asweight-thresholdmethod.

We will also compare between these two methods for the PI operator.

Fig. 2.2 illustrates the system with a feedforward inverse hysteresis compensator. We assume

that the actual hysteresis is represented by an operatorΓp, defined by a vector of play thresholds

and a vector of play weightsw∗. We further assume that a nominal modelΓm for the hysteresis

is identified for implementation ofΓ−1
m , an approximate inverse toΓp. It is assumed thatΓm

shares the same set of play thresholds withΓp, but its weight vectorw differs from that ofΓp,
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Figure 2.2: A system with hysteresis preceded by an inverse operator.

which represents the source of model uncertainty. In particular, we writew∗ = w+∆w, with ∆w

denoting the weight perturbation. The controlud is applied to the inverse model andd = ud−u is

the inversion error.

2.3 The Inversion Error Bound Using the Slope-Intercept

Method

In this method, the uncertainty in the weight vector is translated into uncertainties in the slope and

intercept of each segmentj of the hysteresis loop, denoted as∆mj and∆γ j , and j = 1,2, · · · , l ,

wherel is the number of segments. Let the input-output relationship for the operator be

u= mjv+ γ j (2.1)
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Figure 2.3: Inversion error bounds using slop-intercept method.

and the input-output relationship for the inverse-operator be

v=
1

mj
ud+ γinv, j (2.2)

By inserting (2.2) into (2.1) we obtain

u=mj (
1

mj
ud+ γinv, j)+ γ j

= ud+mjγinv, j + γ j (2.3)

Hence, for perfect inversion we require

mjγinv, j + γ j = 0 (2.4)

Fig. 2.3 illustrates how these uncertainties can be used to determine an upper-bound on the

inversion error. The termu1 represents the outputu when the inversion is perfect, and its slope is
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one, whileu2 represents the output in the presence of uncertainties,

u1(t) = ud(t) (2.5)

u2(t) = (1+
∆mj
mj

)ud(t)+∆dc, j (2.6)

where∆dc, j can be obtained from (2.4) by including the uncertainties as

∆dc, j =∆mj γinv, j +∆γ j

=
∆mj γ j −mj∆γ j

mj
(2.7)

The difference betweenu2 andu1 represents the size of the uncertainty and is denoted byd(t):

d(t) =u2(t)−u1(t)

=(1+
∆mj
mj

)ud(t)+∆dc, j −ud(t) (2.8)

The upper bound for each segment is

|∆dc,max| ≤ |∆γ,max|+
|γmax||∆m,max|

mmin
(2.9)

The upper bound for all segments is

|d(t)| ≤

∣

∣

∣

∣

∆mmax
mmin

∣

∣

∣

∣

|ud(t)|+ |∆dc,max| (2.10)
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wheremmin is the smallest slope,|∆mmax| is the largest slope uncertainty, and|∆dc,max| is the

largest intercept uncertainty among segments and can be obtained from (2.7) as

∆dc,max≤
|∆mmaxγmax|+ |mmax∆γmax|

mmin
(2.11)

A bound on the inversion error can be obtained from (2.10) as

|d| ≤ k1+k0
∣

∣ud
∣

∣ (2.12)

where
|∆mmax|
|mmin|

≤ k0 and|∆dc,max| ≤ k1.

2.4 The Inversion Error Bound Using the Weight-Threshold

Method

Since the hysteresis operator is modeled by PI operator for simulation and experimental purposes,

it is natural to derive bounds using its immediate parameters, which are thresholds and weights of

the play operators. Fig. 2.4 illustrates the basic behaviorof a play operator. The output of a PI

operator can be represented as [12]

Γ[v] = wTHr [v;z0](t) (2.13)

where,Hr = [Hr0 Hr1 . . .Hrn−1]
T is the vector of individual play operators,

wT = [w0 w1 . . .wn−1]≥ 0 is the vector of weights for individual play operators,

rT = [r0 r1 . . . rn−1] denotes the vector of play thresholds, and we haven play operators. It is

assumed that 0= r0 < r1 < · · · < rn−1 = rmax, wherermaxdenotes the largest threshold, and
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w0 > 0. A play operator with thresholdri , and initial conditionz0i is defined by

Hri [v,z0] = max{v− ri ,min{v+ ri ,z0i}} (2.14)

wherei = 0,1, . . . ,n−1. To simplify the notation, we will not explicitly put the initial condition

for operatorsHri , Γm, etc.

u= Γp[v] = w∗THr [v] (2.15)

v= Γ−1
m [ud] (2.16)

Eq. (2.16) implies

ud = Γm[v] = wTHr [v] (2.17)

d = ud−u= Γm[v]−Γp[v] = ∆T
wHr [v] (2.18)

Hence,

|d|=
∣

∣

∣
∆T

wHr [v]
∣

∣

∣
(2.19)

From Fig. 2.4, it can be readily verified that, for a play operator with thresholdri ,

|Hri [v](t)−v(t)| ≤ ri (2.20)

which implies

|Hri [v](t)| ≤ |v(t)|+ rmax (2.21)
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Figure 2.4: A play operator: the building block of a PI operator.

for i = 0, · · · ,n− 1. We assume that the maximum error in the vector∆w is given by∆w,max.

Combining (2.19) and (2.21), we obtain

|d| ≤ n∆w,max(|v|+ rmax) (2.22)

We are interested in deriving a bound for|d| in terms ofud. Recall thatv is related toud through

the inversion operatorΓ−1
m . The inverse operator can be represented with yet another PIoperator

Γinv [12]. Γinv hasn play operators, and its vector of thresholdsrinv = [rinv,0, · · · , rinv,n−1]
T

and vector of weightswinv = [winv,0, · · · ,winv,n−1]
T can be computed based on the parameters

of the forward hysteresis modelΓm. Therefore, we can write

v= wT
invHrinv[ud] (2.23)
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From (2.23), we have

|v(t)| ≤
n−1
∑
i=0

|winv,i |(|ud(t)|+ rinv,max) (2.24)

whererinv,max= rinv,n−1 is the maximum threshold among the play operators for the inverse

hysteresis operatorΓinv. Combining (2.22) and (2.24), we have

|d(t)| ≤n|∆w,max|
n−1
∑
i=0

|winv,i ||ud(t)|

+n|∆w,max|(rmax+
n−1
∑
i=0

|winv,i |rinv,max) (2.25)

Hence,

|d| ≤ k1+k0
∣

∣ud
∣

∣ (2.26)

where,k0=n|∆w,max|(∑n−1
i=0 |winv,i|) andk1=n|∆w,max|(rmax+∑n−1

i=0 |winv,i |rinv,max). Note

that the evaluation ofk0 andk1 requires knowing the maximum weight error∆w,max for the for-

ward hysteresis model and the vector of weightswinv for the inverse hysteresis model. The analysis

in the following chapters requires the assumption 0< k0 < 1, which holds true when∆w,max is

sufficiently small. Also, note that the expressions ofk0 andk1 are different from the one obtained

from Eq. (2.12).
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2.5 The Relationship Between Segment Slope and Operator

Weights

The hysteresis characteristics of a PI operator can be determined by the so-called initial loading

curve (or the generating function). This curve is traversedif the initial state of the PI hysteresis

operator is zero and a monotone increasing input signal is applied [12]. The initial loading curve

can be fully characterized by a threshold-dependent piecewise linear functionΦ(r)=∑i
j=0wi(r−

r j ), wherei = 0, · · · ,n−1 andri ≤ r < ri+1. The inverse of the initial loading curveΦ(r), denoted

asΦinv(rinv), exists uniquely forrinv ≥ 0 and can be regarded as a generating function for the

inverse operator,Φinv(rinv) =∑i
j=0winv,i(rinv− rinv, j ), whererinv,i ≤ r < rinv,i+1. The slopes

can be calculated from the derivative of these generating functions to obtain

d
dr

Φ(r) =
i

∑
j=0

wi = mi (2.27)

d
drinv

Φinv(rinv) =
i

∑
j=0

winv,i = minv,i (2.28)

The transformation law for weights results fromd
drinv,i

Φinv(rinv,i) = 1/ d
drΦ(ri). After simpli-

fying this expression, the weights of the inverse operator can be calculated as

winv,0 =
1

w0

winv,i =
−wi

(w0+∑i
j=1wj )(w0+∑i−1

j=1wj )
(2.29)
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where i = 1· · ·n− 1. Hence combining the effect of the inverse operator with slope minv,i =

1
w0+w1+···+wi

and that of the operator with slopemi = w0+w1+ · · ·+wi would result in an

identity operator with slope of 1. See Fig 2.6. To examine howa perturbation of operator weights

affects the signal passing through the cascaded operators,let us assume that the uncertainties on

each weightwi is ∆wi. The perturbed slope is

mi +∆m,i = w0+∆w0+w1+∆w1+ · · ·+wi +∆wi (2.30)

From (2.27) and (2.30) we can obtain∆m,i = ∆w0+∆w1+ · · ·+∆wi. It is obvious that the uncer-

tainties accumulate and the maximum error will be in the lastsegment ( withl = n−1) which is

∆m,l =∆w0+∆w1+ · · ·+∆wn−1. Because the uncertainties are increasing as the signal increases

and crosses the hysteresis segments, we cannot rely on the weight perturbation in obtaining a non-

conservative estimate of the uncertainty in the slopes. We also can show that the slope-intercept

approach has less conservative inversion error than the weight-threshold method by comparing

(2.25) and (2.10). To compare the inversion error portion due to uncertainties in the slopes, the

first term in (2.25) and that in (2.10) are compared. We express the slopes of the first term of (2.10)

in terms of the weights of the play operators

|
∆mi
mi

||ud(t)| ≤|
∆w0+∆w1+ · · ·+∆wn−1

w0
||ud|

≤
n|∆w,max|

|w0|
|ud| (2.31)

We know that from (2.29) the inverse operator weightswinv,i are negative quantities exceptwinv,0.

As a result, their summation∑n−1
i=0 winv,i is smaller than 1

w0
. But, because we use the triangular

inequality to obtain (2.25) and we sum the absolute values of|winv,i |, this results in a larger bound
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Figure 2.5: Illustration of the initial loading curve.

(∑n−1
i=0 |winv,i | >

1
|w0|

> ∑n−1
i=0 winv,i). Then by comparing the bound on the first term in (2.25)

with (2.31) we find

n|∆w,max|

|w0|
|ud|< n|∆w,max|(

n−1
∑
i=0

|winv,i|)|ud(t)| (2.32)

From (2.32), we can see that the bound on the error using the intercept-slope approach is less

conservative than the bound which is obtained from the weight-threshold approach. Similarly, we

can derive the relationship between segment intercepts andoperators weights and thresholds.

2.6 The Relationship Between Segment Intercept and Opera-

tor Weights

The intercept of the segment with the y-axis can be calculated from the weighted superposition of

play operators as follows. For the hysteresis operatorγ = ∑i∈Awiri , and for the inverse-operator
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Figure 2.6: Ascending branches of hysteresis operator and inverse-operator.

γinv=∑i∈Awinv,i rinv,i , where A is the set of plays that are active. Note that the operator becomes

active when the input signal is large enough to pass from playing region to linear region of the play

operator.

When the weight vector is perturbed by∆w the slopes are perturbed by∆m and Eq. (2.4)

becomes

∆mγinv+∆γ = ∆dc (2.33)

Then by expressingm, ∆m, γinv, andγper in (2.33) in terms ofw and∆w we get

∆dc,i =( ∑
i∈A

∆w,i)( ∑
i∈A

winv,i rinv,i)+ ∑
i∈A

∆w,i ri (2.34)
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An upper bound for theith segment is obtained by taking the absolute value as

|∆dc,i | ≤ |( ∑
i∈A

∆w,i)|

(

|( ∑
i∈A

winv,i rinv,i)|+ |ri|

)

(2.35)

The worst case happens when all plays are active (i.e.γ = ∑n−1
i=0 wiri ) because the terms will have

the same sign. The bound on all segments then is obtained by

|∆dc,max| ≤ n|∆w,max|

(

|(
n−1
∑
i=0

winv,i rinv,i)|+ |rmax|

)

(2.36)

By comparing this equation with what obtained from weight-threshold method which is given in

(2.25), we can see that they differ in the term∑n−1
i=0 |winv,i |rinv,max, where taking absolute value

before summing the terms makes this bound very conservativein (2.25).

Based on these different bounds on the inversion error, we propose to design robust controllers

of two general classes and examine how useful are these bounds in control design. The first class

is nonlinear robust control. This class has three differentmethods; Sliding-Mode-Control (SMC),

Lyapunov re-design, and high-gain feedback control. SMC and Lyapunov redsign are close in

dealing with uncertainty. The only difference is which we design first; the sliding-surface or the

Lyapunov function. The high-gain method is basically included in the previous two methods when

trajectories enter the boundary layer of the surface. Thus,we only focus on SMC method to de-

scribe the first class. The other class of controllers with which we examine these bounds is robust

linear-control. We assume that the hysteresis precedes thelinear dynamics of the plant. The system

fits in linear design as the remaining non-linearity after inversion is treated as uncertainty. Since the

reference signals that we often use are periodic, theH∞ control is a good candidate for designing a

robust controller for these systems. Proportional-Integral control is another simple robust control
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method which is used particularly when the application requires low operating speed.

2.7 Simulation of the Hysteresis Loops Based on the Experi-

mental Data

To examine the proposed control methods in improving the system performance when it involves

hysteresis, we use a piezo-actuator nanopositioner. The commercial nanopositioner (Nano-OP65)

and its power drive, shown in Fig. 2.7, are supplied by Mad City Labs Inc. We first iden-

tify the positioner characteristics to determine its linear dynamics and hysteresis characteristics.

The hysteresis was experimentally characterized by applying a quasi-static input that sweeps the

positioner over its operational range. The measured Hysteresis loops are shown in Fig. 2.8.

Then the hysteresis is modeled with a PI-operator with 5 playoperators with thresholdsr =

[0, 0.63, 1.27, 2.54, 4.45]T and the vector of weights isw = [5.88, 1.58, 0.47, 0.98, 0.4]T .

The major loop of the output of the model using the same input data which is used in character-

izing the hysteresis is shown in Fig. 2.9 . The error between the Model output and the actual

hysteresis output is illustrated in Fig. 2.10 for a decreasing sinusoidal input. Then, we calculated

the inverse-operator, which has almost zero-inversion error (×10−14µm) when it is cascaded

with the modeled hysteresis (the hysteresis operator). Note that because of the modeling error,

the cascading of the inverse-operator with the actual nanopositioner hysteresis would result in an

inversion error. Hence, for all of simulations in next chapters we will perturb the model such that

it results in an error close to the one comes from cascading the inverse-operator with the actual

positioner hysteresis. Each component on the weight vectoris perturbed by a maximum value of

∆w,max= 0.15. Fig. 2.11 shows the error results from cascading the inverse-operator with the
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Figure 2.7: Experimental setup includes the nanopositioner Nano-OP65, power drive, and
ADC/DAC converter.

perturbed hysteresis operator. This error has a size close to the one obtained in Fig. 2.10.

2.8 Example of Calculating Bounds on the Inversion Error

We consider, in this example, a PI operator composed of the superposition of weighed play opera-

tors of slopes equal to one. Hence the slope of any segment is calculated by the summation of the

weights of play operators which are acting in their linear region at that segment. Let us denote the

set of operators which act in their linear region byAj . Then the slopemj is given bymj = ∑Aj
wj

and the upper bound on the play operator is given from (2.21) by |Hr j [v](t)| ≤ |v(t)|+ rmax. A

bound on the segmentj output can be expressed using the weighted superposition ofthe active

operators between thresholdsr j andr j+1 as

|u|= ∑
Aj

wj |Hri [v](t)| ≤ ∑
Aj

wj (|v(t)|+ rmax) (2.37)
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Figure 2.8: Measured hysteresis loops.
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Figure 2.9: Comparison between the measured hysteresis loop and the operator hysteresis loop.
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Figure 2.10: Positioner output used in the PI identificationand the resulting model output.
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Figure 2.11: The output and inversion error of a perturbed PIoperator.
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Then, we insertu from (2.1) into (2.37)

|mjv(t)+ γ j | ≤ ∑
Aj

wj (|v(t)|+ rmax) (2.38)

By settingv= 0 in (2.38), the intercepts satisfy the inequality

|γ j | ≤ ∑
Aj

wj rmax (2.39)

The upper bound of slopes and intercepts for all segments canbe obtained from (2.27) and (2.39),

respectively, asmmax= ∑n−1
j=0 wj and |γmax| ≤ ∑n−1

j=0 wj rmax, wheren is the number of play

operators.

To examine how a perturbation of operator weights affects the signal passing through the cas-

caded operators, let us assume that the uncertainties on each weightwj is ∆w j. The perturbed

slope is

mj +∆m, j = ∑
Aj

(wj +∆w j) (2.40)

From (2.27) and (2.40) we can obtain∆m, j = ∑Aj
∆w j. Hence, the upper bound on slope

uncertainties of all segment is|∆m,max| ≤ n|∆w,max|. Similarly, the upper bound of the intercept

uncertainties for all segments can be obtained as|∆γ,max| ≤ n|∆w,max|rmax.

In this example, we want to examine the bounds calculated on the inversion error versus the

inversion error results from perturbing the operator. First, the perturbation on the hysteresis loop is

illustrated in Fig. 2.12 for a sinusoidal input with a range of 50 µm. Note that we apply a voltage

to the hysteresis input with a maximum of 5.7 volt, but we scaled the input in Fig. 2.12 to represent
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it in the corresponding positioning range inµm. We also shifted the hysteresis loops to the first

input-output quadrant by biasing the input with 25µm dc input. Each component on the weight

vector is perturbed by a maximum value of∆w,max= 0.15. This results in an uncertainty on the

slopes and the intercepts of each segment. It is easy to calculate these uncertainties by determining

the slopes and intercepts of each segment for the perturbed and non-perturbed operator and then

subtract them. We obtained the following values.mmin= 0.7, mmax= 1.1, |∆m,min| = 0.016,

|∆m,max|= 0.08, |γmax= 16|, and|∆γ,max|= 1.03.

Now to calculate the bounds on the inversion error for the slope-intercept method, we have

|∆mmax|
|mmin|

≤ k0 and|∆dc,max| ≤ k1, where|∆dc,max| can be calculated from (2.11 ). We obtain

k0 = 0.12 andk1 = 8.9. Then the bound is calculated from (2.12) with|ud|max= 50, we get

|d| ≤ 8.1.

For the weight-threshold method, the bounds are calculatedform the expressions;

k0 = n|∆w,max|(∑n−1
i=0 |winv,i |) andk1 = n|∆w,max|(rmax+∑n−1

i=0 |winv,i |rinv,max). We obtain

k0= 0.1282 andk1= 10.53. Similarly, we insert these values in (2.26) to obtain theboundd≤ 17.

We can see this bound is more conservative than the one obtained by slope-intercept method. Next,

we apply the same input,ud = 25×10−6(1+sinωt), to the cascaded inverse-operator with per-

turbed operator to obtain the inversion error shown in Fig. 2.13, where we can see that maximum

absolute value of the error is|e|max= 3.7µm. This value is smaller than the two bounds, which

are calculated using both methods with a large safe margin.
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Figure 2.12: Hysteresis loops for a non-perturbed and a perturbed PI operator with a perturbation
∆w,max= 0.15.
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Figure 2.13: The inversion error of a perturbed PI operator with a 50µm input.
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2.9 Summary

In this chapter, we introduced two methods to characterize the inversion error when the hysteresis

model has some uncertainty. The error is characterized by a perturbation in the weight vector

of the PI operator which is used to implement the inverse-operator. A more general way which

includes more classes of hysteresis operators is to characterize the operator by the slope (m) and

intercept (γ) of the hysteresis loop segments. This class includes all operators with linear piecewise

hysteresis loops. We compared these bounds in order to use them in the design and the analysis in

the following chapters.
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Chapter 3

Quantifying the Tracking Error with

Proportional-Integral-Controller

3.1 Introduction

In this work we derive an expression of the tracking error under the popular control architecture

that combines hysteresis inversion and feedback. What distinguishes this work from the literature

reviewed in Chapter 1 is that it allows us to discuss the interaction among hysteresis parameters,

uncertainties, and control gains, as well as how they determine the size of the tracking error. Fur-

thermore, we will be able to study how the tracking error scales with the reference frequency, a

question that is of practical interest but remains largely open. We will provide the analysis con-

sidering a particular linear segment and then provide a fullanalysis considering the cumulative

behavior when the hysteresis traverses different linear segments.

Motivated by the properties of piezo-actuated nanopositioning systems, we assume that the

linear dynamics of the plant are stable and have large bandwidth. This assumption allows us to use

singular perturbation techniques to separate the slow dynamics of the controller from the fast dy-

namics of the plant. Then by solving the equations for the separated models we are able to obtain

an explicit expression for the tracking error where we can discuss the effect of different parameters

on the size of the error. In addition, we assume that the hysteresis nonlinearity has piecewise linear
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Figure 3.1: Illustration of a hysteresis loop with piecewise linear characteristics.

characteristics; in other words, all hysteresis loops (major loops and minor loops) consist of linear

segments, where each segmentsi has a slopemi and an interceptγi with the output axis. See Fig.

3.1 for illustration.

To fix the ideas, the tracking error analysis is conducted fora control scheme that combines

the hysteresis inversion with proportional-integral feedback controller as illustrated in Fig. 3.2.

In addition, we consider adding a constant-gain feedforward term to the output of the feedback

controller. The analysis procedure is still applicable forthe typical case of cascaded feedback and

inversion by removing this feedforward branch. Although the case without the feedforward com-

ponent has been reported extensively in the literature [21,70, 47, 25, 48, 55, 56, 57], we show in

this work the potential advantage of adding a feedforward gain component when the linear plant

has fast dynamics. We note that feedforward control has beendiscussed in tracking problems with

Two-Degree-of-Freedom control [71, 63, 64, 65, 62, 67] and proved to be useful in disturbance re-

jection and performance improvement in general, but its combination with feedback and inversion

for systems with hysteresis has not been reported before. Simulation results are compared with
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Figure 3.2: Hystersis inversion with a control that integrates feedforward with feedback.

analytical results with good agreement. Experimental results on a commercially available nanopo-

sitioner further support our conclusions.

3.2 Closed-Loop System Setup

In this section we briefly describe the components of the closed-loop system as illustrated in Fig.

3.3. The linear dynamics of the plant are represented by a singularly perturbed system. The

bandwidth of the dynamicsωn is assumed to be large and of the order 1/ε, whereε is a small

positive parameter. The model of the linear plant is given by

ε ż= Az+Bu,

y=Cz (3.1)

44



whereA is a Hurwitz matrix,B andC are matrices with proper dimensions, andz is the state vector.

We assume that the feedback controller is a proportional-integral controller, represented as

ẋ= e= yr −y= yr −Cz

w= kix+kpe (3.2)

wheree is the tracking error andw is the controller output. A feedforward path with a gaing is

used to compensate for the DC gain of the linear dynamics. When g = 0, the scheme falls back

into the general scheme that combines hysteresis inversion(in the feedback loop) and feedback

control.

We denote the hysteresis operator byΓp and the inverse operator asΓ−1
m , whereΓm is the

nominal model of the actual hysteresisΓp. The input-output relationship ofΓp can be described

in each segment of a hysteresis loop as follows

u= miv+ γi (3.3)

The DC gain of the plant is

h=−CA−1B (3.4)

The input to the inverse operator,ud, and its output,v, are expressed as1

ud = gyr +kix+kpe (3.5)

1For convenience, we will drop the subscripti in the analysis unless necessary and usemandγ
to denote the slope and intercept of the line segment under consideration.
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Figure 3.3: Hysteresis inverse in the feedback loop.

v=
1
m
(ud− γ) (3.6)

Note that (3.6) is essentially the inversion process for thepiecewise linear hysteresis model, and

it requires determining which linear segment of the hysteresis is on at each time instant. Such an

assumption is standard in hysteresis inversion since the past history ofv is available. We further

note that (3.6) requires knowing the slope and intercept of the current linear segment; when such

knowledge is not precise, we can represent it as follows. Letus denote the corresponding slope

of the plant hysteresisΓp by mp and the intercept byγp with parameter uncertainties∆m and∆γ ,

wheremp = m+∆m andγp = γ +∆γ , which implies

u= (m+∆m)v+(γ +∆γ ) (3.7)

By substitutingud from (3.5) andv from (3.6) into (3.7), we expressu as

u=
m+∆m

m
[gyr +kix+kp(yr −Cz)]+

m∆γ − γ∆m
m

(3.8)
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The singularly perturbed closed-loop system, obtained by insertingu from (3.8) into (3.1), is given

by

ẋ=yr −Cz

ε ż=[A−
kp(m+∆m)

m
BC]z+B

m+∆m
m

(g+kp)yr +B
m+∆m

m
kix+B(

m∆γ − γ∆m
m

) (3.9)

3.3 Tracking Error Analysis

In order to get a rough idea of what factors determine the sizeof the error, we first assume in

Section 3.3.1 that the plant is represented by a DC gain (i.e., it has an infinite bandwidth). This

is equivalent to settingε = 0. In this case, the tracking errore is captured by the slow model

alone. We focus here on showing how the tracking error is affected by the input reference. Then,

in the following subsections we discuss other factors that determine the size of the tracking error

by solving the closed-loop system equations with sinusoidal or periodic references.

3.3.1 Analysis Using the Slow Model Approximation

For the fast model of the singularly perturbed system to be exponentially stable, we assume that

the matrix[A−
kp(m+∆m)

m BC] of (3.9) is Hurwitz. To obtain an approximation of the slow model,

we setε = 0, to get

z=−[A−
kp(m+∆m)

m
BC]−1B

[

m+∆m
m

(g+kp)yr +
m+∆m

m
kix+(

m∆γ − γ∆m
m

)

]

(3.10)
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We insertz from (3.10) into the ˙x-equation (3.9) to obtain the approximate slow model as

ẋ= yr +C(A−
kp(m+∆m)

m
BC)−1B[

m+∆m
m

(g+kp)yr +
m+∆m

m
kix+(

m∆γ − γ∆m
m

)]

(3.11)

To simplify (3.11), let us denote the expressionC(A−
kp(m+∆m)

m BC)−1B by V and use the

Matrix Inverse Lemma lemma [72] to simplifyV as

V =CA−1B+
kp(m+∆m)

m+kp(m+∆m)h
CA−1BCA−1B

=−h+
kp(m+∆m)

m+kp(m+∆m)h
h2

=
−mh

m+kp(m+∆m)h
(3.12)

ẋ can be expressed now in a simpler form by inserting the expression ofV obtained from (3.12)

into (3.11)

ẋ= yr +
−mh

m+kp(m+∆m)h
[
m+∆m

m
(g+kp)yr +

m+∆m
m

kix+(
m∆γ − γ∆m

m
)] (3.13)

By rearranging and simplifying terms in (3.13), we can express, the tracking error, ˙x, in a form that

describes the effect of different parameters and signals onit.

ẋ=
−(m+∆m)hki

m+kp(m+∆m)h
x+

m(1−gh)−∆mgh
m+kp(m+∆m)h

yr −h
m∆γ − γ∆m

m+kp(m+∆m)h
(3.14)
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Equation (3.14) motivates the choice ofg= 1/h. This would reduce the error due toyr term, and

ẋ becomes

ẋ=
−(m+∆m)hki

m+kp(m+∆m)h
x+

−∆m
m+kp(m+∆m)h

yr −h
m∆γ − γ∆m

m+kp(m+∆m)h
(3.15)

When the feedforward path is not included, we setg= 0 in (3.14) and obtain

ẋ=
−(m+∆m)hki

m+kp(m+∆m)h
x+

m
m+kp(m+∆m)h

yr +h
m∆γ − γ∆m

m+kp(m+∆m)h
(3.16)

To have a general idea from this approximation about the tracking error at steady state, here

we only discuss the second term on the right-hand side of (3.15) and (3.16), which determines the

contribution of the reference signalyr to the racking errore (i.e., ẋ). By comparing (3.15) and

(3.16) we notice that when∆m is small compared to the slopem, the tracking errore will be less

influenced byyr . Moreover, we see from (3.15) that, in the ideal case (∆m= 0= ∆γ ), the tracking

error becomes independent of the reference signalyr . In this case, the solution of the differential

equation will only have a decaying transient term dependenton the initial value ofx but indepen-

dent of the segment’s slopem, and according to singular perturbation theory [73] the full solution

x is O(ε) close to the solution of (12); that is,

x(t) = x(0)e
−

kih
1+kpht

+O(ε) (3.17)

The effect of the linear dynamics, which are ignored in the low-frequency approximation, is

abstracted in the termO(ε). It is important to consider this term at high frequencies aswe will see
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in later analysis. From (3.15) and (3.16), one can say that byincreasing the gainkp the error would

decrease. However,kp might be constrained by the stability of the system because,for high-order

linear dynamics, increasing the gainkp beyond a certain value may destabilize the closed-loop ma-

trix [A−
kp(m+∆m)

m BC]. It is also important to have the ratioki/kp high in order to achieve fast

decay in (3.17). In later analysis we will see that these decaying terms will be initiated whenever

the signal moves to a new segment.

3.3.2 System Model and Coordinates Transformation

For more accurate approximation, we considerε 6= 0 in this subsection. The system (3.9) is written

in a general form as







ẋ

ε ż






=







A11 A12

A21 A22













x

z






+







B1

B2






yr +







0

γ
′






(3.18)

whereA11=0 ,A12=−C , B1=1 and (A21,A22,B2, andγ
′
) are the corresponding matrix/vector

coefficients ofx,z,yr and the constant term of equation (3.9), respectively. We keepO(ε) terms of

the series expansion and sum the rest asO(ε2). We use the following transformation [74], which

allows us to separate the slow and fast variables:







ξ

η






=







In− εH L −εH

L Im













x

z






+







εH W

−W






yr (3.19)

whereξ is the slow variable andη is the fast variable in the new coordinates.In andIm are identity

matrices of the dimensions of the slow and fast variables, respectively.W is a constant vector of
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the dimension of the fast variable.L andH are analytical functions ofε, which are defined in

3.5.1. To get back to the original coordinates, we use the inverse of the above transformation:







x

z






=







In εH

−L Im− εL H













ξ

η






+







0

W






yr (3.20)

Since we are interested in anO(ε2) approximation, we use the approximationsL =L+εA−2
22 A21A0+

O(ε2) andH =H+εA1+O(ε2), whereL=A−2
22 A21, H =A12A−1

22 , A1=(A0H−HLA12)A
−1
22 .

A0= A11−A12A−1
22 A21 is a scalar. We follow similar steps as in [74] to derive the system model

in the new coordinates. We note that in [74] the driving term does not exist. This term will allow

us to discuss the dependence of the solution on the referenceyr and its derivative ˙yr . By ignoring

theO(ε2) terms in all coefficients, we arrive at the following equations in which the slow and fast

models are separated:

ξ̇ =(A0− εHLA0)ξ +[εA0HW−HB2− εA1B2+(In− εHL)B1]yr + εHWẏr −Hγ
′
− εA1γ

′

(3.21)

εη̇ =(A22+ εLA12)η +[B2+ εLB1+(A22− εLA12)W]yr + γ
′
− εWẏr (3.22)

The detailed derivation is given in Section 3.5.2. We solve (3.21) and (3.22) to get the expression

of the tracking errore as follows. First forξ , we express the solution of (3.21) as a power series

ξ = ξ0+ εξ1+ ε2ξ2+ . . . (3.23)
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Figure 3.4: Illustration of the time instants when periodicsignals cross different linear segments
of the hysteresis loops.

By matching theε− coefficients on the two sides of (3.21), we obtain

ξ̇0 =A0ξ0+B0yr −Hγ
′

(3.24)

ξ̇1 =A0ξ1−HLA0ξ0+[A0HW−HLB1−A1B2]yr +HWẏr −A1γ
′

(3.25)

whereB0 =−HB2+B1. In order to see how the solution develops and the error propagates from

one hysteresis segment to another, we solve the equations for each segment by dividing the time

into intervals that correspond to the periods hysteresis stays in different segments. We specify the

time at the beginning of each slot byti , wherei = 0,1, · · · . Then, for the current segmenti, we

have the timet bounded asti ≦ t < ti+1. See Fig. 3.4 for illustration.

3.3.3 The Case of a Sinusoidal Reference

We now consider a sinusoidal referenceyr = Acsin(ωt). We assume that the solution of the

closed-loop system converges to a periodic function with the same periodT of the reference input.

This assumption is justified by the simulation and experimental results in this work and also in

[53, 55, 56, 1, 57]. Moreover, we assume that all the components which compose the solution such

as the slowξ and fastη variables are periodic of the same periodT.
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The idea of getting a solution that shows the impact of all hysteresis segments on each other

is explained by the following steps. We start by solving (3.24) for the segmenti with initial value

ξ0(ti). Then, the final value of this segmentξ0(ti+1) will be inserted as the initial value for the

following segmenti +1. We continue this process around one cycle until we getξ0(ti +T). The

periodicity of the solution implies thatξ0(ti+T)= ξ0(ti) and this allows us to obtain an expression

for ξ0(ti). By substituting this expression in the solution of (3.24) we getξ0(t), ti ≤ t < ti+1,

ξ0(t) = ϕ +
Hγ

′

A0
+B0Ac

[

−
A0

A2
0+ω2

sin(ωt)−
ω

A2
0+ω2

cos(ωt)

]

(3.26)

whereϕ is in the form

ϕ = eA0i(t−ti)
n
∑
j=1

e
−A0 jK j (

L j
A0 j

+
Mjω

A2
0 j +ω2

+
NjA0 j

A2
0 j +ω2

) (3.27)

n is the number of hysteresis segments traversed in one cycle,andKj , L j , Mj , andNj are constants

dependent on the parameters of thej-th segment in the cycle. The complete derivation ofξ0(t)

and the full expression ofϕ are given in Section 3.5.2. The bound onϕ is derived Section 3.5.3.

The termϕ can be described by a periodic term, which has a peak value at the beginning of each

segment and decays exponentially with a speed dependent on the valueA0 until the following seg-

ment.ϕ is important in the sense that it connects the solutions of different segments by summing

the propagated error of all previous segments in each cycle.However, this term can be made small

by choice of a large value of|A0|. Since the choice ofA0 is important, let us derive its expression
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and see how it changes from one segment to another

A0 = A11−A12A−1
22 A21

= 0−C[A−kp
m+∆m

m
BC]−1B

m+∆m
m

ki

=
−(m+∆m)kih

1+kp(m+∆m)h
(3.28)

Under the assumption thatm+∆m> 0, for all segmentsA0< 0. By choosingkp such thatkp(m+

∆m)h is much larger than 1,A0 becomes independent of the segment slope and is determined by

the ratio
ki
kp

. By having the integral gain much larger than the proportional gain (ki ≫ kp), we

guarantee that|A0| is large enough to make the value ofϕ significantly small and decays in a short

time within each segment.

In Section 3.5.4, we show thatξ1 is bounded uniformly inω. Hence, the slow variableξ is

obtained by substitutingξ0 form (3.26) into (3.23). The solution of the fast variable isderived in

Section 3.5.5 as

η = ψ −A−1
η BηAcsin(ωt)−A−1

η γ
′
+ ε(A−1

η W−A−2
η Bη )Acω cos(ωt)+O(ε2) (3.29)

whereAη = (A22+εLA12), Bη =B2+εLB1+(A22+εLA12)W), andψ is a term similar to the

ϕ term of the slow variable, but it decays much faster thanϕ. The tracking error forti 6 t < ti+1

in terms ofξ andη is given by

e(t) = B1yr −Cz

= B1yr +A12

[

−(L+ εA−2
22 A21A0)ξ +(Im− εLH)η +Wyr

]

+O(ε2)

=−A12(L+ εA−2
22 A21A0)ξ +A12η − εA12LHη +(B1+A12W)yr +O(ε2)(3.30)
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By insertingξ from (3.26) and (3.23) andη from (3.29) into (3.30) and usingA0 = −A12L we

obtain the final expression of the error with itsO(ε2) approximation

e(t) = (B1+A12W)yr +A0



ϕ +
Hγ

′

A0
+B0Ac

(

−A0
A2

0+ω2
sin(ωt)−

ω
A2

0+ω2
cos(ωt)

)

+εξ1
]

− εA12A−2
22 A21A0ξ0+A12

[

ψ −A−1
η BηAcsin(ωt)−A−1

η γ
′
+ ε(A−1

η W

−A−2
η Bη )Acω cos(ωt)

]

− εA12LH[ψ −A−1
η BηAcsin(ωt)−A−1

η γ
′
]+O(ε2) (3.31)

To discuss how these terms change with the frequency, we willseparate the error expression into

three groups:

e= e0+ εeε + εωeεω +O(ε2) (3.32)

wheree0, eε , andeεω are bounded uniformly inε andω. In other words,|e0| ≤ k1, |eε | ≤ k2,

and|eεω | ≤ k3, wherek1, k2, andk3 are some positive constants independent ofε andω. The

contribution from theeε term can be ignored because it is multiplied by a small numberε. The

termeεω becomes significant at high frequency when its coefficientεω is not small. Let us start

with analyzing thee0 term. By ignoringO(ε) terms,A−1
η can be approximated byA−1

22 and the

term−A12A−1
η is replaced by−H. ThenHγ

′
cancels out the term−A12A−1

η γ
′

e0(t) =(B1+A12W)yr +A0

[

ϕ +B0Ac

(

−A0
A2

0+ω2
sin(ωt)−

ω
A2

0+ω2
cos(ωt)

)]

−A12A−1
η BηAcsin(ωt)+A12ψ (3.33)
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W can be chosen such thatA12W = −B1 = −1 and the first term is eliminated. This is always

possible becauseA12= −C is rank 1 and it is a row vector with all of its elements zeros except

the element representing the output of the linear plant. We can also show that−A12A−1
η Bη =

1−HB2 = B0 and simplify the equation by combining sine terms together,which produces

B0Ac
ω2

A2
0+ω2 sin(ωt). Bη is approximated byB2+A22W and multiplied by−A12A−1

22 to get

1−HB2 and then replaced in (3.33). Thene0(t) becomes

e0(t) = A0ϕ +B0
ω2

A2
0+ω2

Acsin(ωt)+A12ψ (3.34)

It is noted that for a sufficiently high frequency (|A0| ≪ ω ≪ 1/ε), ω2

A2
0+ω2 becomes constant and

almost independent on frequency. Theεωeεω term is

εωeεω (t) = A12[A
−1
η εW− εA−2

η Bη ]ωAccos(ωt) (3.35)

By replacingA12[A
−1
η ] by H in (3.35) we have

εωeεω (t) =ε(HW−HA−1
η Bη )ωAccos(ωt)

=ε(HW−HA−1
22 (B2+A22W))ωAccos(ωt)

=− ε(HA−1
22 B2)ωAccos(ωt) (3.36)

By ignoringεeε andO(ε2) in (3.32) and substitutinge0 from (3.34) andεωeεω from (3.36) into

(3.32), we obtain an approximate expression for the error during each segmenti for a sufficiently
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high frequency (|A0| ≪ ω ≪ 1/ε)

e(t) = A0ϕ +B0Ac
ω2

A2
0+ω2

sin(ωt)− ε(HA−1
22 B2)ωAccos(ωt)+A12ψ (3.37)

In summary, The bound on error is composed of two components.The decaying component

which is represented byA0ϕ +A12ψ. This component has its peak at the beginning of each seg-

ment which can be controlled by the choice of control gains. The other non-decaying component

has the following characteristics. At a very low frequency (ω ≪ |A0|), the error is proportional

to the frequency. This is due to the cosine term of (3.33) which is ignored later in (3.37) and the

sine term of (3.37). Then, by increasing the frequency, we reach a range where the error becomes

almost constant with a value that depends on the system parameters and uncertainties,B0Ac of

(3.37). Then, it starts to increase linearly with the frequency again whenεω of the third term of

(3.37) becomes large enough to contribute to the total amount of the error. This is true as long as

theO(ε2) approximation is valid.

3.3.4 Bound on All Segments

The error expression (3.37) is valid for each segment. Let usagain use the subscripti to denote

each segment. By taking the absolute value ofeand using the triangular inequality, we obtain

|ei | ≤ |A0iϕi |+ |B0iAc|+ |− ε(HiA
−1
22,iB2,i)|ωAc+ |A12ψi | (3.38)

57



The upper bound|e|max of the error for all segments can be determined by studying when the

highest value of each term in (3.38) occurs. Let us start withthe second term|B0i |. Note that

B0i = 1−HiB2 = 1−A12A−1
22 B2 (3.39)

Then substituting the matricesA12, A−1
22 andB2 from (3.9) into (3.39), we get

B0i = 1−C[A−kp
mi +∆mi

mi
BC]−1B

mi +∆mi
mi

(g+kp) (3.40)

Using the Matrix Inversion Lemma, we simplifyC[A−kp
mi+∆mi

mi
BC]−1B to

C[A−kp
mi +∆mi

mi
BC]−1B=

−mih

mi +kp(mi +∆mi )h
(3.41)

Then we insert (3.41) into (3.40) to get

B0i =
mi(1−gh)−∆migh

mi +kp(mi +∆mi )h
(3.42)

This expression appears as the coefficient of the driving term of Eq. (3.14). By taking the feedfor-

ward gaing= 1/h, we can reduce the absolute value ofB0i as in (3.15)

B0i =
−∆mi

mi +kp(mi +∆mi )h
(3.43)
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Let us denote the bound onB0i By B0,max for all segments. This is obtained by substituting the

largest|∆m|max in the numerator and the smallestmmin in the denominator of (3.42)

|B0|max<
|∆m|max

mmin+kp(mmin)h
(3.44)

The bound onϕ on all segments,|ϕ|max, is given in Section 3.5.3. The bound|ψ|max on all

segments is derived in Section 3.5.5. The upper bound(HA−1
22 B2)maxon the third term of (3.38)

is given in Section 3.5.6. We find that this high-frequency term is nearly independent ofm and

∆m for the case|∆m| ≪ m. In other words, this term does not change much from one segment to

another.

We conclude that the upper bound of the error can be determined by substitutingmi by mmax

and∆mi by |∆m|maxin the numerator andmi by mmin in the denominator. Applying this to|A0i |

we obtain|A0|maxwhich replacesA0i for the upper-bound on the error

|e|max≤ |A0|max|ϕ|max+ |B0|maxAc+ |− ε(HA−1
22 B2)max|ωAc+ |A12ψ|max (3.45)

3.3.5 The Case of Periodic References

The earlier analysis on the case of a sinusoidal reference can be extended to the case of a general

periodic reference. We have found from the solutions of the slow and fast variables in the case of

a sinusoidal reference that the steady-state solution contains two parts. One has a decaying form

and is dependent on all previous segments of the hysteresis loop. The other is only dependent on

the current segment and is obtained by solving an integral equation as in the conventional linear

system. It is easy to show that a similar procedure can be applied to any periodic reference. For
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instance,

ξ0(t) = φi +
Hiγ

′
i

A0i
+

∫ t

ti
eA0i(t−τ)B0iyr (τ)dτ (3.46)

whereφi is given by

φi =
eA0i(t−ti)

1−M



e
A0,i+n−1∆i+n−1 · · ·e

A0,i+1∆i+1



(
Hiγ

′
i

A0i
−

Hi+1γ
′
i+1

A0,i+1
)

+eA0i ti+1
∫ ti+1
ti

e−A0iτB0iyr (τ)dτ

)

+ · · ·

+e
A0,i+n−1∆i+n−1



(
Hi+n−2γ

′
i+n−2

A0,i+n−2
−

Hi+n−1γ
′
i+n−1

A0,i+n−1
)

+e
A0,i+n−2ti+n−1

∫ ti+n−1
ti+n−2

e
−A0,i+n−2τ

B0,i+n−2yr (τ)dτ

)

+



(
Hi+n−1γ

′
i+n−1

A0,i+n−1
−

Hiγ
′
i

A0i
)+e

A0,i+n−1ti+n
∫ ti+n
ti+n−1

e
−A0,i+n−1τ

B0,i+n−1yrdτ









(3.47)

andM is defined as

M = e
A0,i+n−1∆i+n−1 · · ·e

A0,i+1∆i+1e
A0,i∆i (3.48)

The fast variableη is derived for any periodic reference in Section 3.5.5 as

η(t) = ψ −A−1
ηi

γ
′
i −A−1

ηi
Bηi yr (t)+ εA−1

ηi
Wẏr (t)− εA−2

ηi
Bηi ẏr (t)+O(ε2) (3.49)
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Then, for a given periodic inputyr (t) we solve the integration of (3.46) and substituteξ andη in

(3.30) to obtain the expression of the tracking error.

Since any periodic signal is bounded by a constantK, |yr | ≤ K, an upper bound onφi can be

obtained by calculating an upper bound on the right-hand side of (3.47) and replacing|yr | by K to

get

|φi | ≤
eA0i(t−ti)

1−M



M

∣

∣

∣

∣

∣

B0,iK

A0,i

∣

∣

∣

∣

∣

+e
A0,i+n−1∆i+n−1 · · ·e

A0,i+1∆i+1





∣

∣

∣

∣

∣

∣

Hiγ
′
i

A0i
−

Hi+1γ
′
i+1

A0,i+1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

B0iK

A0i

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

B0,i+1K

A0,i+1

∣

∣

∣

∣

∣

)

+ · · ·

+e
A0,i+n−1∆i+n−1





∣

∣

∣

∣

∣

∣

Hi+n−2γ
′
i+n−2

A0,i+n−2
−

Hi+n−1γ
′
i+n−1

A0,i+n−1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

B0,i+n−2K

A0,i+n−2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

B0,i+n−1K

A0,i+n−1

∣

∣

∣

∣

∣

)

+

∣

∣

∣

∣

∣

∣

Hi+n−1γ
′
i+n−1

A0,i+n−1
−

Hiγ
′
i

A0i

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

B0,i+n−1K

A0,i+n−1

∣

∣

∣

∣

∣



 (3.50)

Although the bound on|φi | looks different from the one obtained in the case of a sinusoidal ref-

erence, they both can be made small by increasing the value of|A0i |. However, in the case of a

sinusoidal reference we have the full solution with the coefficients
A0i

A2
0i+ω2 or ω

A2
0i+ω2 appearing

instead of 1
A0i

, which shows that this bound is smaller in high frequencies,ω > |A0i |. We should

note that increasing the value of|A0| reduces the value of|ϕ| but this is not helping much with the

tracking error because we multiplyϕ by A0 when the error is calculated.

3.4 Simulation, and Experimental Results

The simulation is based on the model and parameters identified experimentally for a commercial

nanopositioner (Nano-OP65 with Nano Drive controller, MadCity Labs Inc.) The linear dynamics
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are fitted experimentally with a second-order system with a natural frequency of 2086 Hz, which

corresponds toε =7.63×10−5. The hysteresis is modeled with a PI operator with 5 play operators

having thresholdsr = [0, 0.63, 1.27, 2.54, 4.45]T and the vector of weights for the operator is

wT = [5.88, 1.58, 0.47, 0.98, 0.4]. When we apply a periodic reference signal of (with single

maximum and minimum in each period, with amplitude 50µm, we obtain a loop of five segments

in the ascending side and similarly in the descending side atthe steady state. The slopes of the

ascending side of the loop are (m1 = 0.67, m2 = 0.85, m3 = 0.9, m4 = 1.01, m5 = 1.057). The

slopes of the descending side of the loop are (m6= 0.67, m7= 0.85, m8= 0.9, m9= 1.01, m10=

1.057). The intercepts are (γ1 = −6.8, γ2 = −3.31, γ3 = −2.58, γ4 = −2.8, γ5 = −2.9, γ6 =

6.8, γ7= 3.31, γ8= 2.58, γ9= 2.8, γ10= 2.9 ). The weight vector of the operator is perturbed for

the simulation purpose by adding 0.15 for each element tow. This perturbation changes the slopes

of the loop and is equivalent to uncertainties as (∆m1 = 0.016, ∆m2 = 0.03, ∆m3 = 0.05, ∆m4 =

0.07, ∆m5 = 0.08, ∆m6 = 0.016, ∆m7 = 0.03, ∆m8 = 0.05, ∆m9 = 0.07, ∆m10 = 0.08) and

(∆γ1=−1.0313, ∆γ2=−0.7, ∆γ3=−0.46, ∆γ4=−0.413, ∆γ5=−0.7, ∆γ6= 1.0313, ∆γ7=

0.7, ∆γ8 = 0.46, ∆γ9 = 0.413, ∆γ10= 0.7).

3.4.1 Simulation Results versus Analytical Results

Fig. 3.5 and Fig. 3.6 show the simulated tracking errors results when the feedforward branch is

included, for a reference consisting of two sinusoids and a sawtooth reference signal, respectively.

We observe that, in each case, the tracking error is also periodic with the same period as the refer-

ence. We also observe that the tracking error has a similar waveform as the reference input but it is

distorted when the slope changes from one segment to another. This change in slopes is more obvi-

ous in the case of triangular waveform. Fig. 3.7 depicts the tracking errors for the same triangular
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Figure 3.5: Simulations results on tracking a periodic reference composed of two sinusoidal signals
of 25 Hz and 50 Hz.
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Figure 3.6: Simulation results on tracking a sawtooth reference of 5 Hz.
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Figure 3.7: Simulation results on tracking a sawtooth reference with and without feedforward
compensation, under perfect hysteresis inversion.

input reference of 5 Hz with and without feedforward term, where perfect hysteresis inversion is

assumed. From these results we confirm that feedforward-augmented feedback outperforms feed-

back alone. Further simulation results involving the sawtooth reference are also depicted in Fig.

3.8, where we compare the tracking errors when uncertainty is present and absent in the hysteresis

model. The uncertainty is introduced by perturbing the weights of play operators, as explained

above. Here the feedforward term is included in the controller. From Fig. 3.8, the influence of

the model uncertainty on the tracking error is evident. The size of the error for each segment is

dependent on the segment slope and may be large or small depending on the value ofm at that

segment.

In Table 3.1, we compare the maximum amplitudes of the tracking error, when the reference
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Figure 3.8: Simulation results on tracking a sawtooth reference when uncertainty is present/absent
in the hysteresis model.

0.1 1 10 100 1000
0

0.5

1

1.5

2

2.5

Frequency ( Hz )

M
ax

im
um

  t
ra

ck
in

g 
er

ro
r 

( 
 µ

 m
 )

 

 
Simulation
Analytical

Need a better approximation
 at high fequencies

Error is
 almost constant

Figure 3.9: Comparison of simulation and analytical results on the tracking error as the reference
frequency is varied.
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signal is a sinusoid with amplitude of 50µm and its range of frequencies is 1–1000 Hz. Here we

adopt the control scheme with the feedforward term and consider the model uncertainty as dis-

cussed earlier. The gains for the proportional-integral controller are chosen aski = 50 andkp = 3.

Moreover, a comparison between simulation and analytical results is provided. These results are

also plotted in Fig. 3.9 for a better illustration. The identified second-order plant is used in the

calculation of the analytic results. The value ofϕ is provided in Table 3.1, which shows that it has

a little effect on calculating the error especially at high frequencies. The maximum contribution of

ψ to the error, which is calculated but not included in Table 3.1 is |A12ψ|max= 0.0948. This term

is almost not changing by increasing the frequency. From Table 3.1 and Fig. 3.9, we notice the

following. First, for this particular example, theϕ term is small and can be ignored for all frequen-

cies of 10 Hz or higher. Second, the error obtained in simulation increases with the frequency at

low frequencies, then it remains almost constant for the mid-frequency range, and then it starts to

increase again with frequency. This is consistent with the error bound we calculated in the previous

section. Third, the calculated error bound is close to the error from the simulation. This bound is

good up to 200 Hz, because we useO(ε2) approximation which is valid forω ≪ 1/ε. It is clear

from these results that when frequencies become closer to the closed-loop system bandwidth, we

should consider approximations higher thanO(ε2) approximation.

3.4.2 Experimental Results

In experiments, sinusoidal signals are used as reference trajectories in order to compare the meth-

ods with and without the feedforward term. Fig. 3.10 shows the results for the cases of tracking

10 Hz, 35 Hz, and 50 Hz signals with amplitude of 20µm. For the best results, the control gains

are chosen aski = 2000 andkp = 1.5. The maximum tracking error is about 0.05µm and slightly
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Figure 3.10: Experimental results on the tracking error forsinusoidal references of different fre-
quencies.

increases through the range from 10 Hz to 35 Hz. We see a large increase of about 0.08µm at 50

Hz. We also compare the tracking performance of the experimental results with simulations for

the range of frequencies from 1 Hz-to- 200 Hz. The results which is plotted in Fig. 3.11 show

a similar qualitative behavior of the tracking error. The tracking performance of triangular and a

multi-sine signals are shown in Fig. 3.12 and Fig. 3.13, respectively. In Table 3.2, we provide more

experimental results and compare the maximum tracking error between the cases when the feed-

forward compensation is added or removed. Fig. 3.14 shows a comparison of tracking error when

the feedforward is added or removed for the triangular and multi-sine inputs. The results confirm

our analysis that the scheme with the feedforward componentoutperforms the one without it at all
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Figure 3.11: Comparison of simulation and experimental results on the tracking error as the refer-
ence frequency is varied.

frequencies and with different waveforms. In addition, we note that the frequency-dependence of

the maximum tracking error follows well the trend predictedby our analytical results.

3.5 Mathematical Derivations

In this section, we will present the long derivations for theprevious sections of Chapter 3.

3.5.1 Slow and Fast Variables in ξ and η Coordinates

TheH andL matrices of (3.19) are obtained by solving the equations [74]:

A21−A22L + εL A11− εL A12L = 0 (3.51)

ε(A11−A12L )H −H (A22+ εL A12)+A12= 0 (3.52)
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Figure 3.12: Experimental results on the tracking of a triangular reference.
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Figure 3.13: Experimental results on the tracking of a multi-sine reference with frequencies of 15
Hz and 30 Hz.
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Following similar steps as in [74], we can show that the solutions of (3.51) and (3.52) have off-

diagonal elements equal zero, and derive the system dynamics in the new coordinates as







ξ̇

εη̇






=







A11−L A12 0

0 A22+ εL A12













ξ

η







+







ε(A11−L A12)H W−H B2+(In− εH L )B1

B2+ εL B1− (A22+ εL A12)W






yr

+







εH W

−εW






ẏr +







−H γ
′

γ
′






(3.53)

whereA0 = A11−A12A−1
22 A21. It is often helpful that, instead of using the exact solutions ofL

andH , we use their approximations [74]. It is shown in [74] thatL andH can be approximated

by L = L+εA−2
22 A21A0+O(ε2) andH =H−εA1+O(ε2), respectively, where,L=A−1

22 A21,

H = A12A−1
22 , A1 = (A0H −HLA21)A

−1
22 . By substituting the approximations ofL andH into

(3.53) and ignoring theO(ε2) terms, we obtain anO(ε2) approximation ofξ̇ andεη̇ shown in

(3.21) and(3.22).

3.5.2 Solution of ξ0

In order to see how the solution develops and the error propagates from one hysteresis segment to

another, we solve the equations for each segment by dividingthe time into intervals that correspond

to the time periods of the hysteresis staying in different segments. The solution of (3.24) for
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ti ≤ t < ti+1 is

ξ0(t) = eA0i(t−ti)ξ0(ti)+
∫ t

ti
eA0i(t−τ)(B0iAcsin(ωτ)−Hiγ

′
i )dτ (3.54)

which can be readily derived as

ξ0(t) = eA0i(t−ti)ξ0(ti)+
Hiγ

′
i

A0i
[1−eA0i(t−ti)]

−eA0i(t−ti)B0iAc[
−A0i

A2
0i +ω2

sin(ωti)−
ω

A2
0i +ω2

cos(ωti)]

+B0iAc[
−A0i

A2
0i +ω2

sin(ωt)−
ω

A2
0i +ω2

cos(ωt)] (3.55)

With the assumption that the solution is periodic, we solveξ0 by starting at one segmenti and

continue solving for alln segments until we return back to segmenti after a periodT. At time

t = ti+1, Eq. (3.55) becomes

ξ0(ti+1) = eA0i(ti+1−ti)ξ0(ti)+
Hiγ

′
i

A0i
[1−eA0i(ti+1−ti)])

−eA0i(ti+1−ti)B0iAc[
−A0i

A2
0i +ω2

sin(ωti −
ω

A2
0i +ω2

cos(ωti)]

+B0iAc[
−A0i

A2
0i +ω2

sin(ωti+1)−
ω

A2
0i +ω2

cos(ωti+1)] (3.56)
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By accumulation of the foregoing expression overn segment we obtain

ξ0(tn+i) = e
A0,i+n−1(tn+i−tn+i−1)e

A0,n+i−2(tn+i−1−tn+i−2) . . .eA0i(ti+1−ti)
[

ξ0(ti)

−
Hiγ

′
i

A0i
−B0iAc[

−A0i
A2

0i +ω2
sin(ωti)−

ω
A2

0i +ω2
cos(ωti)]





+e
A0,i+n−1(tn+i−tn+i−1)e

A0,i+n−2(tn+i−1−tn+i−2) . . .e
A0,i+1(ti+2−ti+1)



(
Hiγ

′
i

A0i
−

Hi+1γ
′
i+1

A0,i+1
)+Ac[(

−B0iA0i
A2

0i +ω2
+

B0,i+1A0,i+1

A2
0,i+1+ω2

)sin(ωti+1)− (
B0iω

A2
0i +ω2

−
B0,i+1ω

A2
0,i+1+ω2

)cos(ωti+1)]



+ · · ·+e
A0,i+n−1(tn+i−tn+i−1)



(
Hi+n−2γ

′
i+n−2

A0,i+n−2
−

Hi+n−1γ
′
i+n−1

A0,i+n−1
)+Ac[(

−B0,i+n−2A0,i+n−2

A2
0,i+n−2+ω2

+
B0,i+n−1A0,i+n−1

A2
0,i+n−1+ω2

)sin(ωtn+i−1)− (
B0,i+n−2ω

A2
0,i+n−2+ω2

−
B0i+n−1ω

A2
0,,i+n−1+ω2

)cos(ωtn+i−1)]



+
Hi+n−1γ

′
i+n−1

A0,i+n−1

+B0,i+n−1Ac[
−A0,i+n−1

A2
0,i+n−1+ω2

sin(ωtn+i)−
ω

A2
0,i+n−1+ω2

cos(ωtn+i)] (3.57)
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Because the solution is periodic, we can replacetn+i by ti in the left side of equation (3.57) and

rewriting it in terms ofξ0(ti):

ξ0(ti) =
M

1−M



−
Hiγ

′
i

A0i
−B0iAc[

−A0i
A2

0i +ω2
sin(ωti)−

ω
A2

0i +ω2
cos(ωti)]





+
1

1−M

(

e
A0,i+n−1(tn+i−tn+i−1)e

A0,i+n−2(tn+i−1−tn+i−2) · · ·

e
A0,i+1(ti+2−ti+1)



(
Hiγ

′
i

A0i
−

Hi+1γ
′
i+1

A0,i+1
)+Ac[(

−B0iA0i
A2

0i +ω2
+

B0,i+1A0,i+1

A2
0,i+1+ω2

)sin(ωti+1)

−(
B0iω

A2
0i +ω2

−
B0,i+1ω

A2
0,i+1+ω2

)cos(ωti+1)]



+ . . .

+e
A0,i+n−1(tn+i−tn+i−1)



(
Hi+n−2γ

′
i+n−2

A0,i+n−2
−

Hi+n−1γ
′
i+n−1

A0,i+n−1
)

+Ac[(
−B0,i+n−2A0,i+n−2

A2
0,i+n−2+ω2

+
B0,i+n−1A0,i+n−1

A2
0,i+n−1+ω2

)sin(ωtn+i−1)

−(
B0,i+n−2ω

A2
0,i+n−2+ω2

−
B0i+n−1ω

A2
0,,i+n−1+ω2

)cos(ωtn+i−1)]



+
Hi+n−1γ

′
i+n−1

A0,i+n−1

+B0,i+n−1Ac[
−A0,i+n−1

A2
0,i+n−1+ω2

sin(ωtn+i)−
ω

A2
0,i+n−1+ω2

cos(ωtn+i)]



 (3.58)

whereM =e
A0,i+n−1∆i+n−1 · · ·e

A0,i+1∆i+1e
A0,i∆i . By insertingξ0(ti) of (3.58) into (3.55),

we obtain the solution ofξ0(t) at the steady state as

ξ0(t) = ϕ +
Hiγ

′
i

A0i
+B0iAc(

−A0i
A2

0i +ω2
sin(ωt)

−
ω

A2
0i +ω2

cos(ωt)) (3.59)
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whereϕ is the periodic decaying term defined as

ϕ =
eA0i(t−ti)

1−M



−
Hiγ

′
i

A0i
−B0iAc

[

−A0i
A2

0i +ω2
sin(ωti)−

ω
A2

0i +ω2
cos(ωti)

]

+e
A0,i+n−1(tn+i−tn+i−1)e

A0,i+n−2(tn+i−1−tn+i−2) . . .e
A0,i+1(ti+2−ti+1)



(
Hiγ

′
i

A0i
−

Hi+1γ
′
i+1

A0,i+1
)+Ac[(

−B0iA0i
A2

0i +ω2
+

B0,i+1A0,i+1

A2
0,i+1+ω2

)sin(ωti+1)− (
B0iω

A2
0i +ω2

−
B0,i+1ω

A2
0,i+1+ω2

)cos(ωti+1)]



+ · · ·

+e
A0,i+n−1(tn+i−tn+i−1)



(
Hi+n−2γ

′
i+n−2

A0,i+n−2
−

Hi+n−1γ
′
i+n−1

A0,i+n−1
)

+Ac[(
−B0,i+n−2A0,i+n−2

A2
0,i+n−2+ω2

+
B0,i+n−1A0,i+n−1

A2
0,i+n−1+ω2

)sin(ωtn+i−1)

−(
B0,i+n−2ω

A2
0,i+n−2+ω2

−
B0i+n−1ω

A2
0,,i+n−1+ω2

)cos(ωtn+i−1)]



+(
Hi+n−1γ

′
i+n−1

A0,i+n−1
)

+B0,i+n−1Ac[
−A0,i+n−1

A2
0,i+n−1+ω2

sin(ωtn+i)−
ω

A2
0,i+n−1+ω2

cos(ωtn+i)]



 (3.60)

3.5.3 Calculating the Bound on ϕ

We assume that there is a negative constant−a such thatA0i 6−a . Then for alli, eA0iσ 6 e−aσ .

M is bounded asM ≤ e−aT. We substitute the bound onM in (3.60) and then replace the duration

for each segment by∆i = ti+1− ti and the sum of∆i ’s over one cycle byT, which results in, for
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ti ≤ t < ti+1,

|ϕ| ≤
1

1−e−aT





∣

∣

∣

∣

∣

∣

−
Hiγ

′
i

A0i
−B0iAc

[

−A0i
A2

0i +ω2
sin(ωti)−

ω
A2

0i +ω2
cos(ωti)

]

∣

∣

∣

∣

∣

∣

+e−a(T−∆i)

∣

∣

∣

∣

∣

∣

(
Hiγ

′
i

A0i
−

Hi+1γ
′
i+1

A0,i+1
)

+Ac[(
−B0iA0i
A2

0i +ω2
+

B0,i+1A0,i+1

A2
0,i+1+ω2

)sin(ωti+1)− (
B0iω

A2
0i +ω2

−
B0,i+1ω

A2
0,i+1+ω2

)cos(ωti+1)]

∣

∣

∣

∣

∣

∣

+ · · ·

+e−a∆n

∣

∣

∣

∣

∣

∣

(
Hi+n−2γ

′
i+n−2

A0,i+n−2
−

Hi+n−1γ
′
i+n−1

A0,i+n−1
)+Ac[(

−B0,i+n−2A0,i+n−2

A2
0,i+n−2+ω2

+
B0,i+n−1A0,i+n−1

A2
0,i+n−1+ω2

)sin(ωtn+i−1)− (
B0,i+n−2ω

A2
0,i+n−2+ω2

−
B0i+n−1ω

A2
0,,i+n−1+ω2

)cos(ωtn+i−1)]

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

(
Hi+n−1γ

′
i+n−1

A0,i+n−1
)

+B0,i+n−1Ac[
−A0,i+n−1

A2
0,i+n−1+ω2

sin(ωtn+i)−
ω

A2
0,i+n−1+ω2

cos(ωtn+i)]

∣

∣

∣

∣

∣

∣



 (3.61)

Let us denote the right hand side byK . Thenϕ is bounded at any time by this constantK , |ϕ|6

K . The components ofϕ, which are described in Eq. (3.60), are functions of eitherB0i which

are bounded by|B0|maxgiven in (3.44) orHiγ
′
i where we can determine its bound|(Hγ

′
)|maxby

inserting the matrix expressions. Note that

Hiγ
′
i =−C[A−kp

mi +∆mi
mi

BC]−1B(
mi∆γi − γi∆mi

mi
)

=
−h(mi∆γi − γi∆mi )

1+kp(mi +∆mi )h
(3.62)
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The bound onHiγ
′
i of all segments can be obtained as

|(Hγ
′
)|max≤

h|γmax||∆m|max+mmax∆γmax|

1+kp(mmin)h
(3.63)

By replacing|B0i | by |B0|max andHiγ
′
i by |(Hγ

′
)|max in (3.61) we get the upper bound for all

segments|ϕ| ≤ |ϕ|max. However, this bound is very conservative and might not be useful in

calculating the bound on the error. It is noted from Table 3.1that ϕ is small particularly at high

frequency and can be ignored. This is can be explained from (3.60) as follows; at a sufficiently

large frequency the exponential terms inside the parenthesis becomes close to one. We also ob-

serve that every term inside the parenthesis has a similar term with opposite sign that cancels it out

when the exponential terms becomes close to one.

3.5.4 Solution for ξ1

To solve forξ1, insertξ0 from (3.59) into (3.25)

ξ̇1 = A0iξ1−HLA0i [ϕ

−
Hiγ

′
i

A0i
+B0iAc(

A0i
A2

0i +ω2
sin(ωt)−

ω
A2

0i +ω2
cos(ωt))]

+ [A0HW−HLB1−A1B2]Acsin(ωt)+HWAcω cos(ωt) (3.64)

By combining similar terms, we can rewrite (3.64) as

ξ̇1 = A0ξ1+α1sin(ωt)+α2cos(ωt)+α3ω cos(ωt)+Q (3.65)
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whereQ is a constant andα1, α2, andα3 are bounded uniformly inω. We notice form (3.65)

that ξ̇1 has the same form aṡξ0 of (3.24) except with an extra term which comes from ˙yr and

is proportional to the frequencyω. Sinceξ1 in the solution of the error will be multiplied byε,

it matters in determining the bound only if any terms of its solution can be approximated by a

quantity that is proportional toω. However, through similar derivation as forξ0, we will have a

solution toξ1 with extra terms of sine and cosine terms multiplied byω. These terms appears as

follows

α3ω(
ω

A2
0i +ω2

sin(ωt)+
A0i

A2
0i +ω2

cos(ωt))

which are bounded by a constant independent of the frequencyand hence belong to theeε terms

of Eq. (3.32).

3.5.5 Fast Variable Analysis

Now we need to express the fast variableη using its model (3.22) by findingO(1) andO(ε) terms.

Let us simplify (3.22) as

εη̇ = Aηi η +Bηi yr + γ
′
i − εWẏr (3.66)
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whereAη = (A22+ εLA12), Bη = B2+ εLB1− (A22+ εLA12)W). The solution of (3.66) for

ti ≤ t < ti+1 is

η(t) = e
Aηi (t−ti)/εη(ti)+

1
ε

∫ t

ti
e
Aηi (t−τ)/ε

[Bηi yr + γ
′
i

−εWẏr (τ)]dτ

= e
Aηi (t−ti)/εη(ti)−A−1

ηi
e
Aηi (t−τ)/ε

|tti
γ
′
i

+
1
ε

∫ t

ti
e
Aηi (t−τ)/ε

Bηi yr (τ)dτ

−

∫ t

ti
e
Aηi (t−τ)/ε

Wẏr (τ)dτ (3.67)

In order to simplify the integration of (3.67), we use the change of variablesτ = t − εσ

η(t) = e
Aηi (t−ti)/εη(ti)−A−1

ηi
γ
′
i +A−1

ηi
e
Aηi (t−ti)/εγ

′
i

+
∫ (t−ti)/ε

0
e
Aηi σ Bηi yr (t− εσ)dσ

−ε
∫ (t−ti)/ε

0
e
Aηi σWẏr (t − εσ)dσ (3.68)

With integration by parts, the first integral becomes

∫ (t−ti)/ε

0
e
Aηi σ Bηi yr (t− εσ)dσ

= A−1
ηi

e
Aηi σ Bηi yr (t− εσ)|

(t−ti)/ε
0

−

∫ (t−ti)/ε

0
A−1

ηi
e
Aηi σ Bηi

d
dσ

(yr (t− εσ))dσ (3.69)
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By simplifying the integration in (3.69)

∫ (t−ti)/ε

0
A−1

ηi
e
Aηi σ Bηi

d
dσ

(yr (t− εσ))dσ

=−εA−2
ηi

e
Aηi σ Bηi ẏr (t − εσ)|

(t−ti)/ε
0

+
∫ (t−ti)/ε

0
ε2A−2

ηi
e
Aηi σ Bηi

d2

dσ2
(yr (t− εσ))dσ

=−εA−2
ηi

e
Aηi (t−ti)/ε

Bηi ẏr (ti)

+ εA−2
ηi

Bηi ẏr (t)+O(ε2) (3.70)

Then we insert (3.70) in (3.69) to obtain

∫ (t−ti)/ε

0
e
Aηi σ Bηi yr (t− εσ)dσ

= A−1
ηi

e
Aηi (t−ti)/ε

Bηi yr (ti)−A−1
ηi

Bηi yr (t)

+ εA−2
ηi

e
Aηi (t−ti)/ε

Bηi ẏr (ti)− εA−2
ηi

Bηi ẏr (t)+O(ε2) (3.71)

Similarly, we can simplify the second integral in (3.68) to obtain

ε
∫ (t−ti)/ε

0
e
Aηi σWẏr (t− εσ)dσ

= εA−1
ηi

e
Aηi (t−ti)/ε

Wẏr (ti)− εA−1
ηi

Wẏr (t)

+ ε2A−2
ηi

e
Aηi (t−ti)/ε

Wẏr (ti)− ε2A−2
ηi

Wẏr (t)+O(ε3) (3.72)

82



We then insert (3.71) and (3.72) into (3.68) to obtain

η(t) = e
Aηi (t−ti)/ε

(

η(ti)+A−1
ηi

γ
′
i +A−1

ηi
Bηi yr (ti)

+ εA−2
ηi

Bηi ẏr (ti)− εA−1
ηi

Wẏr (ti)−A−1
ηi

γ
′
i

)

−A−1
ηi

Bηi yr (t)+ εA−1
ηi

Wẏr (t)− εA−2
ηi

Bηi ẏr (t)+O(ε2) (3.73)

To obtain the initial valueη(ti), we do not need to solve (3.73) by getting the accumulation around

one cycle because we assumeε is small and the decaying within each segments makes the tran-

sients ofO(ε) order. Thus, initial values of the current segment,i = i +n, only depends on the

driving terms of the previous segment,i +n−1.

η(ti) = e
Aηi+n−1(ti−ti+n−1)/ε

(

η(ti+n−1)+A−1
ηi+n−1

γ
′
i+n−1

+A−1
ηi+n−1

Bηi+n−1yr (ti+n−1)+ εA−2
ηi+n−1

Bηi+n−1ẏr (ti+n−1)

−εA−1
ηi+n−1

Wẏr (ti+n−1)
)

−A−1
ηi+n−1

γ
′
i+n−1

−A−1
ηi+n−1

Bηi+n−1yr (ti)− εA−2
ηi+n−1

Bηi+n−1ẏr (ti)

+εA−1
ηi+n−1

Wẏr (ti)+O(ε2) (3.74)

Now by ignoring the term in the parenthesis in (3.74) and substituting the remaining term ofη(ti)

into (3.73), we obtain

η(t) = ψ −A−1
ηi

γ
′
i −A−1

ηi
Bηi yr (t)

+εA−1
ηi

Wẏr (t)− εA−2
ηi

Bηi ẏr (t)+O(ε2) (3.75)
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where,

ψ = e
Aηi (t−ti)/ε

(

−A−1
ηi+n−1

γ
′
i+n−1−A−1

ηi+n−1
Bηi+n−1yr (ti)

+εA−1
ηi+n−1

Wẏr (ti)− εA−2
ηi+n−1

Bηi+n−1ẏr (ti)+A−1
ηi

γ
′
i

+A−1
ηi

Bηi yr (ti)− εA−1
ηi

Wẏr (ti)+ εA−2
ηi

Bηi ẏ(ti)
)

(3.76)

The termψ is bounded as follows; First, the highest value happens in the beginning of each

segmenti at time t = ti , which makes the exponential term equals to one. Second, we assume

|∆m|< m. With this assumption the terms which are function ofyr or ẏr cancel out because every

term has a similar term with opposite sign and close to it in value. The contribution of remaining

term,A−1
ηi

γ
′
i −A−1

ηi+n−1
γ
′
i+n−1 to the tracking error is calculated by multiplying it byA12. This

results inHiγ
′
i −Hi+n−1γ

′
i+n−1. Looking back to simplifications of these terms from (3.62),we

require that the gainKp be high enough to reduce the value of|mi∆γi − γi∆mi |.

Then for all segments, the bound|ψ|maxis approximated by

|ψ|max≤ |Hiγ
′
i −Hi+n−1γ

′
i+n−1|max (3.77)

Usingyr = Acsin(ωt) in (3.29) and including the subscripti for the parameters, we have the

expression ofη for the time fromti to ti+1

η = ψ −A−1
η,iBη,iAcsin(ωt)−A−1

η,iγ
′
+ ε(A−1

η,iW

−A−2
η,iBη,i)Acω cos(ωt)+O(ε2) (3.78)
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3.5.6 Calculating the Bound on the Frequency-dependent Term of the Er-

ror

To determine the upper bound on the third termε(HiA
−1
22,iB2,i)ωAc of (3.38), we replaceHi by

A12A−1
22,i andB2,i By Bβ2, whereβ2 =

mi+∆mi
mi

(g+kp). We also replaceA−1
22,i by A−Bβ1C,

whereβ1 =
mi+∆mi

mi
kp and simplify the expressions

HiA
−1
22,iB2,i =A12A−2

22,iB2,i

=−

[

CA−2B+CA−2(BC)2A−2B(
β1

1+hβ1
)2

+2CA−2B(
β1

1+hβ1
)CA−1B

]

β2 (3.79)

BecauseC is a row vector andB is a column vector, the multiplications of all the matrices in

(3.79) are scalar quantities. let us denote them byq1, q2 andq3 and replaceβ1 andβ2 by their

expressions.

HiA
−1
22,iB2,i =−

[

q1+q2(
(mi +∆mi )kp

mi +kp(mi +∆mi )h
)2

+q3(
(mi +∆mi )kp

mi +kp(mi +∆mi )h
)

]

mi +∆mi
mi

(g+kp) (3.80)

Let us denote the bound onHiA
−1
22,iB2,i By (HA−1

22 B2)max for all segments. This is obtained by

substituting the largest slopemmax and uncertainty|∆m|max in the numerator and the smallest
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mmin in the denominator of (3.80)

(HA−1
22 B2)max=−

mmax+ |∆m|max
mmin

(g+kp)
[

q1

+q2(
(mmax+ |∆m|max)kp

mmin(1+kph)
)2

+q3(
(mmax+ |∆m|max)kp

mmin(1+kph)
)

]

(3.81)

We notice from (3.80), in the case when|∆mi | ≪ mi such that we can ignore|∆mi |, Eq. (3.80)

becomes independent of the slopes and uncertainties. In this case the term ofHiA
−1
22,iB2,i becomes

constant through all the segments.

3.6 Summary

Hysteresis nonlinearity is affecting the overall trackingperformance of many applications. Anal-

ysis of tracking error is important for understanding different factors that can affect its behavior.

In this Chapter, we analyzed a closed-loop system involvinghysteresis inversion, proportional-

integral feedback control, and a constant-gain feedfroward element. Some researchers in the lit-

erature use optimization [49], neural networks [61], or trial-and-error to determine bothki and

kp Depending on the uncertainties on the operator parameters.In this work we found criteria for

choosing those gains. For instance, the ratioki/kp should be high to guarantee good performance,

which agrees with the results in [49, 61]. Singular perturbation analysis was used in order to sep-

arate the fast dynamics of the plant from slow dynamics of thecontroller. The analysis quantifies

the effect of the reference frequency on the tracking performance, which is important in applica-

tions such as high-speed nanopositioning. Simulation results were compared with the calculated

ones based on the analytical expressions. The agreement between the simulation and analytical
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results provides support for the analysis. Experimental results further strengthens the validity of

the analysis.
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Table 3.1: Simulation, analytical, and experimental results on maximum tracking errors inµm for
a system involving a perturbed PI-operator and a second-order plant.

frequency Simulation Analytical ϕ
Max |e(t)| Max |e(t)| Max |ϕ|

1 Hz 0.177 0.26 0.019
10 Hz 0.375 0.57 0.009
20 Hz 0.38 0.58 0.004
50 Hz 0.39 0.586 0.001

80 Hz 0.41 0.592 3 x 10−4

100 Hz 0.42 0.597 5 x 10−5

150 Hz 0.475 0.61 2.6 x 10−4

200 Hz 0.53 0.63 4.2 x 10−4

400 Hz 0.82 0.77 6.9 x 10−4

600 Hz 1.2 0.95 7.3 x 10−4

800 Hz 1.66 1.16 7.7 x 10−4

1000 Hz 2.2 1.38 7.9 x 10−4

Table 3.2: Experimental results on maximum tracking errorsin µm with and without feedforward
compensation.

frequency With feedforward Without feedforward

Max |e(t)| Max |e(t)|
1 Hz 0.02 0.025
10 Hz 0.04 0.2
20 Hz 0.045 0.38
50 Hz 0.08 0.8
80 Hz 0.11 1.4
100 Hz 0.12 1.7
150 Hz 0.32 2.2
200 Hz 0.6 3.0
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Chapter 4

Sliding Mode Control Design

4.1 Introduction

In this chapter, we present a Sliding-Mode control (SMC) scheme for tracking of systems with

hysteresis. SMC is attractive because of its robustness against disturbances and parameter uncer-

tainties [75]. Some existing works on the SMC methods for piezo-actuated systems incorporate

hysteresis inversion to reduce the amount of uncertainty introduced by hysteresis [56, 57], while

others do not [76, 58]. In our work, we will integrate the inversion control with SMC control as

presented in the general form in Fig. 4.1.

In many SMC designs, the control signal has two components, the switching control, which

is in the form ofβ sgn(.) and the equivalent control. The switching control is used todominate

the disturbances while the equivalent control is used to compensate for the known terms. Existing

work [76, 56, 57, 58, 59] typically uses a constant coefficient β for the switching function. Fur-

thermore, no systematic approaches have been given for deriving such coefficients. In contrast to

existing work, the switching component of the controller inour work is obtained by using an upper

bound on the inversion error, computed based on the estimateof uncertainties in the hysteresis

model and the control signal. The control signal is time-dependent and varies with the positioning

range. This allows implementation with a coefficient which is self-adjusting.

In this chapter we provide analysis of the tracking error fora kth order system. To avoid con-
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Figure 4.1: A general control framework for systems preceded by hysteresis.

trol chattering, the sliding mode control is implemented with the signum function replaced by a

high-slope saturation function, which acts as a high gain feedback in a boundary layer around the

switching surface. We analyze the trajectories inside the boundary layer. By design, the coeffi-

cients of the sliding surface have different orders of magnitude such that the resulting system has

a multi-time-scale structure inside the boundary layer. Wederive an analytical expression for the

tracking error at the steady state under periodic references and provide insight as to how the error

depends on the hysteresis uncertainties, reference frequency, and the controller parameters.

We have conducted simulation and experiments to validate the proposed SMC approach. In

simulation, we show that the proposed scheme is able to tracksuccessfully “irregular” references,

for different levels of parameter uncertainties. We also simulate the system with sinusoidal inputs

and show that tracking error inside the boundary layer increases with frequency at a low frequency

range then it remains constant in a mid-range after which it decreases until the resonance frequency,

where it starts to increases again. We also show that it is better to use a control that includes switch-

ing and equivalent control rather than to use only switchingcomponent. We present results on the

effect of the switching component amplitude and the boundary layer size on the performance. Ex-
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perimental results on the tracking control of a commercially available nanopositioner show close

qualitative behavior to the simulation, particularly whena rate limiter is added to the simulated

system. Experimental results also demonstrate that the presented SMC approach delivers perfor-

mance comparable to that of servocompensation [54] for sinusoidal references.

4.2 Controller Design

For a general discussion, we consider a plant with linear dynamics of orderk. The linear dynamics

are given by;

ẋ j =xj+1, 1≤ j ≤ k−1

ẋk =−ak−1xk−ak−2xk−1−·· ·−a0x1+a0
(

ud+d
)

(4.1)

wherex1 = y denotes the position. The parametersa0,a1, · · · ,ak−1 are positive. The tracking

errore1 is defined as

e1 = y−yr = x1−yr (4.2)

A bound on the inversion error can be obtained from (2.10) as

|d| ≤ k1+k0
∣

∣ud
∣

∣ (4.3)

where
|∆mmax|
|mmin|

≤ k0 and|∆dc,max| ≤ k1. To eliminate the DC error at the steady state, we add

an integrator, the state of which ise0, defined via ˙e0 = e1. Then (4.1) can be written in terms of
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the error as

ė0 =e1

ėj =ej+1, 1≤ j ≤ k−1

ėk =−ak−1(ek+y
(k−1)
r )−·· ·−a0(e1+yr )+a0

(

ud+d
)

−y
(k)
r (4.4)

The sliding surfaces is designed in terms of the error

s= ek+σk−1ek−1+ · · ·+σ1e1+σ0e0 (4.5)

The coefficientsσ0,σ1, · · · ,σk−1 are chosen such that the polynomialλk+σk−1λk−1+ · · ·+σ0

is Hurwitz. To obtain ˙s, we differentiate both sides of (4.5), substitute ˙ek from (4.4), and arrange

terms

ṡ= (σk−1−ak−1)ek+ · · ·+(σ0−a0)e1−ak−1y
(k−1)
r −·· ·−a0yr +a0

(

ud+d
)

−y
(k)
r

(4.6)

The control,ud, which is composed of two componentueq andus, can then be chosen such that

ueqeliminates all terms in (4.6) except for the uncertaintyd, which is compensated byus.

ueq(t,e) =
1
a0

[(ak−1−σk−1)ek+ · · ·+(a0−σ0)e1+ak−1y
(k−1)
r + · · ·+a0yr +y

(k)
r ]

(4.7)
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Now, we may write the controlud as the sum of an equivalent componentueq and switching

componentus control

ud = ueq+us (4.8)

where,

us=−βsgn(s) (4.9)

By inserting (4.8) into (4.3), we can write the bound ond as

|d(t)| ≤ k1+k0
∣

∣us(t)+ueq(t,e)
∣

∣

≤ k1+k0 |us(t)|+k0
∣

∣ueq(t,e)
∣

∣ (4.10)

Define

φ(|ueq(t,e)|) = k1+k0|ueq(t,e)| (4.11)

which implies

|d(t)| ≤ φ(|ueq(t,e)|)+k0|us(t)| (4.12)

Substituting (4.7) and (4.8) in (4.6), we obtain

ṡ= a0(d(t)+us(t)) (4.13)

93



For the stability analysis, we define a Lyapunov functionV = 1
2s2. Then by taking the derivative

of V, we obtain

V̇ = sṡ= a0s(d(t)+us(t))

≤ a0(|s(t)| |d(t)|+s(t)us(t))

(4.14)

Now we substitute the bound ond into (4.14)

V̇ ≤ a0
(

|s|
[

φ(|ueq(t,e)|)+k0|us|
]

+sus
)

≤ a0
(

|s|
[

φ(|ueq(t,e)|)+k0β
]

−β |s|
)

= a0
(

−
[

1−k0
]

β +φ(|ueq|)
)

|s| (4.15)

φ(|ueq(t,e)|) = k1+k0|ueq(t,e)| (4.16)

ThereforeV̇ < 0 for

β >
φ(|ueq(t,e)|)

1−k0
(4.17)

Following the discussions in Chapter 2, we assume 0≤ k0 < 1. The coefficientβ is chosen as

β (t,e)≥
φ(|ueq(t,e)|)

1−k0
+b0, whereb0 is a small positive number. By selectingβ in this way we

guarantee that any trajectory starting away from the surface s= 0 reaches it in finite time.

With the signum function in the switching controller (4.9),the error would asymptotically con-

verge to zero. The signum function, however, results in chattering in practice. Therefore, we

replace the signum function with the saturation function given by

us=−βsat(s/µ) (4.18)
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whereµ determines the size of the boundary layer|s| ≤ µ.

To analyze the performance of the control with the switchingcomponent (4.18), we examine the

derivative of the Lyapunov functionV = 1
2s2 outside the boundary layer.

Plugging (4.18) into the first inequality (4.15), we have

V̇ ≤ a0(|s|[φ(|ueq(t,e)|)+k0|−βsat(s/µ)|]−βssat(s/µ)) (4.19)

Then for|s| ≥ µ, we get

V̇ ≤ a0
(

−
[

1−k0
]

β +φ(|ueq|)
)

|s| (4.20)

Thus, with the sameβ (t,e) in (4.17),|s| will decrease until it enters the boundary layer|s| ≤ µ in

finite time and never leaves it thereafter.

Another way to design the control is to use a constantβ . This requires us to limit the system

variables to the compact setΩ = {ηTPη ≤ c1}×{|s| ≤ c2}, whereη = [e0 e1 · · · ek−1], η̇ =

Aη +Bs, c1 andc2 are constants andP is the solution of the Lyapunov equationPA+ATP=−I .

For more details refer to [73].

4.2.1 System Scaling

When the linear dynamics have a large bandwidth, as in the nanopositioner that will be used later

in the simulation and experiments, it is beneficial to normalize the model. We show this for a

second-order-system, which can be readily generalized forhigher-order ones. Withωn as the

natural frequency of the system , we havea0 = ω2
n anda1 = 2ζ ωn. The augmented integral
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controlė0 = e1. The closed-loop system is given by

ė0 =e1

ė1 =e2

ė2 =−a1(e2+ ẏr )−a0(e1+yr )+a0
(

ud+d
)

− ÿr (4.21)

For scaling the system we apply the change of variablesτ =ωnt, z0=e0ωn, z1=e1, andz2=
e2ωn .

This will result in a transformed system

d z0
dτ

=z1

d z1
dτ

=z2

d z2
dτ

=−2ζz2−z1+ud+d−
1

ωn
(ÿr +2ζ ωnẏr +ω2

nyr ) (4.22)

Now for the transformed system, with the surface chosen ass= z2+ σ̌1z1+ σ̌0z0 and for a bound-

ary layer constanťµ , the switching component of the control is

us=−β sat(
s
µ̌
) =−β sat(

z2+ σ̌1z1+ σ̌0z0
µ̌

) (4.23)

Then we substitute the original coordinates in (4.23) to obtain

us=−β sat(
e2+ σ̌1ωne1+ σ̌0ω2

ne0
µ̌ωn

)

=−β sat(
e2+σ1e1+σ0e0

µ
) (4.24)
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From (4.24), we can see that the parameters of the sliding surface for the non-scaled system are

related to those of the scaled one asσ0= σ̌0ω2
n, σ1= σ̌1ωn, andµ = µ̌ωn. This makes the choice

of non-scaled parameters in the order ofωn as we will see in the simulation and experimental

sections.

4.3 Determining the tracking error inside the boundary layer

In this section we investigate the tracking error inside theboundary layer whenβ is constant. Inside

the boundary layer|s| < µ, βsat(s/µ) = βs
µ . To find an expression for ˙e= [ė0 ė1 · · · ėk]

T inside

the boundary layer, we insertd from (2.10) intoėk of (4.4), substitute bothueqandus=
−βs

µ into

ėk, and simplify terms. Note that the differential equations are given for any segmenti = 1,2, · · · , l

in the hysteresis-loop andl is the number of segments.

ėk =[(1+
∆mi
mi

)(
−a0β

µ
−σk−1)+ak−1

∆mi
mi

]ek+[(1+
∆mi
mi

)(
−a0βσk−1

µ
−σk−2)

+ak−2
∆mi
mi

]ek−1+ · · ·+[(1+
∆mi
mi

)(
−a0βσ1

µ
−σ0)+a0

∆mi
mi

]e1+a0∆γi

+[(1+
∆mi
mi

)(
−a0β

µ
σ0)]e0+

∆mi
mi

y
(k)
r +ak−1

∆mi
mi

y
(k−1)
r + · · ·+a1

∆mi
mi

ẏr +a0
∆mi
mi

yr

(4.25)

We divide both sides of ˙ek of (4.25) by
a0β

µ . Then we combine small coefficients other thanσ ’s

which are multiplied by the statese1, · · · ,ek and denote them byδk,δk−1, · · · ,δ1. Eq. (4.25) can
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then be written in the form

εkėk =(1+
∆mi
mi

)
[

−(1+δk)ek− (σk−1+δk−1)ek−1−·· ·− (σ1+δ1)e1−σ0e0

]

+
µ
β

∆γi +
∆mi
mi

µ
β





y
(k)
r
a0

+
ak−1

a0
y
(k−1)
r + · · ·+

a1
a0

ẏr +yr



 (4.26)

whereεk =
µ

a0β . Defineλ =
σ0

σ1+δ1
. In order to solve the differential equations of the system,

we have the following assumptions:

1) For the system to be represented in singularly perturbed multi-time-scale structure we require

thatεk << εk−1 << · · ·<< ε1 << 1
λ , which satisfy the inequalityµ

a0β <<
1+δk

σk−1+δk−1
<<

· · ·<<
1+δ2

(σ1+δ1)
<<

σ1+δ1
σ0

.

2)The magnitude of the slope uncertainty in each segmenti is smaller than the slope itself,|∆mi |<

|mi |. This assumption implies that the segment slopes of the perturbed operator are positive.

By nested application of the singular perturbation method [74], we approximate the tracking

errore1. This process is shown below by an example of a second-order system.
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4.3.1 Example of the Second Order System

Let k= 2. By using Eq. (4.26), the singularly perturbed closed-loop system is given by

ė0 =e1

ė1 =e2

ε2ė2 =(1+
∆mi
mi

)[−(1+δ2)e2− (σ1+δ1)e1−σ0e0]+
µ
β

∆dc,i +
∆mi
mi

µ
β
(

ÿr
a0

+
a1
a0

ẏr +yr )

(4.27)

Setε2 = 0 and use the following equation to eliminatee2 from theė1 equation.

(1+δ2)e2 =− (σ1+δ1)e1−σ0e0+
µ
β

mi∆dc,i
mi +∆mi

+
∆mi

mi +∆mi

µ
β
(

ÿr
a0

+
a1
a0

ẏr +yr ) (4.28)

With the assumptionε1 << 1
λ , the reduced system can be presented as a singularly perturbed

system again by multiplying (4.28) with 1/(σ1+δ1) and takingε1 = (1+δ2)/(σ1+δ1),

ė0 =e1

ε1ė1 =−e1−
σ0

σ1+δ1
e0+

µ
(σ1+δ1)β

mi∆dc,i
mi +∆mi

+
µ

(σ1+δ1)β
∆mi

mi +∆mi
(

ÿr
a0

+
a1
a0

ẏr +yr )

(4.29)

By settingε1 = 0, we get

e1 =−
σ0

(σ1+δ1)
e0+

µ
(σ1+δ1)β

mi∆dc,i
mi +∆mi

+
µ

(σ1+δ1)β
∆mi

mi +∆mi
(

ÿr
a0

+
a1
a0

ẏr +yr ) (4.30)
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Since ˙e0 = e1, at this point we arrive at a scalar differential equation inone variablee0, which can

be solved to gete0 and then we plug the solution in (4.30) to obtain the trackingerror expression.

We can follow the procedure in this example for ak-th order system. In that case, we haveεk =

µ
a0β , εk−1 =

1+δk
σk−1+δk−1

, · · · , ε1 =
1+δ2

(σ1+δ1)
. The tracking errore1 = ė0 is given by

ė0 =−
σ0

σ1+δ1
e0+

µ
(σ1+δ1)β

mi∆dc,i
mi +∆mi

+
µ

(σ1+δ1)β
∆mi

mi +∆mi





y
(k)
r
a0

+
ak−1

a0
y
(k−1)
r + · · ·+

a1
a0

ẏr +yr



 (4.31)

Note that the solution of (4.31) only depends onσ0 andσ1 while the higher parameters of the

surface≥ σ2 are not part of the equation because they are part of the fast transient of the original

system which is approximated using singular perturbation method. The above steps show how we

obtaine0 for a given hysteresis segmenti. In order to accommodate the effect of traversing from

one segment to another, we follow the procedure described below, where we consider a sinusoidal

reference for ease of presentation.

4.3.2 Tracking Error for a Sinusoidal Reference

In order to discuss how the error scales with frequency, a sinusoidal referenceyr = Acsin(ωt)

is applied to the system. We assume that the solution of the closed-loop system converges to a

periodic function with the same periodT of the reference input. This assumption is reasonable in

view of the simulation and experimental results in this workand also in [53, 55, 56, 1, 57].

The idea of getting a solution that shows the impact of all hysteresis segments on each other

is explained by the following steps, which are analogous to those for analyzing a proportional-
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integral-controlled system discussed in chapter 3. We start by solving (4.31) for the segmenti with

initial valuee0(ti), wherei = 1, · · · , l and l is the number of segments of a hysteresis-loop at the

steady state. The final value of this segmente0(ti+1) will be inserted as the initial value for the

following segmenti +1. We continue this process around one cycle until we gete0(ti +T). The

periodicity of the solution implies thate0(ti+T)= e0(ti) and this allows us to obtain an expression

for e0(ti). We substitute the solution ofe0(t) in (4.31) to obtaine1(t), ti ≤ t < ti+1. A sinusoidal

referenceyr = Acsinωt is inserted in (4.31) to get

ė0 =−λie0+Ki +Misinωt +Nicosωt = e1 (4.32)

Without loss of generality, we can take the dimension of the linear dynamicsk as an even number,

which is common in linear systems with complex modes. From 4.31, we haveλi =
σ0

σ1+δ1
,

Ki =
µ

(σ1+δ1)β
mi∆dc,i
mi+∆mi

, Mi =
µAc

(σ1+δ1)β
∆mi

mi+∆mi
(1−

a2
a0

ω2+ · · · ωk
a0

) and

Ni =
µAc

(σ1+δ1)β
∆mi

mi+∆mi
(
a1
a0

ω −
a3
a0

ω3+ · · ·
ak−1

a0
ωk−1). Note that ifk is an odd number we

only need to redefine the quantitiesMi andNi . The solution of the first-order equation (4.32) is

e0(t) =e−λi(t−ti)e0(ti)+
Ki
λi

[1−e−λi(t−ti)]+
Mi

λ2
i +ω2

[

(λisinωt −ωcosωt)

−eλi(t−ti)(λisinωti − ωcosωti)
]

+
Ni

λ2
i +ω2

[

(λicosωt +ωsinωt)

− e−λi(t−ti)(λicosωti +ωsinωti)
]

(4.33)

To simplify expressions, let us define the quantities

ρi =
Ki
λi

[1−e−λi(ti+1−ti)]
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Ωi =
Mi

λ2
i +ω2

[

(λisinωti+1−ωcosωti+1) −eλi(ti+1−ti)(λisinωti − ωcosωti)
]

ϖi =
Ni

λ2
i +ω2

[

(λicosωti+1+ωsinωti+1) − e−λi(ti+1−ti)(λicosωti +ωsinωti)

]

The final value of the errore0(ti+1) at the segmenti can be calculated by replacingt by ti+1 in

(4.33). Then the obtained expression is used as an initial value for the segmenti +1 for the time

ti+1 < t < ti+2.

e0(ti+1) =e−λi(ti+1−ti)e0(ti)+ρi +Ωi +ϖi (4.34)

By following the same procedure, att = ti+2 we get

e0(ti+2) =e−λi+1(ti+2−ti+1)e−λi(ti+1−ti)e0(ti)+e−λi+1(ti+2−ti+1)[ρi +Ωi +ϖi ]

+ρi+1+Ωi+1+ϖi+1 (4.35)
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at t = ti+l , the errore0(ti+l ) can be written as

e0(ti+l ) =e−λi+l−1(ti+l−ti+l−1) · · ·e−λi(ti+1−ti)e0(ti)

+e−λi+l−1(ti+l−ti+l−1) · · ·e−λi+1(ti+2−ti+1)[ρi +Ωi +ϖi ]

+ · · ·

+e−λi+l−1(ti+l−ti+l−1)[ρi+l−2+Ωi+l−2+ϖi+l−2]

+ρi+l−1+Ωi+l−1+ϖi+l−1

=e0(ti) (4.36)

We obtaine0(ti) from (4.36)

e0(ti) =
1

1−M

[

e−λi+l−1(ti+l−ti+l−1) · · ·e−λi+1(ti+2−ti+1)[ρi +Ωi +ϖi ]

+ · · ·

+e−λi+l−1(ti+l−ti+l−1)[ρi+l−2+Ωi+l−2+ϖi+l−2]

+ ρi+l−1+Ωi+l−1+ϖi+l−1

]

(4.37)

whereM = e−λi+l−1(ti+l−ti+l−1) · · ·e−λi(ti+1−ti). Then, we plug (4.37) into (4.33) and

103



arrange terms to get

e0(t) =
e−λi(t−ti)

1−M

[

e−λi+l−1(ti+l−ti+l−1) · · ·e−λi+1(ti+2−ti+1)(ρi +Ωi +ϖi)

+ · · ·

+e−λi+l−1(ti+l−ti+l−1)(ρi+l−2+Ωi+l−2+ϖi+l−2)

+ ρi+l−1+Ωi+l−1+ϖi+l−1

]

+
Ki
λi

[1−e−λi(t−ti)]+
Mi

λ2
i +ω2

[

(λisinωt −ωcosωt)

−eλi(t−ti)(λisinωti − ωcosωti)
]

+
Ni

λ2
i +ω2

[

(λicosωt +ωsinωt)

− e−λi(t−ti)(λicosωti +ωsinωti)
]

(4.38)

By insertinge0(t) from (4.38) into (4.32), we obtaine1(t) as

e1(t) =
−λie

−λi(t−ti)

1−M

[

e−λi+l−1(ti+l−ti+l−1) · · ·e−λi+1(ti+2−ti+1)[ρi +Ωi +ϖi ]

+ · · ·

+e−λi+l−1(ti+l−ti+l−1)[ρi+l−2+Ωi+l−2+ϖi+l−2]

+ ρi+l−1+Ωi+l−1+ϖi+l−1

]

−Ki [1−e−λi(t−ti)]+
−λiMi

λ2
i +ω2

[

(λisinωt −ωcosωt)

−eλi(t−ti)(λisinωti − ωcosωti)
]

+
−λiNi

λ2
i +ω2

[

(λicosωt +ωsinωt)

− e−λi(t−ti)(λicosωti +ωsinωti)
]

+Ki +Misinωt +Nicosωt (4.39)

4.4 Tracking Error at the Steady State

It is concluded from Eq. (4.39) that the tracking error at thesteady state is composed of periodic

exponentially decaying terms and sinusoidal terms. The decaying terms can be made to decrease

104



fast by makingλi large enough. The initial values depend on the sinusoidal terms, which also can

be made small by choice of parameters. Let us investigate closely the effect of different parameters

on the non-decaying sinusoidal terms of (4.39)

esin(t) =
−λiMi

λ2
i +ω2

(λisinωt −ωcosωt)+Misinωt +
−λiNi

λ2
i +ω2

(λicosωt +ωsinωt)+Nicosωt

(4.40)

To see how we can use this equation to calculate the bound on the tracking error, let us use an

example with a second-order linear dynamics and substituteMi ,Ni by their equivalent expressions

Mi =
µAc

(σ1+δ1)β
∆mi

mi+∆mi
(1− 1

a0
ω2) andNi =

µAc
(σ1+δ1)β

∆mi
mi+∆mi

(
a1
a0

ω) in (4.40). We also

approximate(σ1+δ1) by σ1

esin(t) =
µAc
σ1β

∆mi
mi

[

(
ω2

λ2
i +ω2

[1−
ω2

a0
]−

λiω
λ2
i +ω2

[
a1
a0

ω])sinωt +(
ω2

λ2
i +ω2

[
a1
a0

ω]

+
λiω

λ2
i +ω2

[1−
ω2

a0
])cosωt

]

(4.41)

The error size depends on how the frequencyω is related to the parameterλi =
σ0
σ1

. We see from

(4.41) that the sinusoidal portion of the error is proportional to the segment slope uncertainty∆mi ,

the size of the reference inputAc, and the chosen size of the boundary layer. However, we can

reduce this error by increasingσ1 or β . We know thatβ is the amplitude of the switching com-

ponent of the control signal which is constrained by the actuator limits. By increasingσ1, we are

also required to increasesσ0 and this leads to using high gains.

For frequenciesω << λi , the erroresin(t)∝ ω
λi

and increases as the frequency increases. How-

ever, whenλi << ω << ωn, the error will be in the formesin
∼=

µAc
σ1β

∆mi
mi

(sinωt+ λ
ω cosωt). The
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cosine-term decreases as we increase the frequency, which causes the error to decrease. We do not

have a similar term in the case of the PI controller and that iswhy its frequency response does not

have the decreasing band. At higher frequencies as we approach the resonance frequencyωn the

terms that depend ona1 anda2 start to be effective and proportional toω causing the total error to

increase.

4.5 Simulation Results

The same commercial nanopositioner Nano-OP65 with Nano Drive controller, Mad City Labs Inc.

is used to demonstrate the results. The simulation is based on its model and its parameters identified

experimentally. The linear dynamics are fitted using experimental data with a second-order system

with characteristic equations2+a1s+a0s, wherea1 = 5.743×103 anda0= 1.717×108, yield-

ing ωn = 1.3×104 rad/s as the resonance frequency. The hysteresis is modeledwith a PI-operator

with 5 play operators with thresholdsr = [0, 0.63, 1.27, 2.54, 4.45]T and the vector of weights for

the operator iswT = [5.88, 1.58, 0.47, 0.98, 0.4]. In Chapter 2, we calculated bounds on the in-

version error due a perturbation with∆w,max= 0.15. For the weight-threshold method, the bounds

arek0= 0.1282 andk1= 10.53 while for the slope-intercept method,k0= 0.09 andk1= 3.6. Our

simulation results will be presented for the smaller bounds(i.e. with the slope-intercept method)

unless we compare the results of the two different methods. We insert a zero-order-hold (ZOH) in

the simulation, to make the results close to the experimental ones when digital control is used.

To validate the proposed approach, non-sinusoidal reference signals are generated using the

van der Pol oscillator with traveling ranges of 20µm to 50µm. Parameters for this simulation

were tuned for the best performance and found to beµ = 10× 103µm/s, σ1 = 5× 103, and
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Figure 4.2: Simulation results on tracking a van der Pol oscillator-generated reference: position,
tracking error and s trajectories. The bounds are calculated using slope-intercept method
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Figure 4.3: Simulation results on tracking a Van Der Pol oscillator-generated reference: position,
tracking error and s trajectories. The bounds are calculated using weight-threshold method
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σ0 = 25×103, while β is chosen as in (4.17) withk0 = 0.09 andk1 = 3.6 . These values are high

because of large bandwidthωn, see the scaling example of Section 4.2. The normalized values

can be calculated as explained in the system scaling section. Fig. 4.2 depicts the output, tracking

error ands for a reference that has a “fundamental frequency” of 15 Hz. From these results we

notice that the trajectories enter the boundary layer in a very short time and the output tracks the

reference after a few cycles. For comparison, we repeat the simulation with largerβ calculated

using the bounds from the weight-threshold method, which isillustrated in Fig. 4.3. The maximum

tracking error in this case, 0.2µm, compared with 0.34µm with the smallerβ . This agrees with

what we obtain from the analysis that the tracking error is proportional toβ .

We have further run the simulation with larger parameter uncertainties,∆w,max= 0.25. From

Fig. 4.4, we see that the tracking error is larger than what isachieved when∆w,max= 0.15. De-

spite the larger tracking error, the system is still stable for larger uncertainty because the bounds

used to design the controller are conservative.

The following results are given when we apply sinusoidal references to the system, because it

is convenient to use them to examine the system for its frequency response. Moreover, it is com-

mon to run nanopositioners with periodic signals. We, first,want to investigate how the tracking

error scales with the frequency. In Fig. 4.5, we compare the maximum amplitudes of the track-

ing error, when the reference signal is a sinusoid with amplitude of 25µm and frequency ranging

from 1 to 1000 Hz. The sliding surface coefficients are chosenasσ1 = 3×104 andσ0 = 3×105

while the boundary layer parameter isµ = 1×104. The value ofµ is chosen in the order ofσ1.

From Fig. 4.5, we notice that the error increases with the frequency up to 50 Hz, then it remains

almost constant for the mid-frequency range until about 400Hz, after which it starts to decrease

with the frequency until the resonance frequency. Then it increases again. The error bound of the

previous section has similar characteristics for all frequencies. The tracking errors of references
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and equivalent control to cancel the known terms (case 2).

of amplitude 25µm with frequencies of 1 Hz, 50 Hz, and 200 Hz are plotted in Fig.4.6. We can

see increases in the error with the frequency increasing from 1 Hz to 50 Hz, then the error becomes

almost constant with very slight increase as we can see by comparing the error under the references

of 50 Hz and 200 Hz.

In the SMC literature, some designers use only the switchingcomponent to dominate both

known and uncertain terms [73]. In Fig. 4.7, we demonstrate that for the same choice ofµ, the

tracking error is much smaller when we use a control law composed form equivalent control and
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Figure 4.8: Simulation results of the tracking error for different values ofβ for the same value of
µ.

switching control (case 2). This is because the switching function is only required to dominate the

uncertain terms inside the boundary layer while the known terms are canceled using the equivalent

control.

We can also show that it is better to use a smaller amplitude,β , of the saturation function.

First, whenµ is fixed andβ is increased, chattering will occur as shown in Fig. 4.8. Then we need

to increaseµ in order to maintain the ratioβ/µ (the slope of the saturation function) to prevent

chattering. Second, using a largerβ with multiple switching adversely impacts the lifetime of the

actuator.

In the experiments, we add a rate limiter as a safety component to the nanopositioning system.

This has an effect on the performance, especially at high frequency. We run simulations with and

without rate limiter to study its effect. In Fig. 4.9 , we present this comparison for 100 Hz and 200

Hz frequencies. It is obvious that the performance deteriorate when we increase the frequency at
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the present of the rate limiter.

4.6 Experimental Results

Since the velocityx2 of the nanopositioner is not measured, a linear observer is used to estimate

it. In experiments, sinusoidal signals are used as reference trajectories in order to compare the

proposed method with other methods that have been applied tothe same nanopositioner. Fig. 4.10

shows the results for the cases of tracking a 10 Hz signal. At steady state, the maximum tracking

error is 1.1%.

In Tables 4.1 and 4.2, we list more experimental results and compare them with the servo-

compensator methods. Here we cite the results for Single Harmonic Servo-Compensator (SHSC)

and Multi-Harmonic Servo-Compensator (MHSC) presented in[54], and these servocompensators

were implemented on the same nanopositioner used in this work. It can be seen that the proposed

SMC controller delivers results close to those of SHSC and behaves better at low frequencies,

while the tracking performance of MHSC is in general better than SMC and SHSC. The mean

error of the SMC method at 5 Hz, however, is much smaller than those of SHSC and MHSC. This

indicates that the imposed rate limiter in the SMC output during the experiments could have led

to larger errors at higher frequencies. We note that while the servocompensators are designed for

periodic references of given frequencies, frequency of theperiodic reference is not used in SMC

designs.

Sinusoidal signals are also used to examine the response of the system when different bounds

of the inversion error are used in the SMC design. First, we compare when the controller with and

without the equivalent controlueq. The results as shown in Fig. 4.11 confirms with simulation

results that the performance is improved when the equivalent control is included.
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Table 4.1: Comparison between maximum tracking errors for SMC–, MHSC– and SHSC– meth-
ods

frequencies SMC–controller MHSC–controller SHSC

Max |e(t)| % Max |e(t)| % Max |e(t)| %
5 Hz 0.95 0.899 1.72
25 Hz 1.7 0.881 1.85
50 Hz 2.25 1.01 1.93
100 Hz 2.75 1.57 2.38

Table 4.2: Comparison between mean tracking errors for SMC–, MHSC– and SHSC– methods

frequencies SMC–controller MHSC–controller SHSC

Mean|e(t)| % Mean|e(t)| % Mean|e(t)| %
5 Hz 0.119 0.271 0.649
25 Hz 0.62 0.268 0.707
50 Hz 0.66 0.284 0.770
100 Hz 0.83 0.352 0.815

In all experiments, a rate limiter is implemented, to protect the positioner from sudden changes

of the applied voltage. The rate limiter modifies the controlinput to meet the rate constraint, which

distorts the control signal when tracking relatively high-frequency references. At high frequency,

it introduces a phase lag between the reference signal and the output causing a larger tracking error

as shown in Fig. 4.12. We add a rate limiter to the simulation for the purpose of comparison and

we see that the frequency response in this case is similar to the experimental response as illustrated

in Fig. 4.13. It makes the tracking error increases with frequency and we do not see the flat region

as in Fig. 4.5 when the rate limiter is not used.

The bounds on the inversion error determine the amplitude ofthe saturation functionβ , which is

used to dominate the uncertainties on the system. From our analysis, we observe that by increasing

β , the error size will be smaller. On the other hand, the controller amplitude will be larger and

this is limited by the constraint of the control signal, particularly when we want to achieve a larger

positioning range. In Fig. 4.14 we use a bound withβ = 5.5. In Fig. 4.15 we useβ = 25. We
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Figure 4.11: Experimental results at steady state (a) applied control signal on actuator (b) Tracking
Error.

can see that we have a smaller tracking error 0.18µm for the largerβ of Fig. 4.15 compared with

0.2µm of Fig. 4.14.

4.7 Summary

Hysteresis nonlinearity is a challenge in many applications that require tracking control. The gen-

eral approach to dealing with it is to use hysteresis-inverse compensation integrated with feedback

control. In this chapter, we presented a sliding mode control method to handle systems with hys-

teresis nonlinearities. We have used the bounds, which are derived in Chapter 2 to design the SMC
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Hz.

controller. Furthermore, we derived an expression for the tracking error inside the boundary layer

of the sliding surface. It is shown that the error is proportional to the chosen boundary layer size

(µ) and inversely proportional to the coefficient of the error term (σ1) in the surface equation as

well as the amplitude of the saturation function (β ) of the control signal. Decreasing (β ) allows

more traveling range for the actuator but at the cost of the performance. The expression of the

tracking error shows how the error scales with frequency. Itis shown analytically and by simu-

lation that the error increases in the first portion (ω < λ ) of range of interest and stays constant

before it is affected by resonance frequency of the linear dynamics. Simulation results also show

that we can obtain good tracking performance with general (non-sinusoidal) waveforms. Experi-

ments were conducted for a pizeo-electric actuator, where the results confirm the effect of changing

different parameters on the qualitative behavior of the signals. In these experiments, we included
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Figure 4.15: Experimental results of the tracking error with saturation function of 25µm amplitude.
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a rate-limiter to protect the device, which resulted in lesssmooth trajectories compared with the

simulation. Simulation and experimental results show thatthe performance deteriorates especially

at high frequency due to the rate limiter. A comparison with the SHSC method shows that the pro-

posed controller has comparable performance to the servo-compensator whereas MHSC has better

results than SMC. Yet, SMC is able to track arbitrarily-shaped references and periodic references

with unknown frequencies.
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Chapter 5

H∞ Control Design

5.1 Introduction

In this chapter, we propose a linear robust controller the systems comprising a hysteresis operator

preceding a linear stable system. The hysteresis operator is modeled with piecewise linear char-

acteristics with uncertainties, and a nominal inverse operator is included to mitigate the hysteresis

effect. An H∞ control design is proposed to handle the remaining uncertainties in a two-degree-of

freedom (2DOF) framework. In the existing work [62, 63, 64, 65], the H∞ control is designed

for a nominal plant while hysteresis is treated as uncertainty. The hysteresis nonlinearity is not

modeled or inverted in those methods. In our work we reduce the effect of hysteresis by inversion

and only the remaining inversion error determines the size of the uncertainty. We compared the

proposed H∞ method with a PI controller when 2DOF is applied to both system. The PI con-

troller usually has good performance at low frequencies, however, it does not take advantage of

knowing the dynamics of the system as in H∞ design, where we can improve the performance at

high frequency. Simulation results on a model of piezoelectric actuator-based nanopositioner are

presented to illustrate the design and analysis, where the hysteresis nonlinearity is represented by

a Prandtal-Ishlinskii operator.
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5.2 Problem Formulation

Robust control methods are developed for uncertain linear systems. The design, in general, aims

to achieve the desired performance while maintaining stability. We recall from the previous chap-

ter that the inversion error is composed of two components:∆m
m u and∆dc. We can represent the

second component as an external disturbanced = ∆dc, while the first component∆m
m = ∆ depends

on the controlu and can lead to instability in the closed loop system if not treated carefully. With

this treatment for the uncertainty, the system can be represented as in Fig. 5.1.

The H∞ control problem is defined for a system representable by the general block diagram

of Fig. 5.2, whereP is the interconnection matrix,K is the controller,∆ is the set of all possible

uncertainties,w is a vector signal including noise, disturbances, and reference signals,z is a vector

signal including all controlled signal, andy is the measurement.

The block diagram in Fig. 5.2 represents the following equations:

o= ∆v (5.1)

y= Ku (5.2)

and
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Figure 5.1: The closed-loop system with the inversion errorrepresented as multiplicative uncer-
tainty.

Let the transfer function fromw to z be denoted by Tzw. The objective is to design a controllerK

such that the closed-loop system is stable for all admissible ∆ and‖Tzw‖∞ ≤ γp for prespecified

γp > 0, where‖Tzw‖∞ is the H∞ norm defined by‖Tzw‖∞ = supω σ̄(Tzw( jω)), whereσ̄(.) is

the maximum singular value of the matrix.

The design objective in our problem is to obtain the smallesttracking errorewhich is chosen as

one of the output component of the vectorz in the presence of the exogenous signalsw= [d yr n]T ,

whereyr is the reference signal,n is the measurement noise andd is the disturbance. It is useful

to specify the performance objectives as the requirements on a sensitivity functionS= (I +L)−1

and the complementary sensitivity functionT = L(I +L)−1, where L is a loop function defined as

L = KG for a plantG and a controllerK. By definition,

S+T = I (5.4)

For a SISO systemS+T = 1. Ideally, we wantSsmall to obtain the benefits of feedback (small

tracking error for commands and disturbances), andT small to avoid sensitivity to noise which
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Figure 5.2: A general robust control framework for systems uncertainties.

is one of the disadvantages of feedback. From (5.4), it is clear that these requirements are not

simultaneously possible at any frequency, and|S( jω)| and|T( jω)| at any frequency can differ by

one.

One important component when designing optimal control problem is to choose weighting

matrices or weighting functions in the scalar case. We shallmodify the feedback diagram in Fig.

5.1 into Fig. 5.3. The weighting functions are chosen to reflect the design objectives and the

knowledge of the disturbances and sensor noise. However, inmany occasions, the weights are

chosen purely as design parameters without any physical bases, so these weights may be treated

as tuning parameters that are chosen by the designer to achieve the best compromise between

conflicting objectives. For example,Wd may be chosen to reflect the frequency contents of the

disturbance d, the weight matrixWn is used to model the frequency contents of the sensor noise,

while We may be used to reflect the requirements on the shape of certainclosed-loop transfer

functions. Similarly,Wu may be used to reflect some restrictions on the control or actuator signal.

It is interesting to know that the H∞ design framework does not in general produce integral control,

but integral action can be introduced by the choice of the weighting functions. The resulting
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Figure 5.3: Adding weight functions in the closed-loop system for optimal design.

controller must have a pole ats= 0. This will violate the assumptions of H∞ theory because we

will have uncontrollable pole of the feedback system [72]. Instead, we shift that pole to the left by

introducings+ ε, whereε is a sufficiently small positive number.

5.3 Control System Design and Analysis

When feedback-only configuration is used, the performance specification can be quantified by

analyzing the tracking error. For a given controllerK(s), the tracking error is given by

e= yr −y= S(yr −d)+Tn (5.5)

From (5.5), we can see that to achieve small tracking error werequireSandT to be small but at

different frequency ranges depending on the frequency content of the signalsyr , d, n. This feed-

back configuration has several limitations and instead we use a Two-degree-of-freedom (2DOF)
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Figure 5.4: Two degree of freedom feedback design.

structure. There are different 2DOF designs in the literature, but we consider the configuration

which is shown in Fig 5.4 to compare the results with the PI -controller when 2DOF design is

considered. In this case we denote the feedforward controller byKf f and the feedback controller

by Kf b. The control law is

ud = Kf f yr +Kf b(yr −y) (5.6)

Robustness in this case is still determined by the sensitivity function S= (1+GKf b)
−1 and

the transfer function fromn to y is determined by the complementary sensitivity functionT =

(1+GKf b)
−1GKf b. In 2DOF design, the transfer functions fromyr to y and fromn to y are

designed independently.

Let us denote the transfer function fromyr to eby Ser = S(1−GKf f ). In this case, by choice

of Kf f (s)≃ G(s)−1 provided thatKf f is proper, we can makeSer close to zero.

It should be noted that these optimization problems have been studied extensively and there exist

standard software routines (for instance in MatLab) where H∞ problems can be solved. we use
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MatLab to solve the feedback problem in optimal control setting. In order to reflect the perfor-

mance objectives and physical constraints, the weighting functions are chosen as

We=
20(s+800)

s+2.05×104
(5.7)

Wn =
0.1s+25×104

s+1200
(5.8)

The final expressions ofWe andWn are determined in an ad-hock way in simulations. We choose

them as first order transfer functions in order to make the controller simple. Our first choice is

also related to the nominal plant bandwidthωn = 1.3×104 rad/s, where we choseWe to reject

disturbances at low frequencies less thanω = 2π × 250 rad/s, andWn to reject high frequency

noise above 250 Hz. The exogenous variablew= [e ũ]T and the regulated variablesz= [d̃ ñ]T .

The transfer function fromw to z is
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(5.9)

The controller obtained by Matlab is

Kf b(s) =
2700s+1.62×106

s2+376s+4.1×104
(5.10)
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To check the stability of the closed-loop system, we need to check for the transfer functionGp11,

which is given below that‖Gp11‖∞ ≤ γ when the uncertainty‖∆‖∞ < 1/γ.
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It is found that‖Gp11‖∞ = 0.99, which confirms that our design is stable for the uncertainties

‖∆‖∞ ≤ 0.114. For the H∞ control, we useKf b of Eq. (5.10) and we useKf b= kp+kI s for the PI

controller, while we useKf f = 1 for both controllers. Since the gain ofG(s) approximately equals

one for wide range of frequencies, we have|G−1(s)| ≃ 1, which implies thatSer = S(1−GKf f )

is made small by havingKf f = 1.

5.4 Simulation Comparison between including and not includ-

ing the inverse operator with H∞ control

The commercial nanopositioner is used to demonstrate the results. The simulation is based on

an experimentally-identified model. The linear dynamics are fitted experimentally with a second-

order system with characteristic equations2+a1s+a0, wherea1= 5.743×103 anda0= 1.717×

108, implying the resonant frequency ofωn = 1.3×104 rad/s. The hysteresis is modeled with a

PI-operator with 5 play operators with thresholdsr = [0, 0.63, 1.27, 2.54, 4.45]T and the vector

of weights for the operator iswT = [5.88, 1.58, 0.47, 0.98, 0.4]. We start the simulation by

examining the performance for the case when the inverse operator is not included in the feedback

loop with the case when it is present. We compare the trackingerrors in Fig. 5.5 for sinusoidal

references of frequencies 25 and 100 Hz. Regardless of the frequency, the tracking error is smaller
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Figure 5.5: Simulations results of H∞ control with and without inverse-operator at frequencies (a
) 25 Hz and ( b ) 100 Hz.

when the inverse-operator is used. This is expected becausethe size of the plant perturbation

is larger when hysteresis inversion is not included. Another observation from Fig. 5.5 is that

the tracking error in the case with inverse-operator has a smoother waveform, while in the other

case we can see sharp changes corresponding to transversingfrom one segment to another. These

changes can affect the overall performance of the system andcan create more harmonics in the

closed loop system.
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5.5 Simulation Comparison between H∞ and PI control

For the purpose of simulation, we perturbed each component on the weight vector by∆w,max=

0.15. This perturbation is done in such a way that the size of theinversion error is close to what

we have from experiment when the inverse operator is cascaded with the real nanopositioner. We

calculated the corresponding maximum uncertainties as|∆m,max|= 0.08 and|∆γ,max|= 3.7.

Sinusoidal reference signals with amplitude of 50µm and different frequencies are applied to PI

and H∞ control systems. Parameters for the PI controller are chosen aski = 3154 andkp = 1 by

tuning them for the best performance. In Fig. 5.6 we compare the two control methods at 1 Hz,

50 Hz, and 350 Hz. We can see that the tracking error for PI controller is smaller at 1 Hz. The

error for PI controller is centered at zero because integralcontrol can eliminate the DC error. At

50 Hz we can see that we achieve better performance using H∞ control because it is designed to

have good response up to 250 Hz according to the choice of the weighting function. Then, the PI

controller starts to have a less tracking error as illustrated in Fig. 5.6 c at frequency of 350 Hz.

In Table 5.1, we present more results for the maximum tracking error versus frequency for both

methods.

Simulation results are also depicted in Fig 5.7, to examine adding a rate limiter to the system. It

is noted that the rate limiter has little effect at low frequencies, but it increases the tracking error

when we are close to 90 Hz.

5.6 Simulation Comparison between H∞, PI, and SMC control

We conclude this chapter by a comparison for the three proposed control methods of this chapter

and Chapters 3 and 4. The maximum value of the absolute error of the tracking error ( Max|e(t)|) is

compared at different frequencies. A reference sinusoidalsignal of amplitude 50µm is applied to
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Figure 5.6: Simulations results for tracking error with PI and H∞ control for frequencies a) 350
Hz, b) 50 Hz, c) 1 Hz.
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the system. The gains for the PI controller are chosen aski = 2500 andkp= 3, which are obtained

by tuning them for the best performance. The bounds used to calculateβ for the SMC design are

k0 = 0.05 andk1 = 7. For the H∞ controller, we used the controllerKf b presented by (5.10).

The results are presented in Table 5.1 and illustrated in Fig5.8. Although the tracking error has

acceptable values for frequencies less than 200 Hz, the results are presented from 1 Hz to 3000 Hz

to show how this error scales with frequency. We notice that at 1 Hz the PI-controller outperforms

the other controllers. This is expected because the PI-controller has a very high gain at frequencies

close to zero, which dominates uncertainties. Although, the H∞ controller includes integral action

in our design, it performs worse than the PI controller alonebecause approximation was used to

include integral action in the H∞ controller. This appears as a shift of the tracking error from zero

at very low frequency. This shift actually appears at all frequencies with the H∞ controller but its

size is smaller than the peak-to-peak error and not noticeable at high frequencies. The tracking

error of the PI controller will continue increasing with thefrequency until about 50 Hz. The error

then stays almost constant, which is about 0.2µm and slightly increases up to 100 Hz. Then it

starts to increase fast again. The H∞ controller has smaller tracking error than the PI control from

1 Hz to 100 Hz. Then it increases larger than the PI control. The Sliding-Mode controller (SMC)

has larger tracking error than the other two methods when thefrequency is less than 50 Hz, but

it outperforms them for larger frequencies. It is also notable that SMC also has almost constant

tracking error in the frequency band from 80–200 Hz. However, unlike the other two methods,

the tracking error decreases after this band until close to the resonance frequency, when it starts

to increase again. A more discussion for SMC frequency response is provided in Chapter 4. It is

noted that it is not easy to get this fine frequency response experimentally, because there are some

components in the experiment that affect the performance. We have seen in previous chapters the

effect of the rate limiter for example, which will add a phaseshift to the response that increases
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for PI, SMC, and H∞ control.

with frequency particularly, beyond 100 Hz.

5.7 Summary

In this chapter we presented hysteresis inversion with H∞ feedback control in order to reduce the

tracking error. We also introduced integral action in the H∞ controller to eliminate the DC error.

We ran simulation to demonstrate the effectiveness of usingthis method. From comparisons, we

conclude the following. First, including the inverse-operator in the closed-loop system improves

the tracking performance. Second, depending on the choice of the weighting function, we can have

a better performance for the H∞ controller over the PI controller for a selected frequency band, but
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Table 5.1: Simulation results providing a comparison between maximum tracking errors for PI,
SMC, and H∞ control

freq. PI SMC H∞
Max |e(t)| Max |e(t)| Max |e(t)|

1 Hz 0.003 0.006 0.006
10 Hz 0.03 0.05 0.006
20 Hz 0.065 0.07 0.006
50 Hz 0.15 0.08 0.07
80 Hz 0.22 0.09 0.17
100 Hz 0.265 0.09 0.25
200 Hz 0.4 0.085 1.1
400 Hz 0.7 0.08 2.3
1000 Hz 2.3 0.072 11.3
3000 Hz 26 0.14 47

we cannot achieve this performance for all frequencies. TheH∞ controller outperforms SMC only

at low frequencies of a few tens of Hertz. Another shortcoming of the H∞ controller is the high

order of its transfer function, which makes it hard to implement.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

Hysteresis is a nonlinear phenomenon, which appears in manycontrol system applications. The

performance of these systems, especially the ones that require precise tracking, can deteriorate

very much or even can go unstable in the presence of hysteresis when good control designs are

not considered. Motivated by applications such as Piezo-actuated nanopositioners, in this disser-

tation we considered systems with fast linear dynamics preceded by hysteresis. We followed a

general scheme to deal with hysteresis, which incorporatesboth feedforward compensation and

feedback techniques in the closed-loop control system. Thefeedforward compensation is sim-

ply an inverse hysteresis operator which is designed based on modeling the actual Hysteresis by

Prandtal-Ishlinskii (PI) operators.

In this dissertation, we first discussed the effect of model uncertainties on the hysteresis oper-

ator. When an inverse PI operator is cascaded with its modeled PI operator, it results in a perfect

inversion. However, when it is cascaded with actual hysteresis it will produce an inversion error.

Because, we used the PI operator to implement our hysteresis, it is natural to characterize the in-

version error by the parameter used to model the hysteresis,which are the threshold (i.e. radius of

the play operators) and the vector of weights which determines the slope of each play operator. We

assumed the uncertainty only happens on the weights of the play operators and assumed the thresh-
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olds are exact. This is justified because we expect to have uncertainty on the slopes and intercepts

of each segment of the hysteresis loop while the number of segments does not change. Having

no uncertainty in thresholds also implies that the changes on the slopes happens at some certain

amplitudes of the input signal. This motivated us to find bounds on the uncertainties appears in

the slopes and intercepts directly. This method, which is based on the slopes and intercepts of the

segments, applies to other operators that have piecewise linear characteristics. Moreover, we found

that the bounds derived for the inversion error is less conservative than the ones obtained from the

weight-threshold method.

This lead us to the second part of our work, where we used thesebounds in both design and

analysis of three different control methods. The first control method we explored was Proportional-

Integral (PI) control. This method is extensively used in commercial applications such as Atomic-

Force-Microscopes. The main drawback of the Proportional-Integral control is that it has low per-

formance for applications that require high tracking speeds such as fast scanning. In existing work

of systems with hysteresis, researchers compare their methods with PI or PID control as the stan-

dard methods. They show that their proposed methods outperform the PI controller, particularly at

high frequency. However, by modifying the PI controller we showed that it provides comparable

results with other methods and even outperform them at low frequency. In the PI control, we did

not use the bounds on the inversion error in our design because it is a tuning control method. How-

ever, we used the bound on the inversion error that was calculated by the slope-intercept method to

quantify the tracking error. We provided analysis for the tracking error when the system is driven

by a periodic input. We discussed the effect of the model uncertainty on both the performance and

stability. The most important part which we extracted from these expressions was that we can tell

how the control gains affect the steady-state errors. We found for example that the proportional

gain kp can destabilize the system if increased in the presence of the uncertainty. The
ki
kp

ratio
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is not only important to make the system reach steady state fast but also to make the exponential

terms generated in each segment to decay fast before the signal goes to the next segment at steady

state. We also discussed how the tracking error scaled with frequency. We found that it has three

regions; an increasing, an almost constant, and then another increasing region of tracking error for

a low, medium, and high frequency bands, respectively. We exploited that the closed-loop system

was expressed in two-time scales to separate variables using the singular perturbation theory. The

slow variables came from the controller and the fast variables came from the plant. We also trans-

formed the system in different coordinates to investigate the frequency effect on the system.

We then used a more sophisticated method, which is Sliding-Mode-Control as a feedback con-

troller. In this method, we utilized the bounds on the inversion error in our design. In the existing

work, the bounds on the uncertainties, which are used in the SMC designs have constant val-

ues and usually are determined by tuning them through simulations or experiments. However,

in our method we found that the bounds depend on the size of theinput signals and thus gave

us more flexibility in the design. We compared the results which are obtained from this method

with others such as servo-compensators and found they are comparable particularly at high fre-

quency. However, this method has the advantage that it can track arbitrarily-shaped trajectories

while servo-compensators are only designed for sinusoidalinputs. We also provided analysis of

the tracking error when the trajectories enter the boundarylayer. We again used the singular per-

turbation theory to derive the expression for the tracking error, where this time we put the system

in multi-time scales by selecting the sliding-surface parameters. We provided simulation results

which agree with the analytical expression for the trackingerror as it changes with frequency. We

also provided experimental results which qualitatively has a similar behavior as the simulation. We

may mention here that we used a rate limiter as a safety component, to protect the nanopositioner

in the experimental setup which, makes its behavior deviatefrom simulation especially at high
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frequency. This was confirmed by adding a rate-limiter blockin the simulated system.

The third controller, which we presented in this dissertation is the linear H∞ controller. The

simulation results of the tracking performance of this controller were compared with the other two

methods. We found that the H∞ Control has better tracking performance than the PI controller

at frequency range from a few Hz to about 100 Hz. However, SMC outperforms both H∞ and

PI control at high frequencies. It is also noted that the H∞ control is designed in an ad-hoc way,

particularly, the choice of weighing functions. We also need to run numerical algorithms to obtain

the controller.

6.2 Future Work

The work in this dissertation can be extended in several directions. First, some issues related

to the hysteresis model requires more investigations and exploring. We used the finite dimen-

sional Prandtl-Ishlinskii (PI) operator to model the hysteresis. Although the exact inverse of this

model can be calculated, the model itself is always symmetrical for its ascending and descending

branches, which is not the case for most of physical hysteresis. We propose to use other models,

which are not symmetrical such as modified PI operator and examine its behavior with the pro-

posed robust control methods in this research. We presentedtwo methods to calculate the bounds

on the inversion error, but we assumed only uncertainties inthe weighting vector. The uncertainty

in the thresholds will open many issues that require investigation. For example, the number of the

segments may change and there will be mismatch between the operator and its inverse-operator.

Providing analysis for performance and stability in these situations will help in understanding the

behavior of the hysteresis operator and the choice of the feedback method to complement the feed-

forward compensation. Moreover, we applied inputs on the positioner to operate in its full range
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and produce a major loop and studied uncertainties and bounds for this case. It would be inter-

esting to apply different signals which produce major and minor loops and study the effect of the

uncertainty in both of them.

Second, we compared between different robust feedback control methods to improve the sys-

tem performance. We provided design and analysis for these systems under some assumptions.

There is still room to improve these methods and investigateareas which has not been explored.

For the PI controller, for instance, we found that the inverse-operator can be introduced in the

added feedforward branch instead of cascading it with the hysteresis. Preliminary experimental

results showed the potential to have smaller tracking errors for this method. This can be a result of

having the inverse operator outside the closed-loop which makes it less susceptible to the harmon-

ics generated in the closed-loop. However, the analysis forthis method is much more complicated

than the cascaded operators because a signal from the feedback controller will be added to the

output of the inverse-operator and cause a mismatch betweenoperators. We also provided the

analysis for the PI control and for SMC control when the applied inputs are periodic. It will be

more comprehensive to determine the inversion and trackingerrors for more general input refer-

ences. Furthermore, our design and analysis was limited to linear plants with stable poles; however

in many nanopositioners the plant includes some zeros in theright hand-side. It would be of in-

terest to investigate the design and analysis of non-minimum phase systems. Another assumption,

which is also motivated by the piezo-actuator is that we havea large bandwidth or fast dynamics

of the linear plant. This was helpful in both design and analysis of the system. We succeeded to

improve the tracking performance of frequency range, whichwas about a tenth of the bandwidth.

The investigation of having narrow bandwidths would show how the controller dynamics interact

with plant dynamics and affect the control system design.
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