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ABSTRACT
ROBUST CONTROL OF SYSTEMSWITH PIECEWISE LINEAR HYSTERESIS
By

M ohamed M ohamed Edardar

Hysteresis nonlinearity is found in many control systemligptions such as piezo-actuated
nanopositioners. The positioner is represented as a Isyestem preceded by hysteresis. This
hysteresis nonlinearity is usually modeled by operatorsrder to simulate their effects in the
closed-loop system or to use their inverse to compensathéar effects. In order to reduce the
hysteresis effect, an approximate inverse operator is as@dfeedforward compensator. The first
part of our work considers driving an upper bound on the sieer error using the hysteresis
model. This bound is a function of the input references, Whscmuch less conservative than
constant bounds. Itis used in designing the closed-loop@losystems.

The second part is to design feedback controller to achiewelésired performance. Three
different methods are used throughout this work and a coisgrabetween them is also provided.
First, we use the conventional proportional Integral (Bhtcol method, which is extensively used
in commercial applications. However, in our method we ad@éedforward component which
improves the performance appreciably. Second, a slidindescontrol (SMC) scheme is used
because it is one of the very powerful nonlinear robust admiethods. Other schemes like high
gain feedback and Lyapunov redesign have close results @© &t hence it is not included in this
work. The third control is kb control. It is a robust linear control method, which dealdwin-
certainty in the system in an optimal control structure. ikithe PI controller, the KB controller
uses the features of the linear plant in the design whichvalto accomplish more than the simple

PI1 controller. Mainly, it can shape the closed-loop tran$f@ction of the system to achieve the



design objectives.

Including the operators in the closed-loop system, makeard to obtain explicit solutions of
the dynamics using conventional methods. We exploit twéufes of piezoelectric actuators to
provide a complete solution of the tracking error. Firsg blysteresis is approximated by a piece-
wise linear operator. Second, the linear plant has a largeviaidth which allows using singular
perturbation techniques to put the system in a two timeessalicture. We show that the slope of
a hysteresis loop segment plays an important role in detémmihe error size. Our analysis also
shows how error is affected by increasing the frequency eféfierence input. We verify that the
accumulation of the error, which is propagating from segn@another is bounded and derive its
limit. We provide a comparison between simulation and theydit expressions of the tracking
error at different frequencies. Experimental results ése presented to show the effectiveness of

our controllers compared with other techniques.
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Chapter 1

| ntroduction

1.1 Background

Hysteresis nonlinearities exist in many control applmasi, especially those involving smart material-
enabled actuators or sensors [2]. Examples of smart migtar@piezoelectrics [3], magnetostric-
tives [1], shape memory alloys [2, 4], electro-active potysi5], magentorhelogical fluids [1], and
conjugated polymers [6]. In recent years, nanotechnolegydttracted many researchers because
it has wide applications. One of the pivotal requirementsariotechnology is nanopositioning.
Piezoelectric actuators are commonly used in nanopositicerpplications such as scanning tun-
neling microscopes (STM) and atomic force microscopes (AAWey have large bandwidth and
can produce large mechanical force [7, 8]. They are typiaadled for positioning in the range
of 10 um to 100um [7]. However, because piezoelectric materials are férobec, they exhibit
non-desirable behaviors such as hysteresis, creep, aradioits [9]. Hysteresis, which is depicted
in Fig. 1.1, is a nonlinear phenomenon that not only existart materials but also in various
areas, such as: biology, geology, mechanics, and econolhmesents challenges in both under-
standing and control of such systems. Modeling, analysid,cantrol of systems with hysteresis
has received great attention over the last two decades [7].

To effectively control a system with hysteresis, the firsportant task is to characterize the

hysteresis nonlinearities. Hysteresis models can be tpugassified into physics-based mod-
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Figure 1.1: Major and minor hysteresis loops. For integireh of the references to color in this
and all other figures, the reader is referred to the eleatnearision of this dissertation.

els and phenomenological models. Physics-based modelmaeel on first principles of physics
[10]. Phenomenological models are used to produce belsasionilar to those of the physical
system without necessarily providing physical insighbitihe problem. A dominant class of
phenomenological hysteresis models are formed throughghtexd superposition of elementary
hysteresis units, and notable examples of such modelsdadhe Preisach model [11] and the
Prandtl-Ishlinskii (P1) model [12]. The Preisach model @ametrized by a pair of threshold vari-
ables, whereas the Pl model is parametrized by a singlehtbicegariable.

With the developments in various hysteresis models, it ismahto seek means to fuse these
hysteresis models with the available control techniquasitmate the effects of hysteresis. One
of the most common approaches in coping with hysteresis éemgtruct an inverse operator [1]

and integrate it with feedback techniques, as illustratde€ig. 1.2 .
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Figure 1.2: A general control framework for systems preddaehysteresis [1]

1.2 Piezoelectric Actuators

The piezoelectric effect was first discovered in 1880 [7{vadts found that squeezing certain mate-
rials (Piezein) resulted in electric charge. However, the of piezo-electric materials as actuators
exploits the converse effect, i.e., the application ofelegoltage results in mechanical strain. The
main design parameters that characterize the performdrare actuator are displacement range,
force, bandwidth (frequency range), size, weight, and p@easumption. Piezoelectric actuators
have excellent operating bandwidth and can generate laggbanical forces in a compact design
for small amounts of power, but they have a relatively smiajpldcement range.

Due to the key role played by piezoelectric actuators andnitrease interest in using model-
based control design of these devices, interest in unaelisig. the dynamics of these actuators
has increased. Two of these dynamics are linear which aep @ed vibrations the other one is

nonlinear which is hysteresis.

1.3 HysteresisModels

Models of hysteresis have evolved from two different braaschf physics: ferromagnetism [13]

and plasticity theory [14]. The roots of both branches gdkliadhe end of th 19th century [15].



The core of this theory is formed by the so-called hysteregerators which describe hysteretic
transducers as a mapping between function spaces. It isiorthe 1970’s when researchers
started to couple the mathematical theory of ordinary bfiial equation with hysteresis opera-
tors [16, 17]. In the 1990s, engineers employed this thearg targer scale to develop modern
strategies for the linearization of hysteretic nonlintasi with an inverse feedforward controller
[15]. To successfully exploit the full potential of piezeetrical transducers in control schemes, it
is essential to understand and model their behavior ayra/hen the output is plotted against
the input, the plots for increasing or decreasing inputsldferent and form a loop. See Fig 1.1.
Early models used polynomials to capture the major loopsénitO response. However, such
approaches fail to capture the inner (minor) loops.

The Preisach operator [18] was used for modelling and lination of complex hysteretic non-
linearities occuring in solid-state actuators with thecirse feedforward control approach [19, 20].
But the main drawbacks of the Preisach operator are thegssensitivity of the identification
procedure against input-output data and unknown modetseead the fact that in general the
compensator of the Preisach operator has to be calculatedriually. Recent papers also refer-
ence the so-called Prandtl-Ishlinskii (PI) operator [23, 12, 22] which belongs to an important
subclass of the Preisach operator [23]. The main advant#gbss approach are reduced model
complexity of the Pl-operator in comparison with the Preiisaperator and the fact that the com-
pensator of an invertible Prandtl-Ishlinskiii operatond®e calculated analytically. This allows an

efficient implementation of the compensator for real timpliation.
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Figure 1.3: The relay operator with parameterandf.
1.3.1 Presach Operator

The Preisach model [24, 25, 26, 27, 28, 29, 30] for electrorafig hysteresis dates from 1935
[31]. This model uses a superposition of simple independay operators shown in Fig 1.3. It
has been successful in the modeling of hysteresis obsenfedtdomagnetic, magentostrictive, and
piezoelectric materials. However, in designing with th@s@rt materials, one has to determine the
density function for the preisach operator by using inputipat behavior of the material at hand
[32].

In the past, several researchers have addressed the probigemtifying the preisach density
function. Mayergoyz [18] first described a method to idgntife density function in the proof
of his representation theorem. However, this method hagelthapplicability in practice when
the output signal is corrupted by noise, as it involves aedéfitiation of the output signal. There
are other methods to determine the density function. The pasular involves discritizing the
Preisach plane, and identifying step-function approxiomato the actual density function via a

linear least-squares method. Haffmann and Meyer [33] werkgps the first to use this method.
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Figure 1.4: The play operator with threshold paramter

In this method, no assumptions are made about the actuatydgmetion [32]. In [32], the authors
consider the basic problem of identifying the Preisach idghsction when there is not sufficient
experimental data. They use singular value decompositbmgavith a linear least squares method
to efficiently identify the best approximation to the depdiinction. In this method, they do
not need to process a large amount of data to obtain the gdusittion. In [25], Hysteresis is
modeled by Preisach operator with a piecewise uniform tefisnction. It addresses recursive
identification and adaptive inverse control of hysterebmgo classes of identification schemes are
proposed and compared, one based on the hysteresis ohgather based on the time-difference
of the output. In [24], a model that predicts the expansiopiezoceramic actuators when subject
to dynamic-voltage excitations is developed as an extarsiohe classical Preisach model. The

model is presented in a recursive form that is suitable faltiene implementation.



1.3.2 Prandtl-Ishlinskii (Pl) Operator

The PI operator dates to 1944 [31], and was proposed as a rHudahsticity-elasticity. The
foundation of this model is using elementary hysteresisaipes, which have simple mathematical
structures. One of the most familiar and most important elgary hysteretic mapping between
the input signaV and the output) is so called play or backlash operator, which is shown in Fig.
1.4 and described by the following equation. The output of apgerator [12] can be represented
as

rv]=w' Hr |V, zg)(t) (1.1)

whereHr = [HgHy1 ... Hr,n—l]T is the vector of individual play operators] = WoWq .. . Wp_1]
is the vector of weights for individual play operators, — rorq---frp—1l with 0=rg<rq <
... <TI'n_1 < o represents the set of thresholds for the play operazér&, (200201 - - -ZO,n—l]
denotes the initial condition of the PI operator, and the number of play operators.

The play operator is defined by
Hyi [V, zg) = max{V —rj,min{V +rj, 7y } } (1.2)

wherei =0,1,...,n.

K. Kuhnen published several papers that describe modelistrdsis by Pl-operator [34, 15, 21,
12, 35]. In [34, 35], a simultaneous compensation of thedrgsis and creep transfer character-
istics of a piezoelectric stack actuator by interposingreerise system in an open loop control is
described. The maximum linearity error caused by hystei@si creep effects is lowered by an
order of magnitude. It is limited to systems with one inpgisil.

In [21], an approach introduces the compensation of theehgtit stack transducers by an



adaptive inverse hysteretic control. Starting with a Imgl@aracteristic, the weights of an inverse
hysteretic observer are identified during operation by hlstadaptive law and transformed to
the controller parameter. Linear dynamics of the actuaterrat considered in this approach.
Another compensator design method for invertible complestdretic nonlinearities is described
in [15]. The parameter identification of this model can berfolated as quadratic optimization
problem which produces the bdsj-norm approximation for the measured input-output data of
the real hysteretic nonlinearity. Special linear inegyatbnstraints for the parameters guarantee
the unique solvability of the identification problem and theertiblity of the identified model.
This leads to robustness of the identification procedurénaganknown measurement errors and
unknown model errors. The corresponding compensator caliréetly calculated and thus effi-
ciently implemented from the model by analytic transforimaiaws. This method was applied
on magnetostrictive actuator and reduced error 10 timeflL2)) the author extends his work by
modifying the operator in order to remove the main drawbddk® Pl operator, which is its sym-
metric characteristic. A one-sided dead zone operatordsditb modify the Pl-operator and make

it asymmetrical.

1.4 Hysteresis|nverse Compensation

The control methods that deal with hysteresis are classifteapen-loop inverse compensation or
feedback control methods, which usually include the inveyserator. Inverse open-loop methods
[15, 12, 36] demonstrate that they can reduce the trackirmy eppreciably, but they are suscep-
tible to model uncertainties and environmental changegréfbre, a general approach in coping
with hysteresis is to construct an inverse operator andiate it with feedback techniques, as

illustrated in Fig. 1.2.



1.5 Feedback Control

Two major groups of feedback control are the classical nategpntrol and modern methods using
adaptive and robust control. The main challenge in feedbaslgns is performance improvement
while maintaining the stability of the overall system in fhresence of parameter uncertainty and
unmodeled high-frequency vibrational modes [37]. Cortohniques include high gain feedback
[38, 39], adaptive control [25, 40, 41], and robust contdd,[43, 44, 45, 46]. Next, we review the

application of these techniques to systems with hysteresis

1.5.1 Adaptive Control

A main concern in feedback control is stability. Stabilityadysis for hysteretic systems involv-

ing adaptation is presented in [47, 25, 36, 48] under varpaisistent-excitation-type conditions
on the reference signals. In [36] Tao and Kokotovic presemidel-reference adaptive inverse
scheme for a linear system preceded by a piecewise-lineter@gis model, and establish global
boundedness of the closed-loop signals. In [25], Tan andBastablish asymptotic tracking for
an adaptive inverse algorithm and characterize the paesraehvergence behavior for a system
modeled by a Preisach operator (without dynamics). Tan dradi{48] present a two-time-scale

averaging framework for systems with hysteresis, and shaiy tvith slow adaptation, a model-

reference adaptive inverse control scheme can achieveaailyi small tracking and parameter

estimation error when the initial parameter error is sudhtly small. Cheret al. [47] prove

boundedness of the closed-loop signals under a pseuds@ébased adaptive control scheme for



a class of uncertain discrete time systems preceded byrbgiste

1.5.2 Robust Control

Robust control methods for hysteresis control include kamneple integral control [49, 50, 51, 52,
53, 43], servo-compensators [54, 55], sliding-mode cd(8®IC) [56, 57, 58, 59, 60, 61], andd
Control [62, 63, 64, 65]. In these methods, researchergldahei complex adaptation algorithms
and typically assume that a bound on the inversion error svkn For the servocompensator
method [55], Esbrookt al. show that forT -periodic inputs, trajectories converge to exponentially
stableT -periodic solutions. In the SMC methods, Shetral. [56] and Bashash and Jalili [57] use
Lyapunov functions to show stability or ultimate boundesien [1], Tan and Baras apply &
robust control scheme to a magnetostrictive actuator torantodate control input constraints and
minimize the tracking error.

In order to obtain good tracking performance, moss Ebntrol methods are implemented in
the Two-Degree-of-Freedom (2DOF) framework. In [62], a@l@approach is proposed in which
no hysteresis inversion is included. Usually feedforwardtol is augmented with feedback con-
trol to account for adverse effects such as dynamic vanatamd disturbances. The philosophy of
existing 2DOF is to first design a feedback controller tos$gtihe regulation requirements, e.g.
internal stability, attenuation of disturbance/noiseet$; then design a causal, stable feedforward
controller to improve tracking performance by using, foample optimal control techniques. On
the contrary in [62], the proposed design method starts thiétdesign of a robust inversion-based
feedforward controller which achieves a guaranteed trackierformance for bounded dynamic
uncertainties. The bound on the tracking error of the femetiod control is utilized in the B

robust feedback control.
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In [66], a 2DOF controller for a piezoelectric tube scanmertigh speed force microscopy is
designed. The closed-loop operation is performed kyddntroller. The scanner simultaneously
tracks the last scan line by a model-based feedforward @iterntrExperimental results obtained at
15 Hz line-scan rate exhibit a maximum control error reduned factor of about 6 in comparison
with the commercial one.

In [67], the authors study fundamental trade-offs betweesitipning resolution, tracking
bandwidth, and robustness to modeling uncertainties in RDantrol designs for nanoposition-
ing systems. They show that the primary role of feedback asigding robustness to the closed
loop devices whereas the feedforward component is maifdgtefe in overcoming fundamental
algebraic constraints that limit the feedback-only deslgrthis paper they present three different
designs and compare between them. Experimental resuls @lsignificant improvement over

optimal feedback-only designs

1.5.3 Integral Control

The main advantage of integral control is that it provideghkgain feedback at low frequencies;
therefore, integral controllers can overcome creep antehgss effects and lead to precision po-
sitioning (since the vibrational dynamics is not dominankoa frequency) [68]. In this sense,
traditional PID feedback controllers, or double integrat fracking ramp, are well suited for
nanopositioning [51] and are popular in SPM applicatior.[6in the existing research, most
of the work is focused on modeling the hysteresis using iiffeoperators, then using a feed-
forward compensation to reduce the non-linearity. The obléne Pl-controller is to compensate
for the remaining inversion error. In [52], pure integrahtm! with time-varying gain is studied,
with additional dynamics included in the loop. Only constaaputs are considered. It is shown

that the system is well-posed and that, if certain condstiare satisfied, the steady state tracking
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error is zero. In [49], the system is assumed to satisfy eassumptions, which are related to
monotonicity and a Preisach model is used. For arbitragreeice signals, the closed-loop sys-
tem is bounded-input-bounded-output (BIBO) stable witmdadigain of one. It is shown that the
absolute value of the error decreases monotonically fomateot reference signal. In this case,
provided that the desired output is within the limits of tlygstem output, zero steady state error is
guaranteed. A bound on the time required to achieve a spekeffier is also obtained. The authors
claim that the results apply to a wide class of hysteretitesys and only a simple bound on the
controller parameter is required. The results show robositipn control, even in the presence of
model errors. In addition, more details about trajectooiethe closed-loop system for a constant
input are given. In [50], PID control of a second-order sgsthat include a hysteretic component
is studied. Under certain conditions, it is shown that th&tesyy asymptotically tracks a constant
input. One key assumption in these results is that the syl monotonic input/output be-
havior. Other papers presented PID controller as the fedtzantroller without providing system
analysis. In [61], an adaptive control scheme combiningalenetwork with traditional PID con-
troller is proposed to improve the performance of precessiechanism in STMs. Parameters in
the PID controller are modified through adjusting the weigiities in the neural network with the
function of self-learning and adaptability.

PID controller is also used in [53], which is one of the firsppes that incorporate a feedfor-
ward loop in the system in order to reduce hysteresis effEae inversion in [53] is inserted at
a point different from that of the general scheme. They ydhéir method through experimental
results.

Through this survey of the referenced papers or other agistiork, we found, to the best of
our knowledge, that there is no analysis that presents diciexpression of the tracking error. In

our work we derive an expression of the tracking error, witigh be used to study the interaction
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of hysteresis parameters, uncertainties, control gaidsraguency, and how they determine the

size of the tracking error.

1.6 TheResearch Objective

Our research focuses on the control analysis and desigméarlsystems preceded by piecewise
linear hysteresis operators. The goal is to achieve thelsshafacking error for the frequency
range of interest. We seek explicit expressions of the giwarerror and use them to design
and compare different robust control methods and to usedsoan the inversion error to derive

expressions for the tracking errors.

1.7 Research Overview

This research focuses on control of systems that includeeigss in cascade with linear dynam-
ics. Specifically, it deals with control schemes in whichrarerse-operator precedes the hysteresis.
This brings two important issues, which this research a$#® First, what is the size of the inver-
sion error when uncertainties of the hysteresis model isidened. Second, how to use the bound
on this inversion error to design a controller that can redhe tracking error.

The importance of this topic comes from two factors; Firgsthresis non-linearity appears in
a wide range of applications including most of smart makexmplications such as piezoelectric
actuators. Second, existing results for finding analytioainds on the inversion error and the use
of such bounds in the control design are not available. Introases, they are choosing these
bounds by tuning them in simulations or experiments.

An important assumption in our work is that the hysteresiplbas piecewise linear segments.
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This assumptions is justified because many hysteresis s\bdgk this property. With that, we
derive analytical expressions of the bound on the inversraors in the presence of models uncer-
tainties. Two cases are considered, depending on the ptames use to represent the hysteresis
model. In one method we deal with the Pl operator and use tleslhblds and the weights of the
play operators to determine the bound. In the other methodseehe slopes and intercepts of
the hysteresis loop segments. We then consider using tloesel® in the analysis and design of
different robust control methods.

We are interested in three classes of robust controllenst, Hihe commercial Proportional-
Integral controller. Although, this controller is a tuniogntroller it provides good experimental
results. Our work shows that when the linear dynamics arteafad we add a feedforward con-
trol to the system, it results in a very good tracking perfance. The analysis of the tracking
performance provides us with explicit solutions of diffietial equations. In these expressions, we
can determine the effect of different components such amnpeter uncertainties, operator param-
eters, frequency, and control gains on the tracking perdoca. Second, we explore Sliding Mode
Control (SMC) as one of the major methods in robust nonlimeatrol. We compare the results
when we use the bounds obtained from the threshold-weigétisod and slope-intercept method
in feedback design by simulations and experiments. Thiel censider kb linear control. We
compare using B control when the inverse operator is not used as the sizesafitbertainty is
larger than when the inverse operator is used. We also centparHo-controller with conven-
tional Proportional-Integral controller.

Form these comparison between different methods usingta®lanalysis, simulations and
experiments we arrived at some interesting results. Fesirtversion bounds are less conserva-
tive when we used the slope-intercept method. This was itapbfor the SMC design. Having

large bounds lead to the requirement of large control sggwaich are usually limited in real ap-
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plications and also it reduces the possible positioningeann sliding-mode control we found
analytically and also by the simulation that by increasimgfrequency the tracking error has the
following behavior. It increases at very low frequency, @ris usually the operation range that
most of current positioners use, then it almost stays candteen it starts to decrease at the range
which is close to resonance frequency and finally it increaggin. This behavior differs from
the Proportional-integral controller in the third stageenhwe did not see the decreasing in the
tracking error. In the experiment, we only examined a lovg@iency range for the safety of the
piezo-actuator where we found that the tracking error haditqtively similar behavior to the sim-
ulation. We also included a rate limiter in the experimenichhaffects the frequency response
and adds more error, particularly, when we increased tlygiénecy. For the & control, we found
that it has a better performance when the inverse operatsrineéuded. We also found that it
outperformed the PI controller for a moderate range of feeqy, but it did worse at very low and

high frequency. That range can be chosen by designer whpdndis also on the plant dynamics.

1.8 Dissertation Layout

The remainder of this dissertation is organized as followsChapter 2, we derive bounds on
the inversion error using two methods and compare them. Wehedirst one the slope-intercept

method, and the other the weight-threshold method. In @n&ptve describe a Pl control scheme.
We use the analysis of the inversion error based on the shdpesept method to quantify the

tracking of the closed-loop system when a Proportionagrdl Pl controller is used. Separation
of the controller variables from the plant variables is amptished by using singular perturbations
techniques. The development of the solution around onesheas loop in the presence of a

periodic input is obtained. The interaction between défegrcomponents and their effects on the
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solutions are discussed. We explore how to use the invebgionds to design more sophisticated
nonlinear controllers in Chapter 4, where sliding-modatod (SMC) is considered. Stability
analysis and tracking performance are also presented.t€@apresents a linear robust method
which considers the plant dynamics in the design. This ntetleies on Ho optimal control
design. We provide simulation comparisons for the threehotin Chapter 5. In Chapter 6,

conclusions are drawn on the research and recommendat@psoposed for future work.
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Chapter 2

HysteresisModel and Inversion Error

2.1 Introduction

This chapter is divided into two parts. In the first part, wecdiss how to derive bounds on the
inversion error. We will present two different methods ahdw how they relate to each other.
These bounds will be used in the following chapters in deaigh analysis of different feedback
control methods. In the second part of this chapter, we w#ineine these bounds by running
simulations for open-loop system. First, we will measueetiisteresis loops of the Pl model and
compare it with real hysteresis, which has been obtained &gperimental data. Then we will
perturb the model and measure the size of the inversion. ewerwill compare this error with
model error. Then we compare the inversion errors with ditallybounds, which are derived in

the first part.

2.2 Characterization of theinversion error

We calculate a bound on the inversion error using two methtdshe first, we assume that the
hysteresis nonlinearity has piecewise linear charatiesjsin other words, all hysteresis loops
(major loops and minor loops) consist of linear segmentsrefleach segmest has a slopen

and an intercepy; with the output axis, and= 1,2,---,1, wherel is the number of segments.
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Figure 2.1: lllustration of a hysteresis loop with pieceniimear characteristics.

See Fig. 2.1 for illustration. The bound on the inversiomeis calculated using the slopes and
intercepts of linear segments. We refer to this method asltpe-intercepmethod. Note that
this method is not confined to the PI operator; indeed, itieppb wide class of models used
in the literature, including the piecewise linear model@eéd in [36], the Prandtl-Ishlinskii (PI)
operator [21, 15], the modified Pl operator [12], and the Koselskii-Porkovskii (KP) operator
[70] among others. The second method applies only to Pl tgresad the bound is derived from
weights of the play operators with different thresholds. réfer to it asweight-thresholdnethod.

We will also compare between these two methods for the Plabger

Fig. 2.2 illustrates the system with a feedforward inverggtéresis compensator. We assume
that the actual hysteresis is represented by an opdratodefined by a vector of play thresholds
and a vector of play weights™. We further assume that a nominal modegh for the hysteresis
is identified for implementation dfr?ll, an approximate inverse fop. It is assumed thatm

shares the same set of play thresholds Wigh but its weight vectow differs from that oflp,
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Figure 2.2: A system with hysteresis preceded by an invgyeeator.

which represents the source of model uncertainty. In pdaicwe writew™ = w4 Ay, with Ay
denoting the weight perturbation. The contuglis applied to the inverse model adé= uy —u'is

the inversion error.

2.3 Thelnversion Error Bound Using the Slope-1 ntercept

Method

In this method, the uncertainty in the weight vector is thatesl into uncertainties in the slope and
intercept of each segmeitof the hysteresis loop, denoted l’&mj andij, andj=12,---,1,

wherel is the number of segments. Let the input-output relatigniiri the operator be

U=mjV+Yy; (2.2)
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Figure 2.3: Inversion error bounds using slop-intercephoe.

and the input-output relationship for the inverse-operb&
V= iu + i (2.2)
= m; d ™ Yinv,j -
By inserting (2.2) into (2.1) we obtain

1
u :mJ (m—JUd + Y|nV,j) + yJ

=Ug +MjYiny,j Y] (2.3)
Hence, for perfect inversion we require
MjYinv,j +Vj =0 (2.4)

Fig. 2.3 illustrates how these uncertainties can be usecetermine an upper-bound on the

inversion error. The termq represents the outputwhen the inversion is perfect, and its slope is
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one, whileu, represents the output in the presence of uncertainties,

up(t) =ug(t) (2.5)
Am:
Us(t) = (1+ m—.J)Ud(t>+Adc,j (2.6)

J

WhereAdC,j can be obtained from (2.4) by including the uncertainties as

Ddc j =Bm; Yiny,j +By;
_AmyYi—misy;
— m

2.7)

The difference betweem, andu represents the size of the uncertainty and is denotetit)y

d(t) =up(t) — uy ¥
Am:

=(1+—L)ug(t) +8gg | — g (t) (2.8)
j

The upper bound for each segment is

|Ymax|Am max
[Adcmax < [By,max + e (2.9)
min
The upper bound for all segments is
Am,
jd(t)] < ‘—mm_ax |ug(®)]+ Adc max (2.10)
min
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wheremmin, is the smallest slopéAmmay is the largest slope uncertainty, ajigyc may is the

largest intercept uncertainty among segments and can baebtfrom (2.7) as

|Ammaxyma)d + |mma)AWnaX|
Adc,maxS Memin (2.11)

A bound on the inversion error can be obtained from (2.10) as
|d] < kq +kg|ug| (2.12)

Am )d
wherei| Mmax < k~ and|A <Kq.
Minl ko and[Agc max < k1

24 The Inversion Error Bound Using the Weight-Threshold
Method

Since the hysteresis operator is modeled by Pl operatomfariation and experimental purposes,
it is natural to derive bounds using its immediate paramsetehich are thresholds and weights of
the play operators. Fig. 2.4 illustrates the basic behadi@r play operator. The output of a PI

operator can be represented as [12]
v =w' Hr[v;zg)(t) (2.13)

where,Hr = [H g Hyq ... Hm_l]T is the vector of individual play operators,

wl = [Wo W1 ...Wph_1] > Ois the vector of weights for individual play operators,
T = [ror1---rn—1/ denotes the vector of play thresholds, and we hapéay operators. It is

assumed that & rg <rq <--- <rp_1 = max Wherermaxdenotes the largest threshold, and
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wg > 0. A play operator with threshold, and initial conditiorgg; is defined by

Hyi [V, Zg] = max{v —rj,min{v+rj, g } } (2.14)

wherei =0,1,...,n—1. To simplify the notation, we will not explicitly put theitral condition

for operatordHj, 'm, etc.

u="rp[v = w*T Hr [V] (2.15)
v="Tmlug] (2.16)
Eq. (2.16) implies
Ug = Mmvl = w' Hr [V (2.17)
d=ug—u=TmM —TpM =A4Hr [V (2.18)
Hence,
d] = [AlyHr [v] (2.19)

From Fig. 2.4, it can be readily verified that, for a play operavith threshold,

[Hri V(1) =v(O)[ <Tj (2.20)

which implies

[Hr; V()] < [v(t)] + rmax (2.21)
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Figure 2.4: A play operator: the building block of a Pl operat

fori=0,---,n—1. We assume that the maximum error in the vedigris given byAw max

Combining (2.19) and (2.21), we obtain

|d| < nAw,max(M + rmax) (2.22)

We are interested in deriving a bound fdr in terms ofuy. Recall thaw is related tauy through

the inversion operatd‘rrﬁl. The inverse operator can be represented with yet anothegpd?ator
FCinv [12]. Tiny hasn play operators, and its vector of threshotglg, = [riny 0. - vrinv,n—l]T

and vector of weightsyj,, = [Winy 0, 7Winv,n—1]T can be computed based on the parameters

of the forward hysteresis modem. Therefore, we can write

V= W;LVHrinv[ud] (2.23)
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From (2.23), we have
n—-1
VO < > [Winyil([ug®]+ Finymax (2.24)

whereriny max= finv,n—1 IS the maximum threshold among the play operators for therses

hysteresis operatdij,,. Combining (2.22) and (2.24), we have

n—1
[d(t)] <nfAwmax > [Winy,illug(t)]
|=
n—1
+ndwmax(fmax+ Y [Winyilfinymax (2.25)
|=
Hence,
|d| < kq +ko|ug| (2.26)

where kg = nlawmax (31~ Winy,i|) andkg = nAwmax (rmaxct 313 Winilfinymax- Note
that the evaluation dfgy andk4 requires knowing the maximum weight erswy, max for the for-
ward hysteresis model and the vector of weighfg, for the inverse hysteresis model. The analysis
in the following chapters requires the assumption Ky < 1, which holds true whehw maxis
sufficiently small. Also, note that the expression&gtindk; are different from the one obtained

from Eq. (2.12).
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2.5 TheRelationship Between Segment Slope and Operator
Weights

The hysteresis characteristics of a Pl operator can bendeted by the so-called initial loading
curve (or the generating function). This curve is traveréekle initial state of the Pl hysteresis
operator is zero and a monotone increasing input signalgBemp[12]. The initial loading curve
can be fully characterized by a threshold-dependent pisedimear functior®(r) = Zij:oWi (r—

rj), wherei =0,---,n—1andrj <r <rj 1. Theinverse of the initial loading curvg(r), denoted

as @j(riny), exists uniquely for;,, > 0 and can be regarded as a generating function for the
inverse operatoPjp (finy) = Zij:oWinv,i (finv—Tiny,j), Whererjnyj <t <Tjqyj1- The slopes

can be calculated from the derivative of these generatingtions to obtain

[
g(13 r)= Z Wi = m (2.27)
j=0

d
— @ Tt 2.28
driny inv(Tinv) Z Winv,i = Miny,i (2.28)

The transformation law for weights results froam?_d—_cbinv(rinvi) = 1/ad—rcb(ri). After simpli-
invi ’

fying this expression, the weights of the inverse operadorlme calculated as

1

Winv,O:W_0

Winv,i = i (2.29)
(wo+ 31 _ywp)(wo+ 31— w)
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wherei = 1---n—1. Hence combining the effect of the inverse operator witpsi,, j =

1 i _ , i
WoTWI F W, and that of the operator with slopg = wg+wq + ---+w; would result in an

identity operator with slope of 1. See Fig 2.6. To examine aguerturbation of operator weights
affects the signal passing through the cascaded oper&brss assume that the uncertainties on

each weighty; is Aj. The perturbed slope is

My +Amj =Wo+8y0 +Wp +Byg +- -+ W+ Dy, (2.30)

From (2.27) and (2.30) we can obtdig, j = A0+ A1 + - +Ay;- Itis obvious that the uncer-
tainties accumulate and the maximum error will be in the $agfment ( witH = n— 1) which is
Am| =DBwo+Byw1 +---+Byn—1- Because the uncertainties are increasing as the sigmeases
and crosses the hysteresis segments, we cannot rely on igjie werturbation in obtaining a non-
conservative estimate of the uncertainty in the slopes. & @an show that the slope-intercept
approach has less conservative inversion error than thghiveireshold method by comparing
(2.25) and (2.10). To compare the inversion error portioa tiuuncertainties in the slopes, the
first term in (2.25) and that in (2.10) are compared. We exesslopes of the first term of (2.10)
in terms of the weights of the play operators

Wo

— <
| m lug(®)] <|

n|Aw,max
lwo

[lug|

lug| (2.31)

We know that from (2.29) the inverse operator weighig,  are negative quantities excempy, o
As a result, their summatioﬁinz_olwin\,,i is smaller thar\Nio. But, because we use the triangular

inequality to obtain (2.25) and we sum the absolute valumig{,,i |, this results in a larger bound
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Figure 2.5: lllustration of the initial loading curve.
(Zin:_ol|Winv,i| > ﬁ > Zin:_olWinv,i)- Then by comparing the bound on the first term in (2.25)

with (2.31) we find

n-1

njAw,max
W|Ud| <nlAdwmax( Y [Winyil)|ug(®)] (2.32)
i=0

From (2.32), we can see that the bound on the error using teecapt-slope approach is less
conservative than the bound which is obtained from the wdigieshold approach. Similarly, we

can derive the relationship between segment interceptspectors weights and thresholds.

2.6 The Relationship Between Segment Intercept and Opera-

tor Weights

The intercept of the segment with the y-axis can be caladiffiten the weighted superposition of

play operators as follows. For the hysteresis operatery j - o Wirj, and for the inverse-operator
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Figure 2.6: Ascending branches of hysteresis operatorrargtise-operator.

Yinv = ZicAWinv,iTinv,i- Where Ais the set of plays that are active. Note that theaipebecomes
active when the input signal is large enough to pass fromipderggion to linear region of the play
operator.

When the weight vector is perturbed Byy the slopes are perturbed By and Eq. (2.4)

becomes

Then by expressing, Am, Yiny: andyper in (2.33) in terms ofv andAw we get

Dgci =D BDwi)( Y Winvifinyi) + > Bwifi (2.34)
€A €A €A
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An upper bound for théh segment is obtained by taking the absolute value as

Bdc,il < |(_ZAAW,i)| <|(_Z Winy,i Finv,i)| + |ri|> (2.35)

le I€A

The worst case happens when all plays are activey(he{inz_olwi ri ) because the terms will have

the same sign. The bound on all segments then is obtained by

n—1
Bdcmax < NAwmax (‘(lzowinv,irinv,i)\ + |fma>d> (2.36)
|=

By comparing this equation with what obtained from weidireshold method which is given in
(2.25), we can see that they differ in the te{rﬂz_ol Winv,ilfinv,max Where taking absolute value
before summing the terms makes this bound very conseniat{2e25).

Based on these different bounds on the inversion error, jegse to design robust controllers
of two general classes and examine how useful are these baundntrol design. The first class
is nonlinear robust control. This class has three diffeme@thods; Sliding-Mode-Control (SMC),
Lyapunov re-design, and high-gain feedback control. SM@ layapunov redsign are close in
dealing with uncertainty. The only difference is which wesiga first; the sliding-surface or the
Lyapunov function. The high-gain method is basically imgd in the previous two methods when
trajectories enter the boundary layer of the surface. Twesonly focus on SMC method to de-
scribe the first class. The other class of controllers withichviwe examine these bounds is robust
linear-control. We assume that the hysteresis preceddéiadiae dynamics of the plant. The system
fits in linear design as the remaining non-linearity afteension is treated as uncertainty. Since the
reference signals that we often use are periodicHdeontrol is a good candidate for designing a

robust controller for these systems. Proportional-lrdkgontrol is another simple robust control
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method which is used particularly when the application neguow operating speed.

2.7 Simulation of the Hysteresis L oops Based on the Experi-

mental Data

To examine the proposed control methods in improving theegyperformance when it involves
hysteresis, we use a piezo-actuator nanopositioner. Tinenewocial nanopositioner (Nano-OP65)
and its power drive, shown in Fig. 2.7, are supplied by Mad/ Ci#bs Inc. We first iden-
tify the positioner characteristics to determine its lindgnamics and hysteresis characteristics.
The hysteresis was experimentally characterized by applgiquasi-static input that sweeps the
positioner over its operational range. The measured Hysteloops are shown in Fig. 2.8.
Then the hysteresis is modeled with a Pl-operator with 5 plpgrators with thresholds =

0, 0.63, 1.27, 2.54, 4.45)T and the vector of weights iz = [5.88, 1.58, 0.47, 0.98, 0.4]T.
The major loop of the output of the model using the same inptd @hich is used in character-
izing the hysteresis is shown in Fig. 2.9 . The error betwé&enModel output and the actual
hysteresis output is illustrated in Fig. 2.10 for a decregsinusoidal input. Then, we calculated
the inverse-operator, which has almost zero-inversioar €t 10_14um) when it is cascaded
with the modeled hysteresis (the hysteresis operator) e W@t because of the modeling error,
the cascading of the inverse-operator with the actual nasibpner hysteresis would result in an
inversion error. Hence, for all of simulations in next cheaptwe will perturb the model such that
it results in an error close to the one comes from cascadieagntrerse-operator with the actual
positioner hysteresis. Each component on the weight vécfmerturbed by a maximum value of

Aw,max= 0.15. Fig. 2.11 shows the error results from cascading therseveperator with the
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Figure 2.7: Experimental setup includes the nanopositiov@no-OP65, power drive, and
ADC/DAC converter.

perturbed hysteresis operator. This error has a size aabe tone obtained in Fig. 2.10.

2.8 Exampleof Calculating Boundson the Inversion Error

We consider, in this example, a Pl operator composed of therposition of weighed play opera-
tors of slopes equal to one. Hence the slope of any segmeaitislated by the summation of the
weights of play operators which are acting in their line@ioa at that segment. Let us denote the
set of operators which act in their linear regionAoy Then the slopenj is given bymj = ZAJ- Wi
and the upper bound on the play operator is given from (2.9]1Hbj V(1) < |v(t)| +rmax A
bound on the segmentoutput can be expressed using the weighted superposititredctive

operators between thresholgsandr | 1 as

ui ZZWHHri[V](t)I SZWjOV(t)IHmax) (2.37)
] J
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Then, we inserti from (2.1) into (2.37)
)+l < 3 wj (MO rma (2.38)
j
By settingv = 0 in (2.38), the intercepts satisfy the inequality
lyjl < Zermax (2.39)
j

The upper bound of slopes and intercepts for all segmentbeabtained from (2.27) and (2.39),
respectively, asnmax= Z?;cl)Wj and |ymax < Z?;cl)wjrmax wheren is the number of play
operators.

To examine how a perturbation of operator weights affeasstgnal passing through the cas-
caded operators, let us assume that the uncertainties bn/\m'ghtwj is AWJ-. The perturbed

slope is

mj +8m j :Z(Wj—f—AWj) (2.40)
J

From (2.27) and (2.40) we can obtafpy, j = ZAJ- Ayj- Hence, the upper bound on slope
uncertainties of all segment jBmmax < n|Awmax. Similarly, the upper bound of the intercept
uncertainties for all segments can be obtaine\ggnax < n|Aw,max’max

In this example, we want to examine the bounds calculatederniversion error versus the
inversion error results from perturbing the operator. tFthee perturbation on the hysteresis loop is
illustrated in Fig. 2.12 for a sinusoidal input with a randé&0 um. Note that we apply a voltage

to the hysteresis input with a maximum of 5.7 volt, but we eddhe input in Fig. 2.12 to represent
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it in the corresponding positioning range fim. We also shifted the hysteresis loops to the first
input-output quadrant by biasing the input with 2B dc input. Each component on the weight
vector is perturbed by a maximum value/sf;max= 0.15. This results in an uncertainty on the
slopes and the intercepts of each segment. Itis easy tda@c¢hese uncertainties by determining
the slopes and intercepts of each segment for the perturitedan-perturbed operator and then

subtract them. We obtained the following valuesyin = 0.7, Mmax= 1.1, |Am minl = 0.016,

|Am max = 0.08,

ymax= 16|, and|Ay, max = 1.03.

Now to calculate the bounds on the inversion error for th@eslmtercept method, we have
% < kg and|Agc max < K1, where|Ayc max can be calculated from (2.11 ). We obtain

min ' '
kg = 0.12 andky = 8.9. Then the bound is calculated from (2.12) withy/max= 50, we get
|d| <8.1.

For the weight-threshold method, the bounds are calcufatedthe expressions;
ko= n|AW,ma>4(Zin:_ol|Winv,i|) andkq = n|Aw,max (rmax+ Zin:_ol|Winv,i|rinv,max)- We obtain
kg = 0.1282 andkq = 10.53. Similarly, we insert these values in (2.26) to obtaintbendd < 17.
We can see this bound is more conservative than the one ebitaynslope-intercept method. Next,
we apply the same inputly = 25 x 10_6(1—1— sinwt), to the cascaded inverse-operator with per-
turbed operator to obtain the inversion error shown in Fig32where we can see that maximum

absolute value of the error jgmax= 3.7um. This value is smaller than the two bounds, which

are calculated using both methods with a large safe margin.
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2.9 Summary

In this chapter, we introduced two methods to charactehieearversion error when the hysteresis
model has some uncertainty. The error is characterized bgrtarpation in the weight vector
of the PI operator which is used to implement the inversaaipe A more general way which
includes more classes of hysteresis operators is to cleamethe operator by the slope)(and
intercept {) of the hysteresis loop segments. This class includes atidprs with linear piecewise
hysteresis loops. We compared these bounds in order to eseitithe design and the analysis in

the following chapters.
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Chapter 3

Quantifying the Tracking Error with

Proportional-Integral-Controller

3.1 Introduction

In this work we derive an expression of the tracking errorarrttie popular control architecture
that combines hysteresis inversion and feedback. Whangisshes this work from the literature
reviewed in Chapter 1 is that it allows us to discuss the auion among hysteresis parameters,
uncertainties, and control gains, as well as how they déterthe size of the tracking error. Fur-
thermore, we will be able to study how the tracking error sgalith the reference frequency, a
guestion that is of practical interest but remains largglgro We will provide the analysis con-
sidering a particular linear segment and then provide aafndllysis considering the cumulative
behavior when the hysteresis traverses different linegnsets.

Motivated by the properties of piezo-actuated nanopositip systems, we assume that the
linear dynamics of the plant are stable and have large batkw his assumption allows us to use
singular perturbation techniques to separate the slowrdigsaof the controller from the fast dy-
namics of the plant. Then by solving the equations for thersgpd models we are able to obtain
an explicit expression for the tracking error where we caculs the effect of different parameters

on the size of the error. In addition, we assume that the hg@genonlinearity has piecewise linear

42



H

Seginent s,

Slope =m.
P i

.
~
-

V| Intercept

Figure 3.1: lllustration of a hysteresis loop with pieceniimear characteristics.

characteristics; in other words, all hysteresis loops @miajops and minor loops) consist of linear
segments, where each segmgritas a slopen; and an intercepy; with the output axis. See Fig.
3.1 for illustration.

To fix the ideas, the tracking error analysis is conductecafoontrol scheme that combines
the hysteresis inversion with proportional-integral feack controller as illustrated in Fig. 3.2.
In addition, we consider adding a constant-gain feedfaiviarm to the output of the feedback
controller. The analysis procedure is still applicabletfa typical case of cascaded feedback and
inversion by removing this feedforward branch. Althougé tase without the feedforward com-
ponent has been reported extensively in the literatureq@147, 25, 48, 55, 56, 57], we show in
this work the potential advantage of adding a feedforwaid gamponent when the linear plant
has fast dynamics. We note that feedforward control has tiesenssed in tracking problems with
Two-Degree-of-Freedom control [71, 63, 64, 65, 62, 67] amy@d to be useful in disturbance re-
jection and performance improvement in general, but itslioation with feedback and inversion

for systems with hysteresis has not been reported beforaul&iion results are compared with
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analytical results with good agreement. Experimentalltesm a commercially available nanopo-

sitioner further support our conclusions.

3.2 Closed-Loop System Setup

In this section we briefly describe the components of theeddeop system as illustrated in Fig.
3.3. The linear dynamics of the plant are represented by gukirly perturbed system. The
bandwidth of the dynamicen is assumed to be large and of the ordge, lwheree is a small

positive parameter. The model of the linear plant is given by

£z= Az+Bu,

y=Cz (3.1)
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whereA is a Hurwitz matrix B andC are matrices with proper dimensions, ard the state vector.

We assume that the feedback controller is a proportioriaznal controller, represented as

X=e=yr—-y=yr—Cz

w = kijx+kpe (3.2)

wheree is the tracking error and is the controller output. A feedforward path with a gaiims
used to compensate for the DC gain of the linear dynamics. \ghe O, the scheme falls back

into the general scheme that combines hysteresis invefsidhe feedback loop) and feedback

control.

We denote the hysteresis operatoriyy and the inverse operator Eﬁl, wherel'm is the
nominal model of the actual hystere§ig. The input-output relationship ¢fp can be described

in each segment of a hysteresis loop as follows

U=myVv-+}y (3.3)

The DC gain of the plant is

h=-ca 1B (3.4)

The input to the inverse operatogy, and its outputy, are expressed ds

Ug = 9yr +kjx+kpe (3.5)

Iror convenience, we will drop the subscrij the analysis unless necessary andrasady
to denote the slope and intercept of the line segment undhsideration.
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V= r%(ud -) (3.6)

Note that (3.6) is essentially the inversion process forptleeewise linear hysteresis model, and
it requires determining which linear segment of the hystisress on at each time instant. Such an
assumption is standard in hysteresis inversion since teiehistory ofv is available. We further
note that (3.6) requires knowing the slope and intercepb@fcurrent linear segment; when such
knowledge is not precise, we can represent it as follows.ukadenote the corresponding slope
of the plant hysteresisp by mp and the intercept byp with parameter uncertaintiégn andAy,

wheremp = m+Am andyp = y+ Ay, which implies
U= (Mm+Am)v+ (y+Ay) (3.7)
By substitutinguy from (3.5) andv from (3.6) into (3.7), we expressas

m+Am
m

MAy — yAm

U— (3.8)

[ayr + kix+Kp(yr —C2)] +
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The singularly perturbed closed-loop system, obtainechbgrtingu from (3.8) into (3.1), is given

by

X=yr—Cz

kp(m-l—Am) +Am m-+Am

mAy — YAm
(9+kp)yr +B —

BC)z+ B!

Ez=[A— kjx+ B( ) (3.9

3.3 Tracking Error Analysis

In order to get a rough idea of what factors determine the gizbe error, we first assume in
Section 3.3.1 that the plant is represented by a DC gain ifi.leas an infinite bandwidth). This
is equivalent to setting = 0. In this case, the tracking erreris captured by the slow model
alone. We focus here on showing how the tracking error i<tdteby the input reference. Then,
in the following subsections we discuss other factors teatmnine the size of the tracking error

by solving the closed-loop system equations with sinusadperiodic references.

3.3.1 AnalysisUsing the Sliow Model Approximation

For the fast model of the singularly perturbed system to lpoeentially stable, we assume that

kp(m+Am)
“plTBm)

the matrix|A— BC] of (3.9) is Hurwitz. To obtain an approximation of the slowaed

we sete =0, to get

m-+Am m+Am

kp(m-+A _
Kp(m+Bm) -1 ——T(g+kp)yr +—— kX + (

m

mAy — yAm

7= _[A- )| (3.10)
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We insertz from (3.10) into thex-equation (3.9) to obtain the approximate slow model as

kp(Mm+Am)
m

m+Am m+Am mAy — yAm

X = yr +C(A~ BO) 1B (g+kp)yr  + kix+ (

)]
(3.11)

To simplify (3.11), let us denote the expressiBM — wmAm)BC)_lB by V and use the

Matrix Inverse Lemma lemma [72] to simplily as

kp(m-l—Am)
m-+- kp(m+ Am)h
kp(m+Am) h2
m+- kp(m-l- Am)h
B —mh
 om+ Kp(m+-Am)h

Vv =CA lBt ca1ipca1g

——h+

(3.12)

X can be expressed now in a simpler form by inserting the egme®fV obtained from (3.12)

into (3.11)

—mh m+Am

[ mAy — yAm
m+Kp(Mm+Am)h™ m

X=Yr +

(- kplyr + DM ) @13)

By rearranging and simplifying terms in (3.13), we can egpréhe tracking errog, in a form that
describes the effect of different parameters and signait on
—(m+Am)hk; y m(1—gh) — Amgh mMAy — yAm

= —h 3.14
m+Kp(Mm+Am)h m+ k|o(m+Am)hyr m+Kp(m+Am)h (3.14)
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Equation (3.14) motivates the choicegf 1/h. This would reduce the error due yp term, and

X becomes

—(m+Am)hk; —Am mAy — yAm

= X —h 3.15

M+ Kp(M+Am)h . mtkp(m+Amh""'m+kp(m+Am)h (3.19)
When the feedforward path is not included, weget 0 in (3.14) and obtain
—(m+Am)hk m MAy — yAm

X= X h 3.16

Mt kp(Mm+Am)h - mt kpm+amh” 'm+ kp(m-+ Am)h (3.16)

To have a general idea from this approximation about theéitmgcerror at steady state, here
we only discuss the second term on the right-hand side o5)&uid (3.16), which determines the
contribution of the reference signgl to the racking erroe (i.e., X). By comparing (3.15) and
(3.16) we notice that whef\m is small compared to the slope the tracking erroe will be less
influenced byyr. Moreover, we see from (3.15) that, in the ideal cds@ & 0= Ay), the tracking
error becomes independent of the reference signdin this case, the solution of the differential
equation will only have a decaying transient term dependaerthe initial value ok but indepen-
dent of the segment’s slope and according to singular perturbation theory [73] thégalution

xis O(¢€) close to the solution of (12); that is,

x(t) = x(0)e LTKPN" | o(g) (3.17)

The effect of the linear dynamics, which are ignored in the-feequency approximation, is

abstracted in the ter@(¢). It is important to consider this term at high frequenciesawill see
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in later analysis. From (3.15) and (3.16), one can say thatdrgasing the gaikp the error would
decrease. Howevekp might be constrained by the stability of the system becdoséigh-order
linear dynamics, increasing the g&ip beyond a certain value may destabilize the closed-loop ma-

trix [A— Mmﬂm)

BC]. Itis also important to have the ratip/kp high in order to achieve fast
decay in (3.17). In later analysis we will see that these yiagaterms will be initiated whenever

the signal moves to a new segment.

3.3.2 System Model and Coordinates Transfor mation
For more accurate approximation, we consigler 0 in this subsection. The system (3.9) is written
in a general form as

X All A12 X n Bl Ve + 0
- r

£z A21 A22 z BZ Yy

(3.18)

/
whereA11=0,A1o=—-C,B1 =1andAyq,Ar9,By, andy ) are the corresponding matrix/vector
coefficients of, z,yr and the constant term of equation (3.9), respectively. Viép Ke <) terms of

the series expansion and sum the resﬁDé&z). We use the following transformation [74], which

allows us to separate the slow and fast variables:

¢ In—eXYL —eH X W
= + yr (3.19)

n Z Im Z -W

whereé is the slow variable ang is the fast variable in the new coordinatgsandlm are identity

matrices of the dimensions of the slow and fast variablegeetively.W is a constant vector of
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the dimension of the fast variableZ and.7# are analytical functions of, which are defined in
3.5.1. To get back to the original coordinates, we use thergesof the above transformation:

X In eH ¢ 0
= + yr (3.20)

y4 - Im—eZLH n W

Since we are interested in @ﬁez) approximation, we use the approximatia#fs= L + sA2_22A2 1A0+
O(e2) and#’ = H +£Aq +0(£2), wherel = A, A1, H = Ag oA, 1, Ay = (AgH — HLA1 p)AS .
Ag=A11— A12A2_21A21 is a scalar. We follow similar steps as in [74] to derive thgtegn model

in the new coordinates. We note that in [74] the driving teimeginot exist. This term will allow
us to discuss the dependence of the solution on the refeygrasel its derivativey. By ignoring
the 0(52) terms in all coefficients, we arrive at the following equagan which the slow and fast

models are separated:

. / /
& =(Ag— eHLAQ)E + [eAgHW — HBy — eA1Bo + (In— €HL)Bq]yr + eHWYr —Hy —eAqy

(3.21)

. / .
eN =(Apo+ELA12)N +[Bo+ LB + (Aoo — ELA12)W]yr +y — Wy (3.22)

The detailed derivation is given in Section 3.5.2. We soB/2X) and (3.22) to get the expression

of the tracking erroe as follows. First foré, we express the solution of (3.21) as a power series

E=Eg+eb +e26n+... (3.23)
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Figure 3.4: lllustration of the time instants when periosiignals cross different linear segments
of the hysteresis loops.

By matching thee— coefficients on the two sides of (3.21), we obtain

o =Aofo+Boyr —H v (3.24)

. /
{1 =Apé1 —HLAGEp + [AgHW —HLB1 — A1 Bolyr + HWYr —Aqy (3.25)

whereBg = —HB, + B4. In order to see how the solution develops and the error gatpa from
one hysteresis segment to another, we solve the equatioradb segment by dividing the time
into intervals that correspond to the periods hystereaigssn different segments. We specify the
time at the beginning of each slot lyy wherei = 0,1,---. Then, for the current segmentwe

have the time bounded a§ =t <tj_ 1. See Fig. 3.4 for illustration.

3.3.3 TheCaseof a Sinusoidal Reference

We now consider a sinusoidal referenge= Acsin(wt). We assume that the solution of the
closed-loop system converges to a periodic function wighstiime period of the reference input.
This assumption is justified by the simulation and experitaleresults in this work and also in
[53, 55, 56, 1, 57]. Moreover, we assume that all the compisnghich compose the solution such

as the slowf and fastn variables are periodic of the same peribd
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The idea of getting a solution that shows the impact of alkéngsis segments on each other
is explained by the following steps. We start by solving 43.for the segmentwith initial value
&o(tj). Then, the final value of this segmefij(tj 1) will be inserted as the initial value for the
following segment + 1. We continue this process around one cycle until wegég +T). The
periodicity of the solution implies thd)(tj +-T) = &p(tj) and this allows us to obtain an expression

for &p(tj). By substituting this expression in the solution of (3.24) getéy(t), tj <t <tj 1,

/
Eo(t) :¢+H—V+BoAc — AO sin(wt)—i

Ao A%+w2 A%_l_wzcos(wt) (3.26)
where¢ is in the form
N A k. L;j M; NiAp;i
p =it 5 R0 T 5+ ZJAOJZ) (3.27)

nis the number of hysteresis segments traversed in one aytdK,j , Lj : Mj , ande are constants
dependent on the parameters of jhh segment in the cycle. The complete derivatiorgft)
and the full expression agp are given in Section 3.5.2. The bound ¢@ns derived Section 3.5.3.
The term¢ can be described by a periodic term, which has a peak valie &tetginning of each
segment and decays exponentially with a speed dependeme @altieAq until the following seg-
ment. ¢ is important in the sense that it connects the solutionsftdrént segments by summing
the propagated error of all previous segments in each clideever, this term can be made small

by choice of a large value ¢RAg|. Since the choice o is important, let us derive its expression

53



and see how it changes from one segment to another

1
Ao =A11-A10A5 A2

_ O—C[A—kpm+mAm

_ —(m+Am)kjh
1+ Kp(m+Am)h

m+Am

BC 1B k;

(3.28)

Under the assumption that4-Am > 0, for all segmenté < 0. By choosingdkp such thakp(m+-
Am)his much larger than 1A becomes independent of the segment slope and is determined b
the ratiol%. By having the integral gain much larger than the propogiaain &; > kp), we
guarantee thgf\y| is large enough to make the valuegokignificantly small and decays in a short
time within each segment.

In Section 3.5.4, we show thdt is bounded uniformly irnw. Hence, the slow variablé is
obtained by substituting form (3.26) into (3.23). The solution of the fast variablel&ived in

Section 3.5.5 as
!/
n= Lp—AﬁanAcsin(wt) —Aﬁly -l—s(Aﬁ W—Aﬁan)Acwcos(wt)+O(sz) (3.29)

whereAn = (Aoo+€LAq9), Bn =By +€LBy +(Axo+ELA1 )W), andy is a term similar to the
¢ term of the slow variable, but it decays much faster thaThe tracking error fotj <t <t 9

in terms ofé andn is given by

e(t) =Bqyr—Cz
= Byyr + A1 [—(L+ eA52A21A0)E + (Im— eLH)N +Wyt | +0(2)

= —Aqo(L+ A ZA21AQ)E +Aq o — EAT pLHN + (By + A W)yr + O(2)3.30)
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By insertingé from (3.26) and (3.23) ang from (3.29) into (3.30) and usingg = —A1oL we

obtain the final expression of the error with @$£2) approximation

w
A(%erz

/
e(t) = (B1+A1W)yr+Ag [¢+%+BOAC <A%%A2)25in(wt) _

_ _ . I
1881 — EA1 AL 2 A1 A0E + AL [qj —AptBpAcsin(wt) —Apty +e(Antw

cos(wt))

—AEZBU)Achos(wt)] —eA1oLH[Y — A 1B Acsin(at) - Aﬁly/] +0(2) (3.31)

To discuss how these terms change with the frequency, wesepkrate the error expression into
three groups:

e= eo+£eg+swegw+0(52) (3.32)

whereg, eg, andegy are bounded uniformly g andw. In other words/eg| < kK1, |eg| < ko,
and|eg | < k3, wherekq, ko, andkg are some positive constants independert ahdw. The
contribution from theeg term can be ignored because it is multiplied by a small nungbérhe
termegy becomes significant at high frequency when its coefficggnis not small. Let us start
with analyzing theey term. By ignoringO(e) terms,Aﬁ1 can be approximated b§{2_21 and the

/ /
term —Aleﬁl is replaced by-H. ThenHy cancels out the termAlZAﬁly

6 + BoAc (A%_fgﬂ sin(cot) — @ cos(wt))]

—~A12An 1B Acsin(wt) + Aq o (3.33)

eo(t) =(B1+A1oW)yr +Ag
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W can be chosen such thaj oW = —Bq = —1 and the first term is eliminated. This is always
possible becaus&, = —Cis rank 1 and it is a row vector with all of its elements zerosept
the element representing the output of the linear plant. #veaiso show tha*cAleﬁan =
1-HBy = B and simplify the equation by combining sine terms togetivaich produces

2
BOACW sin(wt). Bp is approximated byBy + ApoW and multiplied by—Aq A, 5" to get

1—HB»y and then replaced in (3.33). Theg(t) becomes

2
ep(t) = Agd + Boﬁ'%sm(wt) +Aq P (3.34)

2
It is noted that for a sufficiently high frequen <w<1l/eg), -2 becomes constant and
y hig q d%\ /€) W

almost independent on frequency. Tdweg ¢y term is
sweg g (t) = Aq olAp LeW — eAn 2B | wAccog i) (3.35)
By replacingAlZ[Aﬁl] by H in (3.35) we have

gweg(t) =e(HW — HAﬁan)wAccos(wt)
=g(HW — HA2_21(BZ + AxoW)) wAc cog wt)

:—e(HAz_Zle)wAccos(wt) (3.36)

By ignoringeeg andO(ez) in (3.32) and substitutingg from (3.34) anct weg ¢y from (3.36) into

(3.32), we obtain an approximate expression for the errandweach segmentfor a sufficiently
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high frequency |Ag| < w < 1/¢)

7
e(t) = Agd + BoAc—y—— Sin(at) — £(HA 1 Bo) wACCOS t) + Aq o (3.37)

AS+ w2

In summary, The bound on error is composed of two compondiite.decaying component
which is represented g ¢ +A1oy. This component has its peak at the beginning of each seg-
ment which can be controlled by the choice of control gairse @ther non-decaying component

has the following characteristics. At a very low frequenay< |Aq

), the error is proportional
to the frequency. This is due to the cosine term of (3.33) Wisdgnored later in (3.37) and the
sine term of (3.37). Then, by increasing the frequency, vaehrex range where the error becomes
almost constant with a value that depends on the system pt#esrand uncertaintieBoAc of
(3.37). Then, it starts to increase linearly with the fragryeagain whergw of the third term of
(3.37) becomes large enough to contribute to the total atrmfithe error. This is true as long as

the 0(52) approximation is valid.

3.3.4 Bound on All Segments

The error expression (3.37) is valid for each segment. Letgasn use the subscripto denote

each segment. By taking the absolute value afd using the triangular inequality, we obtain

l&| < |Agi®il + [BgiAc| +| —E(HiAz_zl,i By i) |wAC+ A1 U] (3.38)
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The upper bounde|max of the error for all segments can be determined by studyingmnthe

highest value of each term in (3.38) occurs. Let us start thithsecond terrBg;|. Note that
Bgj = 1 HjBp = 1— A pA>9 By (3.39)

Then substituting the matricés -, A2_2l andB, from (3.9) into (3.39), we get

m; + Ay AC) _1Bmi +Am

Bgi =1—-C[A—kp (9+kp) (3.40)

m |

. . . . . _ mi-l-Ami -1
Using the Matrix Inversion Lemma, we simpli§{A —kp m BC|”-Bto

m;j +Am 1 —mh
CIA—k \BC] B ! 3.41
[ P m ) M + kp(mj +Amy )h ( )
Then we insert (3.41) into (3.40) to get
m; (1—gh) —Am;gh (3.42)

B =
O™ my + kp(mj +Amy )

This expression appears as the coefficient of the driving tdrEq. (3.14). By taking the feedfor-

ward gaing = 1/h, we can reduce the absolute valueBgf as in (3.15)

(3.43)
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Let us denote the bound dp; By By max for all segments. This is obtained by substituting the

largest|Am|maxin the numerator and the smallest,i,, in the denominator of (3.42)

|Am|max

(3.44)
Mmin + kp(Mmin)h

|Bglmax <

The bound onp on all segments

b

segments is derived in Section 3.5.5. The upper bcﬁtrmglez)max on the third term of (3.38)

max IS given in Section 3.5.3. The boun@|max on all

is given in Section 3.5.6. We find that this high-frequenayntés nearly independent oh and
Am for the casdAm| < m. In other words, this term does not change much from one seime
another.

We conclude that the upper bound of the error can be detediiynsubstitutingn; by mmax
andAmy by [Am[maxin the numerator andhy by mp,i, in the denominator. Applying this té\; |

we obtain|Ag|maxwhich replaceg\y; for the upper-bound on the error

lelmax < [Aglmax ¢ |max+ |BglmaxAc + | — E(HAz_Zle)mwd wAc+ |A1oW|max  (3.45)

3.35 TheCaseof Periodic References

The earlier analysis on the case of a sinusoidal referentéea&xtended to the case of a general
periodic reference. We have found from the solutions of tbe snd fast variables in the case of
a sinusoidal reference that the steady-state solutiorags@ntwo parts. One has a decaying form
and is dependent on all previous segments of the hysteoegis The other is only dependent on
the current segment and is obtained by solving an integrztemn as in the conventional linear

system. It is easy to show that a similar procedure can beeaptad any periodic reference. For

59



instance,
Hiy ot
Eot) =@+ AITVI +/t_ 01 (= Dggyr (1)dr (3.46)
I |

wheregq is given by

Loi (t—tj)

ATT1m

/ /
Loin-18i4n-1  Poiradivr MK Pt
Ao Ao+l

1 t :
+eAOItI+1/t"+1e_A0|TBoin(T)dT> +-
i

/ /
L Poitn-18iin-1 [ Fin-2Min-2  Mien-1hin-1
AQ,i+n—2 A,i+n—1

S t; -1 - ‘o oT
+eAO,|+n 2li+n—1 t'+” e P0i+n-2 Bo,i+n—2yf<r)dr>
i+n—2

/ /
N (<Hi+n—lyi+n—1 B Hiﬁ

ot litn —Agiin_1T
Aoiin 1 Ao )+eAO,|+n 1|+n/ N o Aoin-1 BO,i+n1YrdT)}
Ji+n— i

liin-1
(3.47)

andM is defined as
M= P0i+n—18i+n-1__ R0,i+18i+10,i4i (3.48)

The fast variable) is derived for any periodic reference in Section 3.5.5 as

I

nw =uwy-— A,;ilyl - Aniani yr (1) + eA,;ilwyr (t) — gA,;iZBniyr (1) +0(e2) (3.49)

60



Then, for a given periodic inpuy (t) we solve the integration of (3.46) and substitéitandn in
(3.30) to obtain the expression of the tracking error.
Since any periodic signal is bounded by a conskantyr | < K, an upper bound og can be

obtained by calculating an upper bound on the right-hangl sid3.47) and replacingyr | by K to

get
/ /
(t—t; . A
|<q|§eAO'( ! M B0,k L Poirn-18irn-1. Aoi+1di+1 Hiv  Hiv1¥ia
1-M Ao, Agi Agii+1
BhK| |BpiiiK
. Oi n 0,i+1 L
Aoi AQ,i+1
/ /
L Poin-1bipnoa [ |Mian-2Yin-2 Pign-M4n-1| |Boitn-2K
AO,i+n—2 AO,i+n—1 A0,i+n—2
/ /
L [Bojen-1K]) | Misn-1%in-1 Hiv|, |Boj+n-1K .50
AQ,i+n—1 AQ,i+n—1 Agi AQ,i+n—1

Although the bound omg | looks different from the one obtained in the case of a sirdaoif-

erence, they both can be made small by increasing the vallfgaf However, in the case of a

sinusoidal reference we have the full solution with the fioieits 2A0i 5 OF — w 5

instead of%, which shows that this bound is smaller in high frequenaies; |Ag;|. We should
[

appearing

note that increasing the value [@fy| reduces the value ¢ | but this is not helping much with the

tracking error because we multipfyby Ag when the error is calculated.

3.4 Simulation, and Experimental Results

The simulation is based on the model and parameters idehgifiperimentally for a commercial

nanopositioner (Nano-OP65 with Nano Drive controller, MGity Labs Inc.) The linear dynamics
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are fitted experimentally with a second-order system witlatanal frequency of 2086 Hz, which
corresponds te =7.63x 10~°. The hysteresis is modeled with a Pl operator with 5 play ajoes
having thresholds = [0, 0.63, 1.27, 2.54, 4.45]T and the vector of weights for the operator is
wl = [5.88, 1.58, 0.47, 0.98, 0.4]. When we apply a periodic reference signal of (with single
maximum and minimum in each period, with amplitude(s@, we obtain a loop of five segments
in the ascending side and similarly in the descending sidbeasteady state. The slopes of the
ascending side of the loop ame{ = 0.67, mp = 0.85, mg = 0.9, my = 1.01, mg = 1.057). The
slopes of the descending side of the loop ang £ 0.67, m7 =0.85 mg=0.9, mg=1.01, m o=
1.057). The intercepts argy(= —6.8, yp = —3.31, y3 = —258, Yy = —2.8, 5= —2.9, Y=
6.8, y7 =331, yg=2.58, yg=2.8, y19=2.9). The weight vector of the operator is perturbed for
the simulation purpose by adding 0.15 for each elemewt fbhis perturbation changes the slopes
of the loop and is equivalent to uncertainties&g{ = 0.016, Ay = 0.03, A3 =0.05, Ay =
0.07, Ays = 0.08, Ay = 0.016, A7 = 0.03, Apg = 0.05, Apyyg = 0.07, Ay = 0.08) and
(By1=—-10313 Ayp=—07, Ag=—0.46 Ay =—0413 A 5= —0.7, Ag=10313 A7 =

0.7, Ay8 = 0.46, Ayg =0.413 Ale =0.7).

3.4.1 Simulation Resultsversus Analytical Results

Fig. 3.5 and Fig. 3.6 show the simulated tracking errorsltesthen the feedforward branch is
included, for a reference consisting of two sinusoids arat@oth reference signal, respectively.
We observe that, in each case, the tracking error is alsogienvith the same period as the refer-
ence. We also observe that the tracking error has a similagfevan as the reference input but it is
distorted when the slope changes from one segment to andtiisichange in slopes is more obvi-

ous in the case of triangular waveform. Fig. 3.7 depictstheking errors for the same triangular
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Figure 3.5: Simulations results on tracking a periodicneriee composed of two sinusoidal signals
of 25 Hz and 50 Hz.
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Figure 3.6: Simulation results on tracking a sawtooth exfee of 5 Hz.
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Figure 3.7: Simulation results on tracking a sawtooth exfee with and without feedforward
compensation, under perfect hysteresis inversion.

input reference of 5 Hz with and without feedforward term endperfect hysteresis inversion is
assumed. From these results we confirm that feedforwarthenigd feedback outperforms feed-
back alone. Further simulation results involving the sathiaeference are also depicted in Fig.
3.8, where we compare the tracking errors when uncertaryesent and absent in the hysteresis
model. The uncertainty is introduced by perturbing the Wisgf play operators, as explained
above. Here the feedforward term is included in the cordrolFrom Fig. 3.8, the influence of
the model uncertainty on the tracking error is evident. Tike sf the error for each segment is
dependent on the segment slope and may be large or smalldiegem the value ofn at that

segment.

In Table 3.1, we compare the maximum amplitudes of the traickiror, when the reference
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Figure 3.8: Simulation results on tracking a sawtooth exfee when uncertainty is present/absent
in the hysteresis model.
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signal is a sinusoid with amplitude of 30m and its range of frequencies is 1-1000 Hz. Here we
adopt the control scheme with the feedforward term and denghe model uncertainty as dis-
cussed earlier. The gains for the proportional-integratiasler are chosen d¢ = 50 andkp = 3.
Moreover, a comparison between simulation and analytesllts is provided. These results are
also plotted in Fig. 3.9 for a better illustration. The id&ad second-order plant is used in the
calculation of the analytic results. The valuegofs provided in Table 3.1, which shows that it has
a little effect on calculating the error especially at higdguencies. The maximum contribution of
( to the error, which is calculated but not included in Tablei8|Aq o(|max= 0.0948. This term

is almost not changing by increasing the frequency. FromeTald and Fig. 3.9, we notice the
following. First, for this particular example, tigeterm is small and can be ignored for all frequen-
cies of 10 Hz or higher. Second, the error obtained in sinanahcreases with the frequency at
low frequencies, then it remains almost constant for thefn@guency range, and then it starts to
increase again with frequency. This is consistent with theré&ound we calculated in the previous
section. Third, the calculated error bound is close to therérom the simulation. This bound is
good up to 200 Hz, because we lﬁesz) approximation which is valid fow < 1/¢. It is clear
from these results that when frequencies become closeetdased-loop system bandwidth, we

should consider approximations higher tI@(rEZ) approximation.

3.4.2 Experimental Results

In experiments, sinusoidal signals are used as refereajeetories in order to compare the meth-
ods with and without the feedforward term. Fig. 3.10 shovesrésults for the cases of tracking
10 Hz, 35 Hz, and 50 Hz signals with amplitude of 2. For the best results, the control gains

are chosen dg = 2000 anckp = 1.5. The maximum tracking error is about 0.0& and slightly
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Figure 3.10: Experimental results on the tracking errorsfausoidal references of different fre-
guencies.

increases through the range from 10 Hz to 35 Hz. We see a lacgegaise of about 0.08m at 50
Hz. We also compare the tracking performance of the expatmheesults with simulations for
the range of frequencies from 1 Hz-to- 200 Hz. The resultcis plotted in Fig. 3.11 show
a similar qualitative behavior of the tracking error. Thacking performance of triangular and a
multi-sine signals are shown in Fig. 3.12 and Fig. 3.13,ee8pely. In Table 3.2, we provide more
experimental results and compare the maximum tracking éetween the cases when the feed-
forward compensation is added or removed. Fig. 3.14 showsarison of tracking error when
the feedforward is added or removed for the triangular antli+sine inputs. The results confirm

our analysis that the scheme with the feedforward compamgperforms the one without it at all
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Figure 3.11: Comparison of simulation and experimentallte®n the tracking error as the refer-
ence frequency is varied.

frequencies and with different waveforms. In addition, ve¢enthat the frequency-dependence of

the maximum tracking error follows well the trend predicbgdour analytical results.

3.5 Mathematical Derivations

In this section, we will present the long derivations for finevious sections of Chapter 3.

3,51 Sow and Fast Variablesin ¢ and n Coordinates

The 7 and.Z matrices of (3.19) are obtained by solving the equationk [74

Aol Aol +EL A1~ ELA12.Z =0 (3.51)

E(A11—A12L)H — A (Ppo+€LA19) +A12=0 (3.52)
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Figure 3.12: Experimental results on the tracking of a gidar reference.
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Following similar steps as in [74], we can show that the sohsg of (3.51) and (3.52) have off-

diagonal elements equal zero, and derive the system dyeamtice new coordinates as

en

A11—ZLA12 0 3
0 Aoo+EZLA19 n

E(AQ1— LA19) W — By + (In— € L)Bq
r
Bz+ ED%B:L — (A22+ EgAlz)W
/
A — Y
Yr + ,
—&W y

(3.53)

whereAq = All—A12A£21A21. It is often helpful that, instead of using the exact solusiof.#

and.sZ, we use their approximations [74]. It is shown in [74] ti&tand.7Z can be approximated

by Z =L+ £A2_22A21A0+ O(£2) and.# =H — EAL+ O(£2), respectively, wherd, — A2_21A21,

H= A12A£21, A1 = (AgH —H LA21)A2_21. By substituting the approximations &f and.”#” into

(3.53) and ignoring th@(ez) terms, we obtain a(D(sz) approximation ofé anden shown in

(3.21) and(3.22).

3.5.2 Solution of &y

In order to see how the solution develops and the error padpadrom one hysteresis segment to

another, we solve the equations for each segment by diviismime into intervals that correspond

to the time periods of the hysteresis staying in differemnsents. The solution of (3.24) for
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i <t<tiyq is
. . t . /
t)= i <t_tl)fo(ti)+/[ 0 <t_r)(BOiAcsin(wr) —Hjy)dr (3.54)
i
which can be readily derived as

_ Poiltt)g M 11 oilt=ti),
&) i t,+A01 i

_eAOi(t_t') IAC[AO_IiOLI()ZSIn( tj) — WCOS(‘Uti)]
+BgiAc[— +;)2 sin(wt) mcos(wt)] (3.55)

With the assumption that the solution is periodic, we sdjyeby starting at one segmentnd
continue solving for alh segments until we return back to segmeafter a periodl. At time
t =t 1, EQ. (3.55) becomes

!

fott 1) il g+ M- Poitiva )

(t: —t; —AO w .
~ailli+1 I)BOiAC[AO, N ;)2 sin( awt A%i 2 cogat;)]
JrBOiAC[W sin(wtj 1) — WCOS(WtiJrl)] (3.56)

i i
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By accumulation of the foregoing expression ongegment we obtain

Eoltn i) = & Oi+n— 1n4i~ti-vghonti—2(ti-17ti-2) | Poiltiva—t) (gt

/
_Hi_y_BOI Ao sin(etj) — 5o Cos(ﬂ)ti)]]

! AOI AG + w? A%i + P

4 L0i+n-1tnti—thyi-1) Agin—2(tnyi—1-thyi-2)  Aoi+altivatip1)

/ /
Hiy Hiv1¥igg —Boifoi | Boi+1f0itl oo BO,
. . +AC[( 2 2 Z)Sln( |-|—]_) VIR
Ao Ao+l Ao|+“’ ASiiqtw Ao|+“’
Bojiqw . . .
2m+1>cog(wti+l)]] + o lnsi—tyi )
gt w?
AO,|-|—1
/ /
Hitn—2Yiin—2 Hitn-1¥%in-1 —B0,i+n—2A0,i+n—2
AQ,i+n—2 AQ,i+n—1 A5 itn_2t®
Bo,i-+n—1A0,i+n-1, . Bo,i+n—2®
+—= : 2 )sin(tpyj_1) — (-5~ 5
AO,H—n—l+ AO,i+n—2+w
/
Bgi+n—1% Hitn-1%4n-1
) eodet )]
A, i4n—1F @ I+n-1
“Ajitn-1
+Boi+n-1Acl Zs'n(‘*’tn-i—i)_ ) ZCOS(th-i—i)] (3.57)
AOI+n—1+w AO,i+n—1+w
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Because the solution is periodic, we can replgge by tj in the left side of equation (3.57) and

rewriting it in terms ofép(tj):

V
éo(tolMM[ AIo. —BoiAc AOIiszsmw.) A%i‘jwzcos(wtm}
+ ﬁ (eAO,i+n—1(tn+i—tn+i—1>eA0,i+n—2(tn+i—1—tn+i—2)
/ /
A,i+1(tig2—ti11) Hiv  Hiv1¥ig —BpiAgi B0i+1’°‘0i+1 .
e g

. Bgiw  Bpjp1w
2 2 A2 2

4 P0i+n-1(tnyi—thyi-1)

/ /
Hi+n—2Vi+n—2 B Hi+n—1Vi+n_1)
AO,i+n—2 AO,i—i—n—l
—BO,i+n—2AO,i+n—2+ BO,i—l—n—lAO,i-l—n—l

+Acl( )sin(wtp 1)
2 2 2 2 n+i—1
AO,i+n—2+w AO,i+n—1+w
/
Bo,i+n—2w Boi4n—1@ Hitn-1¥%1n_1
~(— e L LSRRV R vy
AQjitn—2tT® Ajifn1t® I+n—1

_A% i+n_1+w2 cos(a)tn+i)]) (3.58)

whereM = & Oi+n-14i+n-1.. A0i+14i+14°0,i4 By insertingé&q(tj) of (3.58) into (3.55),

we obtain the solution of(t) at the steady state as

9 cogat)) (3.59)
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where¢ is the periodic decaying term defined as

¢ = sin(wt coq wt;)

Aoi (t=t) ( Iy Ao

w
— BiAc 2
1-M Ao AR w2 AR a2

L Poirn-1ltnti—thyi-1) Loji+n—20tnyi-1-thi-2)  Loi+altive—tive)

/ /
Hiv Hicaieg o —Boifoi | Boittfoivl Bgiw

<A0i AQ,i+1 A0|+w2 A(Z) 1+w2)sm(wti+1> A0|+w2

~ Bpjiy1w
2 2
A1t @

/ /
+P0in-10nti—tnti-1 [ i+n-2Y4n-2 Hi+n—1Vi+n—1)
+

)COS(wti+1)]} +--

Ao Ji+n—2 AO,i+n—1
—BOH-n 2AO|+n 2 BOI-l-n 1AO|+n 1

+Acl(
2 2 2 2
AO,i+n—2+w AO,i+n—1+w

)sin(wtn+i_1)

Boj+n—2w  Bpiyp 1@
Ag),i+n—2+w2 Ag),,i—i—n—lJr‘*’2
_AOH-n 1
Ao|+n—1+“’2

/

! AO,i—i—n—l

)COS(‘*’tn+i—1)]} +(

+Bo,i+n-1Acl—

sin(wtpj) — cos(a)tn+i)]) (3.60)

2
AO,iJrn—l‘H‘)2
3.5.3 Calculating the Bound on ¢

We assume that there is a negative constansuch that\y; < —a. Then for alli, 0i0 < a0
M is bounded aM < e—aT . We substitute the bound o in (3.60) and then replace the duration

for each segment bgt; =tj 1 —tj and the sum of);’s over one cycle byl', which results in, for
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/
1 i% A0
— B sin( wt CcoS wi;
|¢|—1_e_aT (' AO OIAC A%i+w2 ( | A%i+w2 i I)
/
LeaT-4) Hiv Hiv1Yig
Aoi AO,i+1

—Bn: An: Bo i i Bn: Boirqw
+AC[( 2OlAOéJr 02"+1A0’|—'_21)sin(wti+1)—( 2O| 5 - 2O,I-i—l 2)cos(wti+1)]

AT Agip1t@ ADi T @ Ayt @

/ /
+ealn (Hi+n—2Vi+n—2 - Hi+n—1Vi+n—1> +AC[(_BO,i+n—2AO,i-|—n—2
AO,i-i—n—2 AO,i-i—n—l A% i+n—2+w2

n O,El—n 1'°‘O,|-1-n2 1)sin(wtn+i_1)—( 20,|+n 2 ,

AO,i+n—1+w AO,i+n—2+w

/

Boi4n—1® Hitn-1%1n1

— =) cog{ @t —1)] |+ |( A =2
AD,i4n—1t®@ itn—1
“AQji+n-1 w

+Bo,i+n-1Acl-5— sin(wtp ) — cog wtp )] (3.61)

) 2 2 2 +I

AO,i+n—1+w AO,i+n—1+w

Let us denote the right hand side 1%/. Then¢ is bounded at any time by this constant, |¢| <

2 . The components ap, which are described in Eq. (3.60), are functions of eitgrwhich
/ /

are bounded bjBp|maxgiven in (3.44) oH;y. where we can determine its bouf{éily )| maxby

inserting the matrix expressions. Note that

/ m; +Amy 1., My — iAm
H;y = —C[A— kaiBC] B(T>
—h(midy — ydm;)

(3.62)

~ 1+kp(mj +Am)h
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/
The bound orH; y: of all segments can be obtained as

hlymax/|Am|max+ Mmax@ymaxl

1+kp(Mmin)h (3.63)

/
[(HY )lmax<

By replacing|Bg;| by |[Bg|max and Hiyil by |(H y/)\maxin (3.61) we get the upper bound for all
segmentsd| < |¢|max However, this bound is very conservative and might not bkefulisn
calculating the bound on the error. It is noted from TabletBat ¢ is small particularly at high
frequency and can be ignored. This is can be explained fro®)&s follows; at a sufficiently
large frequency the exponential terms inside the pareistivegsomes close to one. We also ob-
serve that every term inside the parenthesis has a simitantéh opposite sign that cancels it out

when the exponential terms becomes close to one.

3.5.4 Solution for &;

To solve foréq, insertéq from (3.59) into (3.25)

«f'leovfl—HLAom

H V Ao

— —— +BgiAc Ao +w2$|n(
i

w
Ao R )

+ [AgHW —HLB — A1 By]Acsin(wt) + HWAcwcog wt) (3.64)
By combining similar terms, we can rewrite (3.64) as
51:A061+alsin(wt)—|—a2cos(wt)+a3a)cos(wt)+Q (3.65)
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whereQ is a constant and1, a, andag are bounded uniformly imo. We notice form (3.65)
that él has the same form a?o of (3.24) except with an extra term which comes frgmand

is proportional to the frequenay. Sinceéq in the solution of the error will be multiplied by,

it matters in determining the bound only if any terms of itduon can be approximated by a
quantity that is proportional ta. However, through similar derivation as fég, we will have a
solution toé4 with extra terms of sine and cosine terms multipliedday These terms appears as
follows

sin(wt) +lcos(wt))

a
AG + @

TG a2
which are bounded by a constant independent of the frequeamtyence belong to theg terms

of Eg. (3.32).

3.5.5 Fast Variable Analysis

Now we need to express the fast varialplasing its model (3.22) by findin@(1) andO(¢) terms.
Let us simplify (3.22) as

: / _
En = A’7i n-+ Bni yr+Y% —eWyr (3.66)
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whereAn = (Apo+ELA19), Bn = By +£LBq — (Apo+ ELA12)W). The solution of (3.66) for

i <t<tiiq is
ny =eMmtt/E / i (= T)/g[Bmerrv
—EWYr (1)]dT

— Ar’|(t tI)/ r](t) r]|<t T)/£|t /

’7
t An: (t—

J%/[ eA'7|<t 0/ Bniyr(r)dr
i

—/_t Vi (t_r)/SWy'r(r)dr (3.67)

In order to simplify the integration of (3.67), we use thempa of variables =t — o

— M Ep ) A 1v +An 1gAAn; (1= t.)/e !

Anj
t—t)/e Apn.
+/()( i)/ eAr]I Br’iyr(t_ga)do'

n(t)

g /o 4/ A T\Wyi (t — e0)do (3.68)

With integration by parts, the first integral becomes

/O(t—ti>/5eAni O'Br’iyr (t—eo)do

(3.69)
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By simplifying the integration in (3.69)

/ (t=4)/ “a-1gMn0 Bn; %(yr (t—e0))do

0 g
—2 An; . t—t;)/€e

(t-t)/e o o> Apo, d2
+/O e2An 2 By~ (1 (t — £0))do

—2 An: (t—t; .
:—sAniZe i ( '>/£Bniyr(ti)

+ sA,;iZBmy'r (t)+O(e2)

Then we insert (3.70) in (3.69) to obtain

/(t_ti)/geAr’i (o)

0 Brliyr(t—SG)dO'

—1 An;(t—tj)/¢e —
= Aple ni (t=4)/ Bryivr (t) — Ay Bryjyr (1)

2 Ap:(t—ty) /e . — )
+ eAnize ni(t=4)/ Bn; yr () — 8Ani25ni yr (t) +O(e?)
Similarly, we can simplify the second integral in (3.68) tatain

s/o(t_ti)/geA”i T\Wyi (t — e0)do

_ gAEileAni (=40 Evge 1) — £AR WY (1)

+e2an 2 (=) g 1) e2A2Wyjr (1) + O(e%)
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We then insert (3.71) and (3.72) into (3.68) to obtain

An: (t—t;) /€ Y
n) =it/ (n(ti)—l-Anilvl +An By (t)
J— . —_— - _— /
+ sAnianiyr (t) — sAni1Wyr () —Anilyl )

- Aﬁiani yr (t) + eA,;ilwyr (t) — €A

nianiyf (t) +O(e?) (3.73)

To obtain the initial value) (tj), we do not need to solve (3.73) by getting the accumulationrad

one cycle because we assume small and the decaying within each segments makes the tran
sients ofO(¢) order. Thus, initial values of the current segment, i +n, only depends on the
driving terms of the previous segment; n— 1.

/

Any 1 (—tin_1)/2 1
r](ti) — e Mi+n—1\1t+n-1 (r](ti+n_1)+Ani+n_l)l‘l+n_1

-1 _ ) _—
AN 1B Cin-2) T €ART By q¥r(tipn-1)
—eApl  Wir(tin-1)-Apl K

Mitn—1" ' vi+n—-1 Ni+n—1/1+n—1

-1 , -2 _

“Anin_1Bipn—1r ) —An" By g ¥r(t)
-1 - 2
Now by ignoring the term in the parenthesis in (3.74) and stwitgg the remaining term of (t;)

into (3.73), we obtain

-1/ -1
Nt =¢=Ap¥ —Ag Bynr (V)

+eA5i1wyr (t) - eAﬁiani yr (t) + O(e2) (3.75)
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where,

_ Anit—t)/e [ -1 / —1 .
o =l <_A’7i+n—1yl+n—1_A’7i+n—1Bni+n—1yr(t'>

e —2 oty oA=Ly,
HEA WO = AR B g9 () A

+An By () — eAg W () + eAﬁiani vt )) (3.76)

The termy is bounded as follows; First, the highest value happens enbtginning of each
segment at timet = tj, which makes the exponential term equals to one. Second sswee
|Am| < m. With this assumption the terms which are functioryjobr yr cancel out because every
term has a similar term with opposite sign and close to it ine&aThe contribution of remaining

term A,7 1y —Ap.

’7|-|—n 1V|+n 110 the tracking error is calculated by multiplying it By 5. This

results inHiyi — Hi+n—1Vi+n_1- Looking back to simplifications of these terms from (3.62¢,
require that the gaiKp be high enough to reduce the valug mfAyl AN |.

Then for all segments, the bounflmaxis approximated by

/ /
[WImax< [Hi¥, —Hjyn_1¥%.n_1lmax (3.77)

Usingyr = Acsin(wt) in (3.29) and including the subscripfor the parameters, we have the

expression of] for the time fromtj totj , 1

—Lp—A—lE; Acsin(wt) A=Yy +e(Aa-Tw
n - n,i—nl n,ly nl

Ay’ 4B i)Acwcog wt) + O(e?) (3.78)
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3.5.6 Calculating the Bound on the Frequency-dependent Term of the Er-
ror

To determine the upper bound on the third ter(hiiAz_zli Bz,i)wAc of (3.38), we replacéd; by

1 my+Amy 1
A12A22,i and By j By BBy, wheref, = m (9+kp). We also replacé\227i by A—BpB41C,
mj+Am; o .
wheref] = ! m m kp and simplify the expressions

1 2
HifA25iB2ji =A12A22 B2
S CA_ZB+CA_2(BC)2A_ZB(1fr1]B )2
1
A1

1+hBq

+2CA2B( )cA~1B| B, (3.79)

BecauseC is a row vector and is a column vector, the multiplications of all the matrices i
(3.79) are scalar quantities. let us denote thengfyg, andgg and replacg3y andp, by their
expressions.

HiAS5 Boj = —
172272 q1+q2(mi+kp(mi+Ami)h

(M +Amy )kp M + Ay
m; +Kp(m -i-Ami )h Iy

+03( (g+kp) (3.80)

Let us denote the bound ¢1I]A2_2:Ei Boj By (HAz_ZlBZ)maxfor all segments. This is obtained by

substituting the largest slopamax and uncertaintyAm|max in the numerator and the smallest
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Mmin in the denominator of (3.80)

Mmax-+ |Am|max(

(HAglez)maxz - g9-+kp) [ag

Mmin
(Mmax+ IAm\max)kp)z
mmin(1+ kph)
(Mmax+ [Amimax)kp
mmin(l-l— kph)

+dp(

+03( ) (3.81)

We notice from (3.80), in the case whmsmi| < m; such that we can ignoqé\mi |, Eq. (3.80)
becomes independent of the slopes and uncertainties sloabe the term cHiiAz_zli B> j becomes

constant through all the segments.

3.6 Summary

Hysteresis nonlinearity is affecting the overall trackpgrformance of many applications. Anal-
ysis of tracking error is important for understanding diffiet factors that can affect its behavior.
In this Chapter, we analyzed a closed-loop system involWiysteresis inversion, proportional-
integral feedback control, and a constant-gain feedfrdvedgment. Some researchers in the lit-
erature use optimization [49], neural networks [61], oaltand-error to determine bo#y and

kp Depending on the uncertainties on the operator parametetsis work we found criteria for
choosing those gains. For instance, the rititxp should be high to guarantee good performance,
which agrees with the results in [49, 61]. Singular perttidmaanalysis was used in order to sep-
arate the fast dynamics of the plant from slow dynamics otthr@roller. The analysis quantifies
the effect of the reference frequency on the tracking paréorce, which is important in applica-
tions such as high-speed nanopositioning. Simulationtesere compared with the calculated

ones based on the analytical expressions. The agreemevedrethe simulation and analytical
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results provides support for the analysis. Experimengllte further strengthens the validity of

the analysis.
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Table 3.1: Simulation, analytical, and experimental ressoth maximum tracking errors jgam for
a system involving a perturbed Pl-operator and a seconerptent.

frequency Simulation Analytical ¢

Max |e(t)] Max|e(t)] Max|¢|

1Hz 0.177 0.26 0.019
10 Hz 0.375 0.57 0.009
20 Hz 0.38 0.58 0.004
50 Hz 0.39 0.586 0.001
80 Hz 0.41 0592  3x10%
100 Hz 0.42 0597  5x10°
150 Hz 0.475 061  2.6x 10t
200 Hz 0.53 063  42x10%
400 Hz 0.82 077 6.9x10%
600 Hz 1.2 095  7.3x10%
800 Hz 1.66 116  7.7x 10
1000 Hz 2.2 138  7.9x 10

Table 3.2: Experimental results on maximum tracking erimogsm with and without feedforward
compensation.

frequency With feedforward Without feedforward

Max |e(t)] Max |e(t)|

1Hz 0.02 0.025
10 Hz 0.04 0.2
20 Hz 0.045 0.38
50 Hz 0.08 0.8
80 Hz 0.11 14
100 Hz 0.12 1.7
150 Hz 0.32 2.2
200 Hz 0.6 3.0
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Chapter 4

Sliding Mode Control Design

4.1 Introduction

In this chapter, we present a Sliding-Mode control (SMC)escé for tracking of systems with
hysteresis. SMC is attractive because of its robustnesssaghsturbances and parameter uncer-
tainties [75]. Some existing works on the SMC methods foz@iactuated systems incorporate
hysteresis inversion to reduce the amount of uncertairitpdoiced by hysteresis [56, 57], while
others do not [76, 58]. In our work, we will integrate the irsien control with SMC control as
presented in the general form in Fig. 4.1.

In many SMC designs, the control signal has two componemésswitching control, which
is in the form of 3 sgn(.) and the equivalent control. The switching control is useddminate
the disturbances while the equivalent control is used topmoreate for the known terms. Existing
work [76, 56, 57, 58, 59] typically uses a constant coefficfgrior the switching function. Fur-
thermore, no systematic approaches have been given feirdesuch coefficients. In contrast to
existing work, the switching component of the controlleour work is obtained by using an upper
bound on the inversion error, computed based on the estiofatacertainties in the hysteresis
model and the control signal. The control signal is timeedgfent and varies with the positioning
range. This allows implementation with a coefficient whislself-adjusting.

In this chapter we provide analysis of the tracking errora&th order system. To avoid con-
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Linear Dynamics

Reference | | | i Output
| Controller — rL - — 'Ll —  G(s) T
| Inverse | | Hysteresis |
! operator | |  operator |

Figure 4.1: A general control framework for systems preddulehysteresis.

trol chattering, the sliding mode control is implementedhvwthe signum function replaced by a
high-slope saturation function, which acts as a high gagdif@ck in a boundary layer around the
switching surface. We analyze the trajectories inside thentary layer. By design, the coeffi-
cients of the sliding surface have different orders of magla such that the resulting system has
a multi-time-scale structure inside the boundary layer.défve an analytical expression for the
tracking error at the steady state under periodic refeseand provide insight as to how the error
depends on the hysteresis uncertainties, reference fieguend the controller parameters.

We have conducted simulation and experiments to validaetbposed SMC approach. In
simulation, we show that the proposed scheme is able to saatessfully “irregular” references,
for different levels of parameter uncertainties. We alsoutate the system with sinusoidal inputs
and show that tracking error inside the boundary layer es®e with frequency at a low frequency
range then it remains constantin a mid-range after whiokdtehases until the resonance frequency,
where it starts to increases again. We also show that itisitetuse a control that includes switch-
ing and equivalent control rather than to use only switclioigponent. We present results on the

effect of the switching component amplitude and the bount#sfer size on the performance. Ex-
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perimental results on the tracking control of a commergiallailable nanopositioner show close
gualitative behavior to the simulation, particularly wheemate limiter is added to the simulated
system. Experimental results also demonstrate that trsepted SMC approach delivers perfor-

mance comparable to that of servocompensation [54] fossidal references.

4.2 Controller Design
For a general discussion, we consider a plant with lineaadyos of ordek. The linear dynamics

are given by;

Xj=Xj;1, 1< j<k-1

X =—aK 1% — - 2%~—1 " —apx1 +ag (Ug +d) (4.1)

wherexq =y denotes the position. The parametegsas,---,a,_1 are positive. The tracking

errorey is defined as

e1=Y—Yr=X1—Yr (4.2)

A bound on the inversion error can be obtained from (2.10) as
|d] < kq+kg|ug| (4.3)

Where% < kg and|Agc max < k1. To eliminate the DC error at the steady state, we add
min ’

an integrator, the state of whicheg, defined viaeg = e1. Then (4.1) can be written in terms of
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the error as

€ =€1
éj=ej 1. 1<) <k-1

(k_l))

=~ 16 )= —agler +yr) + ag (Ug+ ) (4.4)

The sliding surfaceis designed in terms of the error

S=e+0k_18—_1+ +0181+00€ (4.5)

The coefficientsry, 09, - - , 0 _1 are chosen such that the polynom?i§I+ Ok_1A k_1+ ~+0Q
is Hurwitz. To obtains, we differentiate both sides of (4.5), substitejefrom (4.4), and arrange

terms

(k=1) (k)

$=(0_1—a_1)&+ -+ (09 —ag)er —a_1Y —--—agyr +ag (Ug +d) —yr

(4.6)

The control,uy, which is composed of two componemig andus, can then be chosen such that

Ueq eliminates all terms in (4.6) except for the uncertaitityvhich is compensated hys.

8 (0

1 (k—
Ueq(t,e) = %[(ak—l —Og_1)6+ -+ (@g—0p)er +a_1yr T+ +agyr +¥r

4.7)
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Now, we may write the contraly as the sum of an equivalent componegg and switching

componentis control

Ug = Ueq+Us (4.8)

where,

us = —Bsgn(s) (4.9)

By inserting (4.8) into (4.3), we can write the boundaas

|d(t)] Skl-l—ko}Us(t)-l-Ueq(t,e)}

<kq +kglus(t)|+ko|ueq(t,€)| (4.10)
Define
@(|ueq(t,e)|) = kq +ko|ueq(t, )] (4.11)
which implies
d(t)] < @(ueq(t,e)]) +Kg|us(t)| (4.12)

Substituting (4.7) and (4.8) in (4.6), we obtain

$=ag(d(t) + us(t)) (4.13)
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For the stability analysis, we define a Lyapunov funcba- %32 Then by taking the derivative

of V, we obtain

V  =ss=aps(d(t)+us(t))
< ag(Is(t)|[d(t)|+s(t)us(t))

(4.14)

Now we substitute the bound a@hinto (4.14)

V. <ag(Isl[(|ueqt,e)|) +kp|us|] +sts)

<ag (|8l [@(lueq(t,e)]) +koB] — Bls|) =ag (— [1—ko| B+ @(lueq))) sl (4.15)

¢(lueq(t,)|) = kg +kp|ueq(t. )| (4.16)

Thereforev < 0 for
@(|ueq(t,e)|)
1-ko

Following the discussions in Chapter 2, we assumek®) < 1. The coefficien3 is chosen as

B> (4.17)

B(t,e) > &lﬁq&ﬂ + b, wherebg is a small positive number. By selectifigin this way we
guarantee that any trajectory starting away from the sagac0 reaches it in finite time.

With the signum function in the switching controller (4.8)e error would asymptotically con-
verge to zero. The signum function, however, results intehag in practice. Therefore, we

replace the signum function with the saturation functioregiby

us = —Bsat(s/u) (4.18)
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whereu determines the size of the boundary lajge< .
To analyze the performance of the control with the switchaomponent (4.18), we examine the
derivative of the Lyapunov functiovi = 12 outside the boundary layer.

Plugging (4.18) into the first inequality (4.15), we have

V < ag(|s/[@(|ueq(t.€)]) +ko| — Bsals/u)|] — Bssals/u)) (4.19)

Then for|s| > u, we get

V <ag(—[1-kg] B+¢(jueq)) s (4.20)

Thus, with the samg(t,e) i

finite time and never leaves it thereafter.

Another way to design the control is to use a consfanThis requires us to limit the system
variables to the compact s@t= {nTPn <c1px{|s|<co}, wheren =[egeg --- e_1], N =
An +Bs ¢q andcy are constants arfdis the solution of the Lyapunov equati®A-+ ATP=—1.

For more details refer to [73].

4.2.1 System Scaling

When the linear dynamics have a large bandwidth, as in theptaitioner that will be used later
in the simulation and experiments, it is beneficial to noimgathe model. We show this for a
second-order-system, which can be readily generalizedhifgrer-order ones. Witlwn as the

natural frequency of the system , we hag= and a1 = 2{wn. The augmented integral
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controléy = e1. The closed-loop system is given by

€ =1
e =€

& =—aj(ep+yr)—ag(ey +yr)+ag (ug+d) —Vr (4.21)

For scaling the system we apply the change of variabiesont, Zg = egwn, 2] = €1, andz, = %

This will result in a transformed system

1. .
—=—2522—21+ud+d—a(yr+25wnyr+w§yr) (4.22)

Now for the transformed system, with the surface choser-as, + d1 21 + dgzp and for a bound-

ary layer constant, the switching component of the control is

us= —p0 sa(g) =-B sa(22+ alzvl-l_ GOZO) (4.23)

Then we substitute the original coordinates in (4.23) t@ibt

e+ 01wne; + 5ow§eo>
fton
B sa(2" 01‘21 90, (4.24)

us=— 3 saf

96



From (4.24), we can see that the parameters of the slidifgcgufor the non-scaled system are
related to those of the scaled onedggs= 60(4% 01 = 07 an, andu = [1an. This makes the choice
of non-scaled parameters in the ordercgf as we will see in the simulation and experimental

sections.

4.3 Determiningthetracking error insidethe boundary layer

In this section we investigate the tracking error insiddatendary layer whefi is constant. Inside
the boundary layejs| < u, Bsat(s/u) = %S To find an expression fa = [€q €1 - - -e'k]T inside
the boundary layer, we inseittfrom (2.10) intogy of (4.4), substitute botbegandus = _TBS into
€. and simplify terms. Note that the differential equatioresgiven for any segment=1,2,--- |

in the hysteresis-loop ards the number of segments.

sl L g ey ThacHas SO g )
+ak_2%r?i]q<_l+ [ Ar:?i )(_aCLBU1 —~0p) -l-ao%ni]i]el-i-aoAyl
1+ L g e+ T g T ey T gy
(4.25)

We divide both sides of of (4.25) bya'%ﬁ. Then we combine small coefficients other tha@a

which are multiplied by the states, - - -, g and denote them b, d_1,---,91. Eq. (4.25) can
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then be written in the form

_ Am
Ekekz(lJr—l [ (1+0)€ — (01 + O—1)€8—1—"""~ (01+51>91—er0]
L H b act kA
- + i +——=yr =Yty (4.26)
B m B\ a ag a0
wheregy, = # DefineA = %. In order to solve the differential equations of the system,

we have the following assumptions:

1) For the system to be represented in singularly perturbati-trme-scale structure we require

1
thatg, << g1 << <<€ << A which satisfy the mequallt\)éoﬁ O ;fgk 1 <<
+62 O'1+51

<<0_+5><< o)

2)The magnitude of the slope uncertainty in each segimsismaller than the slope itseff\my | <

Imy|. This assumption implies that the segment slopes of thexerd operator are positive.
By nested application of the singular perturbation methtt],[we approximate the tracking

erroreq. This process is shown below by an example of a second-oydtars.
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4.3.1 Exampleof the Second Order System

Letk = 2. By using Eq. (4.26), the singularly perturbed closedlegstem is given by

€0 =€1
€ =€
52é2=(1+A—| )—(1+d0)ex— (01 +01)e1 — GOeOH‘ZAdcr“ 'Z(Z;#—%y r+yr)
(4.27)

Setey = 0 and use the following equation to eliminagfrom thee; equation.

MiAqei Amy
H 1odc LKL B v a28)

(1+5y)ep =— (01 + 7)€ — aoeo+[3m,+Am, m+Am; B'ag ag

1
)\ ’

system again by multiplying (4.28) withyloq + d1) and takings = (1+)/(g1 +97),

With the assumptiorz] << the reduced system can be presented as a singularly pedturb

€ =€1

2 H__ M) s s D LA P

£1€1 =—€1 — +
1=1 1 01+5leo (01+51)Bmi+Ami (01+01)B m|+Am| ag Qg

(4.29)
By settingeq = 0, we get

% . Ml ! Amp_ Sr
(01 +87) 0

4.30
01+81)BM +Am; (07 +1)B M +Amy a0+a0y r+yr) (4.30)
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Sinceeg = eq, at this point we arrive at a scalar differential equationme variableegy, which can
be solved to gety and then we plug the solution in (4.30) to obtain the trackingr expression.

We can follow the procedure in this example fok-th order system. In that case, we haye=

u 149, 146 . L
Y g 1 =—2 ... 81 =—=%. The tracking erroeq = €nis given b
8B’ k17 g1ty L (91+0) 9 errorL =0 IS gVEn by
. a9 u Milgc,
=— +
€ 01+5leo (01+51)B mi-l-Ami
k)
Am ( a,_ — al .
* I45 — n_ X 1Y§k 1)+"'+—1yr+)’r (4.31)
(01+91)B m,—i—Ami ag ag ag

Note that the solution of (4.31) only depends @y and g1 while the higher parameters of the
surface> o5 are not part of the equation because they are part of theréastiént of the original
system which is approximated using singular perturbatiethiwd. The above steps show how we
obtaineg for a given hysteresis segmentin order to accommodate the effect of traversing from
one segment to another, we follow the procedure describlesvpehere we consider a sinusoidal

reference for ease of presentation.

4.3.2 Tracking Error for a Sinusoidal Reference

In order to discuss how the error scales with frequency, assidal referencgr = Acsin(wt)
is applied to the system. We assume that the solution of tteedtoop system converges to a
periodic function with the same periddof the reference input. This assumption is reasonable in
view of the simulation and experimental results in this wankl also in [53, 55, 56, 1, 57].

The idea of getting a solution that shows the impact of alkéngsis segments on each other

is explained by the following steps, which are analogoushtsé for analyzing a proportional-
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integral-controlled system discussed in chapter 3. We lsyesolving (4.31) for the segmennivith
initial value eg(tj), wherei = 1,--- .1 andl is the number of segments of a hysteresis-loop at the
steady state. The final value of this segmeiitj | 1) will be inserted as the initial value for the
following segment + 1. We continue this process around one cycle until wesgétf +T). The
periodicity of the solution implies tha(tj +T) = gg(tj) and this allows us to obtain an expression
for eg(tj). We substitute the solution @f(t) in (4.31) to obtaire (t), tj <t <tj 1. A sinusoidal

referencey = Acsinawt is inserted in (4.31) to get
€p = — Aj€g + Hj + A sinwt + S{coswt = e (4.32)

Without loss of generality, we can take the dimension of ihedr dynamicg as an even number,
which is common in linear systems with complex modes. Frofidwe havel; = %,
A Am; k

M MBdci , _ wAc M q_22.,2,.. @
A= (01+91)B Mj+Amy’ = (01+97)B Mj+Am (1—gG5w"+3g) and

c__WAc  Bmy 3 o ag 3 A1 k-1 e
M (01+51>Bmi+Ami(an ag @+ gy @ ). Notethatifkis an odd number we

only need to redefine the quantitie#; and.4;. The solution of the first-order equation (4.32) is

eo(t) —e At )eo(ti) + %’ 1-e A=ty )\iz':/fiwz [(Ajsinwt — wcoswt )

—e)‘i(t_ti)()\isinwti — wCcot;) ] Ajcoswt + wsincwt)

A2+ w2

— e Ai(t-t) (Ajcosuwt; + wsinat; )} (4.33)

To simplify expressions, let us define the quantities
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Qj = )\.2{4@2 [(Ajsinati 1 — weosatj 1) — & (i+175) (yjsinaat — cocosaty)]
|
“l

D= 2 [(Ajcoswti 1 + wsinwtj 1) — e i1 () cost + wsinat;)
|

The final value of the errogy(tj; 1) at the segmeritcan be calculated by replacingy tj, 1 in

(4.33). Then the obtained expression is used as an initiaéViar the segmernit+ 1 for the time

Gyl <t<tiio.
e Attt e 1) 1ot O
By following the same procedure, tat tj_ o we get

e(ti+2) —e ANttt n) g Ai(Gipa—t )eo(ti) pe A2 tiv ) (5 4 0 4 )

+pi+1+Qi+l+Q+l (4.35)
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att =tj_|, the erroreg(tj ) can be written as

egltip) = M+ -1li4 it —1) e Aty 1)
petit—1lip -1 e At p 4 0 4 )
.
re Mt -1 —tip—1) Diil 2+ Qs 2+ )
FOH -1t Qi 1t T

=ep(t;) (4.36)

We obtaineg(tj) from (4.36)

eolti) =7 l|v| e Nl —1tip—tin-1) e A2t dp o 4 m)

—Ai (G =t
+e i+l 1 (1 —tip 1)[Pi+|_2+Qi+|_2+‘I’|+I—2]

TP -1t Q1+ T 1 (4.37)

whereM = e A+ —1(ip1—tip—1) o=l 1) Then, we plug (4.37) into (4.33) and
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arrange terms to get

eo(t) :# le—)‘i+l—1(ti+l_ti+l—1> e N2 ) (o 4 1 )

—Ai (G =t
+e Nt 1(|+| I+l 1)(pi+|_2+Qi+|_2+ﬂ+|_2)

—Aj (t=);

T
+pi+|_1+Qi+|_1+lﬂ+|_1} +)\—i'[1—e + [(Ajsinwt — wcoswt )

/\2+w2

—eli (t_ti)()\isinwti — wCcot;) ] Ajcoswt + wsinawt)

b [
A2+ w2
—e A (t_ti>()\icoswti + wsinwti)} (4.38)
By insertingeg(t) from (4.38) into (4.32), we obtaiey (t) as

A (=t
el(t):_)\'el_ll\; L {e—’\i+l—1<ti+l—ti+|_1>...e—/\i+1(ti+2—ti+1)[pi+Qi+aﬂ

+...
A G —t
e i1y |+|_1)[Pi+|—2+Qi+|—2+wI-H—Z]

A A
+Pi+|—1+Qi+|—1+<ﬂ+|—1}—%[l—e At t')]+/\'+7w2[(/\ sinawt — wcoswt)

e (t_ti)()\isinwti — weostj) | + [(Ajcost + wsinct )

)\2+w2

— e At (i cosuat; + wsina; )} + A+ M Sinwt + A cosut (4.39)

4.4 Tracking Error at the Steady State

It is concluded from Eqg. (4.39) that the tracking error at$temdy state is composed of periodic

exponentially decaying terms and sinusoidal terms. Thaydeg terms can be made to decrease

104



fast by making); large enough. The initial values depend on the sinusoidalsewhich also can
be made small by choice of parameters. Let us investigaselgithe effect of different parameters

on the non-decaying sinusoidal terms of (4.39)

esin(t) = -4 (Ajsinwt — weoswt) 4 . sinwt + /\2)\ JVZ (Ajcoswt + wsinwt) 4 .4 coswt
+w

A2+w2

(4.40)

To see how we can use this equation to calculate the boundeotratking error, let us use an

example with a second-order linear dynamics and substijtes| by their equivalent expressions

___pBAc __Bm 1,2 ___pAc _ Bm oy .
My = (01+01)B M +Bm (1- aow ) and_4; = (G1+00)B M+ (aoa)) in (4.40). We also
approximate g + 61) by o9
UAC Dy w? w? Ajw  ag . w?  ag
(1) = —— | — ———5|—w|)sInwt + —=
“sinl*) o1 M | A+ w? ao] /\i2+w2[ao ¥ (Ai2+w2[ao
Ajw w?
+———5|[1— —|)coswt 4.41
ot )

The error size depends on how the frequeanig related to the parametéy = —8 We see from
(4.41) that the sinusoidal portion of the error is proparéibto the segment slope uncertaiﬂﬁy]i ,

the size of the reference inpAt, and the chosen size of the boundary layer. However, we can
reduce this error by increasirmy or 3. We know thatg is the amplitude of the switching com-
ponent of the control signal which is constrained by the atctulimits. By increasingry, we are

also required to increaseg) and this leads to using high gains.

For frequenciesv << Aj, the erroregjn(t) O /\—“I) and increases as the frequency increases. How-
ever, when\j << w << wn, the error will be in the fornegj, = %T(smwt-l— é)coswt) The
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cosine-term decreases as we increase the frequency, whisbsthe error to decrease. We do not
have a similar term in the case of the Pl controller and thatig its frequency response does not
have the decreasing band. At higher frequencies as we agptioa resonance frequenay, the
terms that depend amy anday start to be effective and proportionaldocausing the total error to

increase.

45 Simulation Results

The same commercial nanopositioner Nano-OP65 with Nange@ontroller, Mad City Labs Inc.
is used to demonstrate the results. The simulation is basigslmodel and its parameters identified
experimentally. The linear dynamics are fitted using expental data with a second-order system
with characteristic equatics? + a1S+ags, whereay = 5.743x 103 andag = 1.717x 108, yield-
ingwn =1.3x 10% rad/s as the resonance frequency. The hysteresis is mowigthea Pl-operator
with 5 play operators with thresholds= [0, 0.63, 1.27, 2.54, 4.45]T and the vector of weights for
the operator isv] — [5.88, 1.58, 0.47, 0.98, 0.4]. In Chapter 2, we calculated bounds on the in-
version error due a perturbation withy max= 0.15. For the weight-threshold method, the bounds
arekg = 0.1282 ankq = 10.53 while for the slope-intercept methdg, = 0.09 andky = 3.6. Our
simulation results will be presented for the smaller bouies with the slope-intercept method)
unless we compare the results of the two different methodsingért a zero-order-hold (ZOH) in
the simulation, to make the results close to the experinhents when digital control is used.

To validate the proposed approach, non-sinusoidal refersignals are generated using the
van der Pol oscillator with traveling ranges of ptn to 50 um. Parameters for this simulation

were tuned for the best performance and found tqube 10 x 103um/s, 01 =5x 103, and
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Figure 4.2: Simulation results on tracking a van der Polllagor-generated reference: position,
tracking error and s trajectories. The bounds are calalilzeng slope-intercept method
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Figure 4.3: Simulation results on tracking a Van Der Pol ltetorr-generated reference: position,
tracking error and s trajectories. The bounds are calalilageng weight-threshold method
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0p = 25x 103, while B is chosen as in (4.17) witky = 0.09 andkq = 3.6 . These values are high
because of large bandwidthn, see the scaling example of Section 4.2. The normalizedesalu
can be calculated as explained in the system scaling sed¢tign4.2 depicts the output, tracking
error ands for a reference that has a “fundamental frequency” of 15 HonFthese results we
notice that the trajectories enter the boundary layer inrg skort time and the output tracks the
reference after a few cycles. For comparison, we repeatithgation with largerf calculated
using the bounds from the weight-threshold method, whidhustrated in Fig. 4.3. The maximum
tracking error in this case, Bum, compared with B4um with the smallei3. This agrees with
what we obtain from the analysis that the tracking error apprtional tof3.

We have further run the simulation with larger parameteestamties Aw,max= 0.25. From
Fig. 4.4, we see that the tracking error is larger than whatiseved whew max= 0.15. De-
spite the larger tracking error, the system is still stableldrger uncertainty because the bounds
used to design the controller are conservative.

The following results are given when we apply sinusoidatmerfices to the system, because it
is convenient to use them to examine the system for its fregueesponse. Moreover, it is com-
mon to run nanopositioners with periodic signals. We, fingtnt to investigate how the tracking
error scales with the frequency. In Fig. 4.5, we compare thgimum amplitudes of the track-
ing error, when the reference signal is a sinusoid with atugbdi of 25um and frequency ranging
from 1 to 1000 Hz. The sliding surface coefficients are ch@samny = 3 x 10% and op=3x 10°
while the boundary layer parametergis= 1 x 10%. The value ofu is chosen in the order afy.
From Fig. 4.5, we notice that the error increases with theueacy up to 50 Hz, then it remains
almost constant for the mid-frequency range until about M@0after which it starts to decrease
with the frequency until the resonance frequency. Thercitdases again. The error bound of the

previous section has similar characteristics for all fiemggies. The tracking errors of references
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Figure 4.7: Simulation results when SMC uses only a switglsiontrol to dominate both known
and uncertain terms ( case 1) and when it uses a switchingotémtdominate the uncertain terms
and equivalent control to cancel the known terms (case 2).

of amplitude 25um with frequencies of 1 Hz, 50 Hz, and 200 Hz are plotted in Big. We can

see increases in the error with the frequency increasimg fréiz to 50 Hz, then the error becomes

almost constant with very slight increase as we can see bpaong the error under the references

of 50 Hz and 200 Hz.

In the SMC literature, some designers use only the switcbomgponent to dominate both

known and uncertain terms [73]. In Fig. 4.7, we demonstiae for the same choice qf, the

tracking error is much smaller when we use a control law caaddorm equivalent control and

112



(a) Using bound form slope-intercept approach

=
o

o1

o

0.005 0.01 0.015
(b ) Using bound form weight-threshold approach

N
o

(@)

plitude of saturation function (p m)
o

,Il\m
N
o

0.005 0.01 0.015

o

Time (s)

Figure 4.8: Simulation results of the tracking error foffeliént values of8 for the same value of
H.

switching control (case 2). This is because the switchimgtion is only required to dominate the
uncertain terms inside the boundary layer while the knowmseare canceled using the equivalent
control.

We can also show that it is better to use a smaller amplit@d@f the saturation function.
First, whenu is fixed andB is increased, chattering will occur as shown in Fig. 4.8.rTlwe need
to increaseu in order to maintain the rati@ /u (the slope of the saturation function) to prevent
chattering. Second, using a largémwith multiple switching adversely impacts the lifetime bet
actuator.

In the experiments, we add a rate limiter as a safety compgaodime nanopositioning system.
This has an effect on the performance, especially at higjugecy. We run simulations with and
without rate limiter to study its effect. In Fig. 4.9 , we pe@as$ this comparison for 100 Hz and 200

Hz frequencies. It is obvious that the performance detetgéowhen we increase the frequency at
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Figure 4.9: Simulation results show tracking of sinusordéérences with and without rate limiter
for 100 Hz and 200 Hz.
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the present of the rate limiter.

4.6 Experimental Results

Since the velocity, of the nanopositioner is not measured, a linear observesed to estimate
it. In experiments, sinusoidal signals are used as referémagectories in order to compare the
proposed method with other methods that have been applibeé same nanopositioner. Fig. 4.10
shows the results for the cases of tracking a 10 Hz signalteaidy state, the maximum tracking
error is 11%.

In Tables 4.1 and 4.2, we list more experimental results amdpare them with the servo-
compensator methods. Here we cite the results for Singlenblaic Servo-Compensator (SHSC)
and Multi-Harmonic Servo-Compensator (MHSC) presentd84ih and these servocompensators
were implemented on the same nanopositioner used in this \Waran be seen that the proposed
SMC controller delivers results close to those of SHSC arthbes better at low frequencies,
while the tracking performance of MHSC is in general bettemt SMC and SHSC. The mean
error of the SMC method at 5 Hz, however, is much smaller thasd of SHSC and MHSC. This
indicates that the imposed rate limiter in the SMC outpuirduthe experiments could have led
to larger errors at higher frequencies. We note that whitesdtrvocompensators are designed for
periodic references of given frequencies, frequency ofpmgodic reference is not used in SMC
designs.

Sinusoidal signals are also used to examine the responke sfstem when different bounds
of the inversion error are used in the SMC design. First, wepane when the controller with and
without the equivalent contraleq. The results as shown in Fig. 4.11 confirms with simulation

results that the performance is improved when the equivatantrol is included.
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Figure 4.10: Experimental results on tracking a 10 Hz siidadoeference.The curve‘mea.” was
obtained from measurement, while “ref” represents theregiee signal.
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Table 4.1: Comparison between maximum tracking errors MCS, MHSC- and SHSC- meth-
ods

frequencies SMC-controller MHSC—controller SHSC

Max |e(t)| % Max |e(t)| % Max |e(t)| %
5Hz 0.95 0.899 1.72
25 Hz 1.7 0.881 1.85
50 Hz 2.25 1.01 1.93
100 Hz 2.75 1.57 2.38

Table 4.2: Comparison between mean tracking errors for SNMEHSC— and SHSC- methods

frequencies SMC-controller MHSC—controller SHSC
Mean|e(t)| % Mean|e(t)| %  Mean|e(t)| %

SHz 0.119 0.271 0.649
25 Hz 0.62 0.268 0.707
50 Hz 0.66 0.284 0.770
100 Hz 0.83 0.352 0.815

In all experiments, a rate limiter is implemented, to protee positioner from sudden changes
of the applied voltage. The rate limiter modifies the conitiplt to meet the rate constraint, which
distorts the control signal when tracking relatively hilgbguency references. At high frequency,
itintroduces a phase lag between the reference signal amalitbut causing a larger tracking error
as shown in Fig. 4.12. We add a rate limiter to the simulatarttie purpose of comparison and
we see that the frequency response in this case is similaetexperimental response as illustrated
in Fig. 4.13. It makes the tracking error increases withdiestgy and we do not see the flat region
as in Fig. 4.5 when the rate limiter is not used.

The bounds on the inversion error determine the amplitudeeosaturation functiof, which is
used to dominate the uncertainties on the system. From ailysas, we observe that by increasing
B, the error size will be smaller. On the other hand, the cdlistramplitude will be larger and
this is limited by the constraint of the control signal, partarly when we want to achieve a larger

positioning range. In Fig. 4.14 we use a bound with= 5.5. In Fig. 4.15 we us§ = 25. We
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Figure 4.11: Experimental results at steady state (a) egpppbntrol signal on actuator (b) Tracking
Error.

can see that we have a smaller tracking ert@B0m for the larger3 of Fig. 4.15 compared with

0.2um of Fig. 4.14.

4.7 Summary

Hysteresis nonlinearity is a challenge in many applicatitmat require tracking control. The gen-
eral approach to dealing with it is to use hysteresis-irevemnpensation integrated with feedback
control. In this chapter, we presented a sliding mode cbniathod to handle systems with hys-

teresis nonlinearities. We have used the bounds, whicheaineed in Chapter 2 to design the SMC
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Figure 4.12: Experimental results show tracking of sindahieferences at (a) 100 Hz and (b) 200
Hz.

controller. Furthermore, we derived an expression for theking error inside the boundary layer
of the sliding surface. It is shown that the error is propmrél to the chosen boundary layer size
(1) and inversely proportional to the coefficient of the eremnt (g7) in the surface equation as
well as the amplitude of the saturation functig@) ©f the control signal. Decreasin@) allows
more traveling range for the actuator but at the cost of thopeance. The expression of the
tracking error shows how the error scales with frequencys #hown analytically and by simu-
lation that the error increases in the first portiom<€ A) of range of interest and stays constant
before it is affected by resonance frequency of the lineaadyics. Simulation results also show
that we can obtain good tracking performance with genexah-ginusoidal) waveforms. Experi-
ments were conducted for a pizeo-electric actuator, wineregsults confirm the effect of changing

different parameters on the qualitative behavior of thealg} In these experiments, we included
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Figure 4.13: A comparison between experimental and sinomaésults when the rate limiter is
included in the simulated system.
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122



a rate-limiter to protect the device, which resulted in Ies®oth trajectories compared with the
simulation. Simulation and experimental results show tih@fperformance deteriorates especially
at high frequency due to the rate limiter. A comparison wlig 8HSC method shows that the pro-
posed controller has comparable performance to the senmpensator whereas MHSC has better
results than SMC. Yet, SMC is able to track arbitrarily-sbdpeferences and periodic references

with unknown frequencies.
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Chapter 5

H. Control Design

5.1 Introduction

In this chapter, we propose a linear robust controller tistesys comprising a hysteresis operator
preceding a linear stable system. The hysteresis opertoodeled with piecewise linear char-
acteristics with uncertainties, and a nominal inverse aeiis included to mitigate the hysteresis
effect. An Hw control design is proposed to handle the remaining unceiaiin a two-degree-of
freedom (2DOF) framework. In the existing work [62, 63, 65],8he Ho control is designed
for a nominal plant while hysteresis is treated as uncestailhe hysteresis nonlinearity is not
modeled or inverted in those methods. In our work we redueettect of hysteresis by inversion
and only the remaining inversion error determines the sizeuncertainty. We compared the
proposed kb method with a Pl controller when 2DOF is applied to both systélhe Pl con-
troller usually has good performance at low frequenciesyewver, it does not take advantage of
knowing the dynamics of the system as is lesign, where we can improve the performance at
high frequency. Simulation results on a model of piezoeleetctuator-based nanopositioner are
presented to illustrate the design and analysis, whereyteresis nonlinearity is represented by

a Prandtal-Ishlinskii operator.
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5.2 Problem Formulation

Robust control methods are developed for uncertain lingstems. The design, in general, aims
to achieve the desired performance while maintaining ktyabiVe recall from the previous chap-
ter that the inversion error is composed of two compone%%u andAye We can represent the
second component as an external disturbanee\y ., while the first compone@ = A depends
on the control and can lead to instability in the closed loop system if neatied carefully. With
this treatment for the uncertainty, the system can be repted as in Fig. 5.1.

The Hw control problem is defined for a system representable by ¢éimergl block diagram
of Fig. 5.2, whereP is the interconnection matriX is the controllerA is the set of all possible
uncertaintiesw is a vector signal including noise, disturbances, and eefsg signalszis a vector

signal including all controlled signal, anyds the measurement.

The block diagram in Fig. 5.2 represents the following eigunat

0=Av (5.1)

y=Ku (5.2)
and o ) o
v P11 P12 P13 Y

z|=| P21 P22 P23 || W (5:3)
| Y] [ P31 P32 P33 | | U]
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Figure 5.1: The closed-loop system with the inversion erepresented as multiplicative uncer-
tainty.

Let the transfer function from to z be denoted by Zyw. The objective is to design a controlli€r
such that the closed-loop system is stable for all admissohnd || Tzwi|co < yp for prespecified
Yp > 0, where||Tzwf|eo is the Ho norm defined by|Tzw||co = supyd (Tzw(jw)), wherea(.) is
the maximum singular value of the matrix.

The design objective in our problem is to obtain the smaltasking erroewhich is chosen as
one of the output component of the veczan the presence of the exogenous sigmais [d yr n]T,
whereyy is the reference signa,is the measurement noise athds the disturbance. It is useful
to specify the performance objectives as the requiremangssensitivity functiors= (I + L)_1
and the complementary sensitivity function= L(I 4 L)_l, where L is a loop function defined as

L = KG for a plantG and a controlleK. By definition,

S+T=I (5.4)

For a SISO systerB8+ T = 1. Ideally, we wantS small to obtain the benefits of feedback (small

tracking error for commands and disturbances), &remall to avoid sensitivity to noise which
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Figure 5.2: A general robust control framework for systemsauntainties.

is one of the disadvantages of feedback. From (5.4), it iardleat these requirements are not
simultaneously possible at any frequency, é&(dw)| and|T (jw)| at any frequency can differ by
one.

One important component when designing optimal controblem is to choose weighting
matrices or weighting functions in the scalar case. We shallify the feedback diagram in Fig.
5.1 into Fig. 5.3. The weighting functions are chosen to ceftee design objectives and the
knowledge of the disturbances and sensor noise. Howevenamy occasions, the weights are
chosen purely as design parameters without any physicakpae these weights may be treated
as tuning parameters that are chosen by the designer tovadhie best compromise between
conflicting objectives. For exampl#jy may be chosen to reflect the frequency contents of the
disturbance d, the weight matikh is used to model the frequency contents of the sensor noise,
while We may be used to reflect the requirements on the shape of cettaad-loop transfer
functions. SimilarlyW; may be used to reflect some restrictions on the control oatmtgignal.

It is interesting to know that the &l design framework does not in general produce integral obntr

but integral action can be introduced by the choice of thegltéig functions. The resulting
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Figure 5.3: Adding weight functions in the closed-loop systfor optimal design.

controller must have a pole at= 0. This will violate the assumptions oféitheory because we
will have uncontrollable pole of the feedback system [78%téad, we shift that pole to the left by

introducings+ €, whereg is a sufficiently small positive number.

5.3 Control System Design and Analysis

When feedback-only configuration is used, the performapeeiBcation can be quantified by

analyzing the tracking error. For a given controkgts), the tracking error is given by

e=yr—y=Syr—d)+Tn (5.5)

From (5.5), we can see that to achieve small tracking erroreqaireSandT to be small but at
different frequency ranges depending on the frequencyecomtf the signalyr, d, n. This feed-

back configuration has several limitations and instead weau$wo-degree-of-freedom (2DOF)
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structure. There are different 2DOF designs in the liteggtbut we consider the configuration
which is shown in Fig 5.4 to compare the results with the Phtagler when 2DOF design is
considered. In this case we denote the feedforward coetrioyiK s + and the feedback controller

by K¢p. The control law is

Ug = Kssyr +Ksp(yr —y) (5.6)

Robustness in this case is still determined by the sersgitiunction S= (1+ Gbe)_1 and
the transfer function fromm to y is determined by the complementary sensitivity functioa-
(1+ Gbe)_lGbe. In 2DOF design, the transfer functions frogmto y and fromn to y are
designed independently.

Let us denote the transfer function fronto e by Ser = S(1 - GKj ¢). In this case, by choice
of K () ~ G(s)~ 1 provided thaK ¢ is proper, we can makger close to zero.
It should be noted that these optimization problems hava baalied extensively and there exist

standard software routines (for instance in MatLab) whesepfloblems can be solved. we use
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MatLab to solve the feedback problem in optimal controlisgtt In order to reflect the perfor-

mance objectives and physical constraints, the weightingtfons are chosen as

20(s+ 800
W — 205+800 (5.7)
s+2.05x% 104
0.1s+25x 10%
Wh = s+ 1200 (5.8)

The final expressions Mk andWn are determined in an ad-hock way in simulations. We choose
them as first order transfer functions in order to make therotier simple. Our first choice is
also related to the nominal plant bandwidth = 1.3 x 104 rad/s, where we chos&k to reject
disturbances at low frequencies less than- 211 x 250 rad/s, and\n to reject high frequency
noise above 250 Hz. The exogenous variable [e G]T and the regulated variables= [d ﬁ]T.

The transfer function fromwv to zis

e WeWyG 0 WeGWy | | d
a|= 0 0 Wy fi (5.9)
y WeG  Wh G u

The controller obtained by Matlab is

Ky (s) — _2700+1.62x 106 (5.10)
fb 2+ 3765+ 4.1 x 104 '
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To check the stability of the closed-loop system, we needhéwk for the transfer functioBp; 1,

which is given below thathp11||oo < ywhen the uncertaintyA || < 1/y.

Y G G o
_ pll “pl2 (5.11)

z Gp21 Gp22 w
It is found that||Gp11||oo = 0.99, which confirms that our design is stable for the uncetitsn
|Aleo <0.114. For the kb control, we usé ¢, of Eq. (5.10) and we us€sy, = kp+kj sfor the Pl
controller, while we us& s + = 1 for both controllers. Since the gain@fs) approximately equals
one for wide range of frequencies, we h¢Ge_1(s)| ~ 1, which implies thaGer = S(1 - GKs¢)

is made small by having ¢ s = 1.

5.4 Simulation Comparison between including and not includ-

ing the inver se operator with H,, control

The commercial nanopositioner is used to demonstrate thdtse The simulation is based on
an experimentally-identified model. The linear dynamiesfated experimentally with a second-
order system with characteristic equatash a1S+ag, whereag = 5.743x 103 andag=1.717x
108, implying the resonant frequency ah = 1.3 x 10% rad/s. The hysteresis is modeled with a
Pl-operator with 5 play operators with threshofds [0, 0.63, 1.27, 2.54, 4.45]T and the vector
of weights for the operator iw! — [5.88, 1.58 0.47, 0.98, 0.4]. We start the simulation by
examining the performance for the case when the inversextipas not included in the feedback
loop with the case when it is present. We compare the trackiragys in Fig. 5.5 for sinusoidal

references of frequencies 25 and 100 Hz. Regardless ofdfedncy, the tracking error is smaller
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Figure 5.5: Simulations results ofscontrol with and without inverse-operator at frequencias (
)25 Hz and (b)) 100 Hz.

when the inverse-operator is used. This is expected bedhasgize of the plant perturbation
is larger when hysteresis inversion is not included. Anothtgservation from Fig. 5.5 is that
the tracking error in the case with inverse-operator has @oimer waveform, while in the other
case we can see sharp changes corresponding to transvieosmgne segment to another. These
changes can affect the overall performance of the systentamareate more harmonics in the

closed loop system.
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5.5 Simulation Comparison between H,, and Pl control

For the purpose of simulation, we perturbed each componetii@weight vector bAw max=
0.15. This perturbation is done in such a way that the size ofrtersion error is close to what
we have from experiment when the inverse operator is cadoaile the real nanopositioner. We
calculated the corresponding maximum uncertaintigdgsmax = 0.08 and/Ay,max = 3.7.
Sinusoidal reference signals with amplitude of /5@ and different frequencies are applied to Pl
and Hw control systems. Parameters for the PI controller are chasky = 3154 anckp = 1 by
tuning them for the best performance. In Fig. 5.6 we comgaggwo control methods at 1 Hz,
50 Hz, and 350 Hz. We can see that the tracking error for Plrobbet is smaller at 1 Hz. The
error for Pl controller is centered at zero because integratrol can eliminate the DC error. At
50 Hz we can see that we achieve better performance ussgdntrol because it is designed to
have good response up to 250 Hz according to the choice ofeighting function. Then, the PI
controller starts to have a less tracking error as illusttah Fig. 5.6 ¢ at frequency of 350 Hz.
In Table 5.1, we present more results for the maximum trackimor versus frequency for both
methods.

Simulation results are also depicted in Fig 5.7, to examddéra a rate limiter to the system. It
is noted that the rate limiter has little effect at low freqaees, but it increases the tracking error

when we are close to 90 Hz.

5.6 Simulation Comparison between H,,, Pl, and SM C control

We conclude this chapter by a comparison for the three pexposntrol methods of this chapter
and Chapters 3 and 4. The maximum value of the absolute dittee tracking error (Maxe(t)|) is

compared at different frequencies. A reference sinusasidail of amplitude 5m is applied to
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the system. The gains for the PI controller are choséq 2500 anckp = 3, which are obtained
by tuning them for the best performance. The bounds usedd¢alate 8 for the SMC design are
kg = 0.05 andkq = 7. For the Ho controller, we used the controllét;, presented by (5.10).
The results are presented in Table 5.1 and illustrated irbRdg Although the tracking error has
acceptable values for frequencies less than 200 Hz, thiégesa presented from 1 Hz to 3000 Hz
to show how this error scales with frequency. We notice thattdz the Pl-controller outperforms
the other controllers. This is expected because the Plkalterthas a very high gain at frequencies
close to zero, which dominates uncertainties. AlthougdHk controller includes integral action
in our design, it performs worse than the PI controller albaeause approximation was used to
include integral action in the &l controller. This appears as a shift of the tracking erromfmero

at very low frequency. This shift actually appears at alfjfrencies with the B controller but its
size is smaller than the peak-to-peak error and not notieestthigh frequencies. The tracking
error of the PI controller will continue increasing with thhequency until about 50 Hz. The error
then stays almost constant, which is about @2 and slightly increases up to 100 Hz. Then it
starts to increase fast again. The ldontroller has smaller tracking error than the PI controhfr

1 Hz to 100 Hz. Then it increases larger than the Pl controé Slding-Mode controller (SMC)
has larger tracking error than the other two methods wherréggiency is less than 50 Hz, but
it outperforms them for larger frequencies. It is also ntgabat SMC also has almost constant
tracking error in the frequency band from 80-200 Hz. Howeualike the other two methods,
the tracking error decreases after this band until closbéad¢sonance frequency, when it starts
to increase again. A more discussion for SMC frequency mespes provided in Chapter 4. Itis
noted that it is not easy to get this fine frequency respongerarentally, because there are some
components in the experiment that affect the performaneeh&Ve seen in previous chapters the

effect of the rate limiter for example, which will add a phatsft to the response that increases
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Figure 5.8: Simulations results for comparing the chanddbetracking errors with frequency
for PI, SMC, and Ho control.

with frequency patrticularly, beyond 100 Hz.

5.7 Summary

In this chapter we presented hysteresis inversion wighfekedback control in order to reduce the
tracking error. We also introduced integral action in thg ebntroller to eliminate the DC error.

We ran simulation to demonstrate the effectiveness of usilsgnethod. From comparisons, we
conclude the following. First, including the inverse-ogter in the closed-loop system improves
the tracking performance. Second, depending on the chbtbe aveighting function, we can have

a better performance for thesficontroller over the Pl controller for a selected frequenagdy but
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Table 5.1: Simulation results providing a comparison betwmaximum tracking errors for PlI,
SMC, and Ho control

freq. Pl SMC Ho
Max |e(t)] Max |e(t)] Max|e(t)]
1Hz 0.003 0.006 0.006
10 Hz 0.03 0.05 0.006
20 Hz 0.065 0.07 0.006
50 Hz 0.15 0.08 0.07
80 Hz 0.22 0.09 0.17
100 Hz 0.265 0.09 0.25
200 Hz 0.4 0.085 1.1
400 Hz 0.7 0.08 2.3
1000 Hz 2.3 0.072 11.3
3000 Hz 26 0.14 47

we cannot achieve this performance for all frequencies.Hdae&ontroller outperforms SMC only
at low frequencies of a few tens of Hertz. Another shortcgmohthe Hwo controller is the high

order of its transfer function, which makes it hard to impéTn
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

Hysteresis is a nonlinear phenomenon, which appears in wamyol system applications. The
performance of these systems, especially the ones thaitregopecise tracking, can deteriorate
very much or even can go unstable in the presence of hystesd&in good control designs are
not considered. Motivated by applications such as Pieasaged nanopositioners, in this disser-
tation we considered systems with fast linear dynamicsqulted by hysteresis. We followed a
general scheme to deal with hysteresis, which incorpofaaés feedforward compensation and
feedback techniques in the closed-loop control system. fédéforward compensation is sim-
ply an inverse hysteresis operator which is designed basedaaleling the actual Hysteresis by
Prandtal-Ishlinskii (PI) operators.

In this dissertation, we first discussed the effect of modekutainties on the hysteresis oper-
ator. When an inverse Pl operator is cascaded with its mdd@lleperator, it results in a perfect
inversion. However, when it is cascaded with actual hystsrie will produce an inversion error.
Because, we used the Pl operator to implement our hysteitasisiatural to characterize the in-
version error by the parameter used to model the hystersish are the threshold (i.e. radius of
the play operators) and the vector of weights which detegsihe slope of each play operator. We

assumed the uncertainty only happens on the weights of élyeoplerators and assumed the thresh-
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olds are exact. This is justified because we expect to havertanaty on the slopes and intercepts
of each segment of the hysteresis loop while the number aoheets does not change. Having

no uncertainty in thresholds also implies that the changethe slopes happens at some certain
amplitudes of the input signal. This motivated us to find sion the uncertainties appears in

the slopes and intercepts directly. This method, which setdan the slopes and intercepts of the
segments, applies to other operators that have piecewes Icharacteristics. Moreover, we found
that the bounds derived for the inversion error is less awasige than the ones obtained from the

weight-threshold method.

This lead us to the second part of our work, where we used thmseds in both design and
analysis of three different control methods. The first colntrethod we explored was Proportional-
Integral (PI) control. This method is extensively used imoeercial applications such as Atomic-
Force-Microscopes. The main drawback of the Proportidmtggral control is that it has low per-
formance for applications that require high tracking sgeseth as fast scanning. In existing work
of systems with hysteresis, researchers compare theiroaethith Pl or PID control as the stan-
dard methods. They show that their proposed methods oatpethe PI controller, particularly at
high frequency. However, by modifying the PI controller wewed that it provides comparable
results with other methods and even outperform them at leguiency. In the Pl control, we did
not use the bounds on the inversion error in our design bedtissa tuning control method. How-
ever, we used the bound on the inversion error that was eaxliby the slope-intercept method to
guantify the tracking error. We provided analysis for ttecking error when the system is driven
by a periodic input. We discussed the effect of the model iaitey on both the performance and
stability. The most important part which we extracted frdrege expressions was that we can tell
how the control gains affect the steady-state errors. Waddar example that the proportional

gainkp can destabilize the system if increased in the presenceedirthertainty. Thql(('—'p ratio
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is not only important to make the system reach steady statéd also to make the exponential
terms generated in each segment to decay fast before thad gmgs to the next segment at steady
state. We also discussed how the tracking error scaled wetiuéncy. We found that it has three
regions; an increasing, an almost constant, and then anotitreasing region of tracking error for
a low, medium, and high frequency bands, respectively. Vigoérd that the closed-loop system
was expressed in two-time scales to separate variableg tg@rsingular perturbation theory. The
slow variables came from the controller and the fast vagsibhme from the plant. We also trans-
formed the system in different coordinates to investigageftequency effect on the system.

We then used a more sophisticated method, which is SlidingeviControl as a feedback con-
troller. In this method, we utilized the bounds on the inw@rerror in our design. In the existing
work, the bounds on the uncertainties, which are used in M€ 8esigns have constant val-
ues and usually are determined by tuning them through strookor experiments. However,
in our method we found that the bounds depend on the size ahthe signals and thus gave
us more flexibility in the design. We compared the resultscilare obtained from this method
with others such as servo-compensators and found they arpasable particularly at high fre-
guency. However, this method has the advantage that it eak arbitrarily-shaped trajectories
while servo-compensators are only designed for sinusaigaits. We also provided analysis of
the tracking error when the trajectories enter the bounldgmr. We again used the singular per-
turbation theory to derive the expression for the trackimgrewhere this time we put the system
in multi-time scales by selecting the sliding-surface pagters. We provided simulation results
which agree with the analytical expression for the traclanmgr as it changes with frequency. We
also provided experimental results which qualitatively haimilar behavior as the simulation. We
may mention here that we used a rate limiter as a safety coempoto protect the nanopositioner

in the experimental setup which, makes its behavior devrate simulation especially at high
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frequency. This was confirmed by adding a rate-limiter bliocthe simulated system.

The third controller, which we presented in this disseotais the linear kb controller. The
simulation results of the tracking performance of this coltgr were compared with the other two
methods. We found that thestHControl has better tracking performance than the PI cdetrol
at frequency range from a few Hz to about 100 Hz. However, SMparforms both kb and
PI control at high frequencies. It is also noted that the ¢bntrol is designed in an ad-hoc way,
particularly, the choice of weighing functions. We alsodhézrun numerical algorithms to obtain

the controller.

6.2 FutureWork

The work in this dissertation can be extended in severattimes. First, some issues related
to the hysteresis model requires more investigations aptberg. We used the finite dimen-

sional Prandtl-Ishlinskii (PI) operator to model the hyssgs. Although the exact inverse of this
model can be calculated, the model itself is always symuo@tfor its ascending and descending
branches, which is not the case for most of physical hyster#¢e propose to use other models,
which are not symmetrical such as modified Pl operator anthemaits behavior with the pro-

posed robust control methods in this research. We presamtechethods to calculate the bounds
on the inversion error, but we assumed only uncertaintiéisdrweighting vector. The uncertainty
in the thresholds will open many issues that require ingatitn. For example, the number of the
segments may change and there will be mismatch between #ratopand its inverse-operator.
Providing analysis for performance and stability in thesgasions will help in understanding the

behavior of the hysteresis operator and the choice of tlibBek method to complement the feed-

forward compensation. Moreover, we applied inputs on tretjpmer to operate in its full range
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and produce a major loop and studied uncertainties and Isdiendhis case. It would be inter-
esting to apply different signals which produce major andanioops and study the effect of the
uncertainty in both of them.

Second, we compared between different robust feedbackatonéthods to improve the sys-
tem performance. We provided design and analysis for thgsteras under some assumptions.
There is still room to improve these methods and investigegas which has not been explored.
For the PI controller, for instance, we found that the ingepperator can be introduced in the
added feedforward branch instead of cascading it with ttetengsis. Preliminary experimental
results showed the potential to have smaller tracking efarthis method. This can be a result of
having the inverse operator outside the closed-loop whigkasit less susceptible to the harmon-
ics generated in the closed-loop. However, the analysithfermethod is much more complicated
than the cascaded operators because a signal from the é&eciyatroller will be added to the
output of the inverse-operator and cause a mismatch betopemtors. We also provided the
analysis for the PI control and for SMC control when the aggplinputs are periodic. It will be
more comprehensive to determine the inversion and traakirays for more general input refer-
ences. Furthermore, our design and analysis was limitededar plants with stable poles; however
in many nanopositioners the plant includes some zeros inghé hand-side. It would be of in-
terest to investigate the design and analysis of non-mimiphase systems. Another assumption,
which is also motivated by the piezo-actuator is that we lealsge bandwidth or fast dynamics
of the linear plant. This was helpful in both design and asialpf the system. We succeeded to
improve the tracking performance of frequency range, wiial about a tenth of the bandwidth.
The investigation of having narrow bandwidths would showv ke controller dynamics interact

with plant dynamics and affect the control system design.
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