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Abstract

Methods of numerical integration of ordinary differential equations exploiting the Cayley transform arise in a variety
of contexts, ranging from the classical mid-point rule to symplectic and (almost) Poisson integrators, to numerical

methods on Lie Groups. In earlier work, the first author investigated the interplay between the Cayley transform and
the Jacobi identity in establishing certain error formulas for the mid-point rule (with applications to coupled rigid
bodies). In this paper, we use the Cayley transform to lift the Landau–Lifshitz–Gilbert equation of micromagnetics to
the Lie algebra of the group of currents (on a compact magnetic body) with values in the three-dimensional rotation

group. This follows an idea of Arieh Iserles and, we use the lift to numerically integrate the Landau–Lifshitz–Gilbert
equation conserving automatically the norm of the magnetization everywhere. r 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Numerical integration of the Landau–Lifshitz–
Gilbert (LLG) equation is widely practised by
researchers in the field of magnetic recording
media. The present authors came to the subject
through an interest in exploring magnetostriction
(a phenomenon which will be ignored in the rest
of this paper). A key question of interest is to ask
if there are suitable numerical methods that are
sufficiently accurate and at the same time (possibly
independently) preserve a key conserved quantity
associated to the LLG equation, namely, the
magnitude of the magnetization everywhere in
the body. It is clear that off-the-shelf schemes such

as a Runge–Kutta solver applied to a standard
space discretization of the dynamics will fail to
conserve the magnitude of magnetization. In Ref.
[1] the authors propose a scheme that is second
order accurate, conserves the magnitude of mag-
netization, and yields easy-to-solve algebraic equa-
tions by choice of a special temporal mesh. The
mid-point rule enters here in an essential way.
In the present paper, we seek methods that in

effect decouple the accuracy of an integrator from
the property of conservation of magnitude of mag-
netization. While it is well-known that for linear
ordinary differential equations (o.d.e.’s) the mid-
point rule defines a Cayley transform [2], here we
use the Cayley transform in a different way. The
roots of this go back to classical results on
representing an element of the three-dimensional
rotation group [3]. A main result of this paper is
that there is a ‘lifting’ of the LLG equation to a
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space of fields with values in skew symmetric
matrices. Required numerical methods follow
from this.

2. Model

The Landau–Lifshitz–Gilbert equation takes the
form

ð1þ a2Þ
qM
qt

¼ g0M�Heff þ
g0a
Ms

M� ðM�Heff Þ;

ð1Þ

where M ¼Mðt;xÞ denotes the time dependent
magnetization at a point xAB; the ferromagnetic
body (viewed as a compact subset of R3). The
effective field Heff is the sum of the external field,
the exchange field, the anisotropy field and the
demagnetizing field. From the structure of Eq. (1),
it follows that jjMðt;xÞjj2 ¼ M2

s for all time t > 0; if
it is true at t ¼ 0: Further in terms of the free
energy functional E; one finds Heff ¼ �dE=dM;
negative of the variational derivative [4]. Through-
out this paper we treat the external field as time
independent. System (1) evolves on the space of
maps from B to S2; the two-dimensional sphere.
Any spatial discretization of Eq. (1) yields a system
of o.d.e.’s of the form

’M
i
¼ aMi �Hi

eff þ bMi � ðMi �Hi
eff Þ; ð2Þ

where i ¼ 1; 2;y;N denotes the site of magnetiza-
tion, and a and b are constants, with b propor-
tional to a; the damping factor. The o.d.e.’s (2) are
coupled through the effective field.
Letting Ed denote a discrete approximation to

the free energy, one can write

Hi
eff ¼ �

dEd

dMi
; ð3Þ

and rewrite system (2) in the form

’M
i
¼ aMi� �

dEd

dMi

� �
þbMi � Mi� �

dEd

dMi

� �� �
;

i ¼ 1; 2;y;N: ð4Þ

The discrete dynamical system has interesting
mathematical/physical structure that applies over
all possible discrete free energy functions. If b ¼ 0;
the system is a (reduced) hamiltonian system in the

Lie–Poisson form [2,5] with conserved hamiltonian
�Ed: Even if ba0 (i.e. in the presence of the so-
called double-bracket dissipation [6]) there are N
conserved quantities jjMi jj; i ¼ 1; 2;y;N; the
magnitudes of the magnetization at each site. This
last remark follows by differentiating Mi �Mi and
invoking Eq. (4).
Consider the standard isomorphism between

vectors in R3 and 3� 3 skew symmetric matrices,

# :R3-soð3Þ ¼ Lie algebra of

3� 3 skew symmetric matrices

x ¼

x1

x2

x3

0B@
1CA/ #x ¼

0 �x3 x2

x3 0 �x1

�x2 x1 0

0B@
1CA: ð5Þ

Observe the elementary identities x� y ¼ #xy

and dx� yx� y ¼ #x#y� #y #x; a matrix commutator (¼Lie
bracket ½ #x; #y
).
It is now possible to write the discrete dynamics

(2) and (4) in the form

’M
i
¼ FiðMÞMi; i ¼ 1; 2;y;N; ð6Þ

where, using Eq. (5), we have defined

FiðMÞ ¼ � a
d�dEd�dEd

dMi
� b #M

i
;
d�dEd�dEd

dMi

" #
¼ � a #H

i

eff � b #M
i
; #H

i

eff

h i
; i ¼ 1; 2;y;N:

In Eq. (6),M stands for the stacked vector of all
magnetizations Mi at all sites. Thus M defines a
point in the Cartesian product of spheres ðS2ÞN :
See also Ref. [7]. System (6) is analogous to the
dynamics of an assembly of linked rigid bodies
(with strong material symmetries) [8]. In their
work [7], Lewis and Nigam develop a lifting
approach inspired by the method of moving
frames due to Cartan (further elaborated by Olver
and others). They are clearly aware of the work
of the Cambridge–Norway school on integration
on manifolds. But their work involves the use
of free actions on tangent bundles on spheres and
schemes involving acceleration updates. Here we
are led to a rather simple approach to lifting
suggested in the following section.
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3. Lifting construction

Since each MiðtÞ evolves on a sphere S2; given
jjMið0Þjj ¼ Ms; i ¼ 1; 2;y;N; there is a curve
UiðtÞ evolving on SO(3), the Lie group of 3� 3
rotation matrices such that

MiðtÞ ¼ UiðtÞMið0Þ; ð7Þ

and Uið0Þ ¼ I; the 3� 3 identity matrix. The
curves in each copy of SO(3) define a curve UðtÞ
in the Cartesian product group ðSOð3ÞÞN : Each
UiðtÞ satisfies the o.d.e.

’U
i
ðtÞ ¼ FiðUðtÞMð0ÞÞUiðtÞ; i ¼ 1; 2;y;N; ð8Þ

where UðtÞ should be understood as a block
diagonal matrix with UiðtÞ as its ith block.
Solving Eq. (8) in SO(3), numerically, and

substituting in Eq. (7) is tantamount to solving
the discrete magnetization dynamics. It is unfortu-
nately no easier than trying to conserve jjMi jj
numerically.
However the Cayley transform comes to our

rescue. Given any element U of SO(3) not within
the set of measure zero fPASOð3Þ: � 1A spec-
trum ðPÞg; one can write

U ¼ ðI� 1
2XÞ�1ðIþ 1

2XÞ; ð9Þ

where the unique XAsoð3Þ; the Lie algebra of 3� 3
skew symmetric matrices. This classical represen-
tation [3] is useful in covering the manifold SO(3)
by local coordinate charts and for a variety of
practical purposes in kinematics of mechanisms,
spacecraft attitude control, etc. The idea of lifting
(suggested in the setting of numerical integration
on Lie groups by Arieh Iserles of Cambridge
University [9]) is very straightforward: derive a
differential equation for Xi in Eq. (9) where Ui

satisfies Eq. (8).
First we define CayðXÞ to be the right hand side

of Eq. (9). Then one can show

’X
i
¼ Fi � 1

2½X
i;Fi
 � 1

4X
iFiXi; ð10Þ

i ¼ 1; 2;y;N; where

Fi ¼ FiðMðtÞÞ; ð11Þ

MiðtÞ ¼ CayðXiðtÞÞMið0Þ: ð12Þ

Each of the o.d.e.’s in Eq. (10) evolves in a
flat space of 3� 3 skew symmetric matrices.
We refer to (10)–(12) as the Cayley lift of
the space discretized Landau–Lifshitz–Gilbert
dynamics.
Formally one can construct a lift of the Land-

au–Lifshitz–Gilbert partial differential equation
too. Let Xðt;xÞ take value in so(3), the Lie algebra
of the rotation group. Then the Cayley lift of the
LLG equation is

qX
qt

¼ F � 1
2½X;F
 � 1

4XFX; ð13Þ

where

F ¼ Fðt;xÞ ¼ �a #Heff � b½ #M; #Heff 
;

M ¼Mðt;xÞ ¼ CayðXðt;xÞÞMð0; xÞ:

System (13) evolves on the space of maps from B
to so(3). This space is easily viewed (formally) as
the infinite dimensional Lie algebra of the infinite
dimensional Lie group of currents (¼ space of
maps from B to SO(3)). See Ref. [10] for another
perspective on the underlying geometry. Under the
assumption of a compact body B; the relevant
functional analytic details (which we omit here)
can be worked out to make the formal construc-
tion rigorous.

4. Lifting and integration

The discrete dynamics of the Cayley lift (10)
can be integrated using methods of required
accuracy. Unconditional stability will be achieved
by suitable implicit schemes (with concomitant
computational costs). The function evaluations
(12) automatically conserve magnitude of magne-
tization to machine precision. We have effectively
decoupled the conservation property from the
question of accuracy.
It should be pointed out that integrating Eq. (6)

by the mid-point rule (for a regular temporal mesh
of resolution h) yields,

Miðkþ 1Þ �MiðkÞ
h

¼Fi
Mðkþ 1Þ þMðkÞ

2

� �
�
Miðkþ 1Þ þMiðkÞ

2
; ð14Þ
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or equivalently, the Cayley transform implicit
scheme

Miðkþ 1Þ ¼ I�
h

2
Fi

Mðkþ 1Þ þMðkÞ
2

� �� ��1

Iþ
h

2
Fi

Mðkþ 1Þ þMðkÞ
2

� �� �
MiðkÞ:

ð15Þ

In this case accuracy is of order 2, and the
scheme is implicit (with significant computational
burden arising from the coupling in Heff ). We refer
to similar considerations in the computational
mechanics literature [11].
Numerical experiments with the Cayley lift of

the spatially discretized LLG equation have been
made together with comparisons with alternate
schemes. The results are encouraging. Fig. 1 shows
hysteresis computation on a small spatial grid.

Table 1 gives some comparative computational
loads. In this, RK4 refers to the explicit fourth
order Runge–Kutta scheme, Cay RK4 refers to
the integration of (10) using RK4, and MP refers
to the mid-point rule (14). Further studies based
on the approach here are warranted to obtain
additional speed-up and accuracy.
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