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Derivative-Based Koopman Operators for Real-Time
Control of Robotic Systems

Giorgos Mamakoukas , Maria L. Castaño , Xiaobo Tan , and Todd D. Murphey

Abstract—This paper presents a generalizable methodology
for data-driven identification of nonlinear dynamics that bounds
the model error in terms of the prediction horizon and the
magnitude of the derivatives of the system states. Using higher-
order derivatives of general nonlinear dynamics that need not
be known, we construct a Koopman operator-based linear
representation and utilize Taylor series accuracy analysis to
derive an error bound. The resulting error formula is used
to choose the order of derivatives in the basis functions and
obtain a data-driven Koopman model using a closed-form ex-
pression that can be computed in real time. Using the inverted
pendulum system, we illustrate the robustness of the error
bounds given noisy measurements of unknown dynamics, where
the derivatives are estimated numerically. When combined with
control, the Koopman representation of the nonlinear system
has marginally better performance than competing nonlinear
modeling methods, such as SINDy and NARX. In addition, as
a linear model, the Koopman approach lends itself readily to
efficient control design tools, such as LQR, whereas the other
modeling approaches require nonlinear control methods. The
efficacy of the approach is further demonstrated with simulation
and experimental results on the control of a tail-actuated robotic
fish. Experimental results show that the proposed data-driven
control approach outperforms a tuned PID (Proportional Integral
Derivative) controller and that updating the data-driven model
online significantly improves performance in the presence of
unmodeled fluid disturbance. This paper is complemented with
a video: https://youtu.be/9 wx0tdDta0.

Index Terms—Koopman operator, model learning, robotic fish,
data-driven control

I. INTRODUCTION

DYNAMICS of robotic systems are often unknown, highly
nonlinear, and high-dimensional, making real-time con-

trol challenging [1]. Underwater applications represent many
of these unmet challenges. In particular, underwater robots
are often underactuated (typically by design to reduce weight
and cost) and highly nonlinear, and the fluid environments

Manuscript received October 5, 2020; revised February 15, 2021. This arti-
cle was recommended for publication by the Editor Paolo Robuffo Giordano
upon evaluation of the reviewers’ comments. This work was supported by
the National Science Foundation (IIS-1717951, IIS-1715714, DGE1424871).
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

G. Mamakoukas and Todd D. Murphey are with the Department of
Mechanical Engineering, Northwestern University, Evanston, Illinois 60208,
USA (e-mail: giorgosmamakoukas@u.northwestern.edu).

Maria L. Castaño and Xiaobo Tan are with the Department of Electrical and
Computer Engineering, Michigan State University, East Lansing, Michigan
48824, USA.

This article has supplementary material and code at
https://github.com/giorgosmamakoukas/dataDrivenControlOfRoboticFish.

they operate in are difficult to model and time-varying. These
challenges call for feedback policies that can learn or adapt
online to unmodeled changes [2] and balance model accuracy
and computational efficiency.

One can draw from many control schemes, including linear
quadratic regulator (LQR) [3], linear model predictive control
(LMPC) [4], nonlinear model predictive control (NMPC) [5],
feedback linearization [6], differential dynamic programming
(DDP) [7], sequential action control (SAC) [8] and variants
of the above [9]–[11]. In fact, several of these methods have
already been explored in underwater tasks using robotic fish
of different morphologies. Researchers have performed ma-
neuvering, speed and orientation control, collision-avoidance,
point-to-point navigation as well as velocity and position
tracking using a myriad of control schemes, such as PID
[12], [13], LQR [14], SAC [11], [15], fuzzy control [16],
[17], geometric control [18], [19], sliding mode control [20],
NMPC [21], feedback linearization [22], backstepping control
[23] or even a combination of the above [24], [25]. However,
the aforementioned methods are either system-specific, apply
to dynamics with certain structures, or are computationally
prohibitive for real-time identification and control of resource-
constrained robots. They also typically require full knowledge
of the dynamics.

The Koopman operator has recently drawn attention in
the robotics community, as it can help address both the
difficulty with nonlinearity and the need to incorporate data
in the model [26]–[28]. Specifically, the Koopman operator
propagates a nonlinear system in a linear manner without
loss of accuracy by evolving functions of the states [29]. The
linear representation allows one to control the nonlinear system
using tools from linear optimal control [30], [31], which is
often easier and faster to implement than nonlinear methods,
thus enabling online feedback for high-dimensional nonlinear
systems. Beyond the computational speed and the reduction in
feedback complexity, the linear representation-based control
could lead to better performance compared to a controller that
is based on the original nonlinear system [32]. The Koopman
operator can also be readily combined with machine learning
tools to help learn unknown dynamics from data [33]–[43].

A downside of the Koopman operator, however, is that,
unless a finite-dimensional invariant subspace exists [32], it
is infinite-dimensional. For this reason, recent studies try to
obtain a finite-dimensional approximation to the Koopman
operator that still captures the dynamics with high fidelity [27],
[31]. Koopman-based optimal control applications have suc-
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cessfully implemented such finite-dimensional approximations
of the operator for various systems with unknown dynamics
[40], [41]. In the trade-off between the dimensionality and the
modeling accuracy of the linear representation, these studies
face the challenge of finding the minimum number and choice
of basis functions for the desired accuracy [39].

There has not been a systematic way to address general
nonlinear systems; rather, most efforts rely on trial-and-error
[40]–[42], [44]–[46] and machine learning tools [39], [47],
or are system-specific [26]. Furthermore, there is no method
available to bound the modeling error of the finite-dimensional
Koopman operators for general nonlinear systems. The only
relevant study in [48] analyzes the error bounds of Dynamic
Mode Decomposition, closely related to the Koopman opera-
tor, for a limited class of systems (parabolic partial differential
equations) and with restrictive assumptions on the stability of
the identified dynamics.

In this work, we introduce a way of choosing the basis
functions and analyze the model accuracy with error bounds.
Specifically, we construct the basis functions for the Koop-
man operator using higher-order derivatives of the nonlinear
dynamics, which need not be known; only the derivatives of
the tracked states must be available. The error bounds, which
depend on the prediction time horizon and the magnitude of
the derivatives, can be used to determine the basis functions for
the desired level of model accuracy. To our best knowledge,
this is the first work that selects basis functions using a
systematic methodology and provides an error bound on the
accuracy of a Koopman representation for general nonlinear
dynamics. To adapt to uncertain or changing dynamics, we
obtain the operator using a data-driven, least-squares technique
that has a closed-form solution. The linear representation is
conducive to various controller designs; in this work, we
demonstrate the utility of our online data-driven modeling
approach in real-time control using LQR, the gains of which
can be obtained with negligible computational cost.

We validate our approach with simulation and experimental
results on the control of a tail-actuated robotic fish and
compare it to a PID scheme. Although the tuned PID con-
troller is successful at tracking the desired trajectories, it is
outperformed in all tasks by the proposed Koopman-LQR
controller. Furthermore, updating the dynamical model in real
time significantly improves the performance of Koopman-LQR
in the presence of unknown fluid disturbance.

This paper extends the work in [49] in significant ways. The
additional contributions include analysis of error bounds on
the linear approximation of nonlinear systems, comparison to
state-of-the-art modeling methods, realization of online model
updates and controller synthesis (thus enabling real-time adap-
tation), quantitative experimental evaluation, including trials
in the presence of unknown fluid disturbance, and extensive
comparison of the proposed approach with a PID controller.

The organization of the paper is as follows. Section II
reviews the Koopman operator and methods to obtain a data-
driven finite-dimensional approximation. Section III describes
the proposed synthesis of Koopman basis functions and derives

the associated error bounds. Section IV evaluates the proposed
data-driven modeling scheme on the control of a tail-actuated
robotic fish, with and without the presence of flow disturbance.
Section V summarizes the findings of this paper and discusses
ideas for further expanding this work.

II. BACKGROUND

A. Koopman Operator

The Koopman operator K is an infinite-dimensional linear
operator that evolves functions of the state s ∈ RN (i.e., Ψ(s),
commonly referred to as observables) of a dynamical system.
Given general nonlinear dynamics of the form

sk+1 = F(sk), (1)

where F is the flow map, the Koopman operator advances the
observables with the flow of the dynamics:

KΨ = Ψ ◦ F. (2)

Thus, it advances measurements of the states linearly. That is,

d
dt

Ψ(s) = KΨ(s) and Ψ(sk+1) = KdΨ(sk), (3)

where K and Kd are the continuous-time and discrete-time
operators, respectively, related by K = log(Kd)/∆t [50]. In
other words, it allows one to evolve the nonlinear dynamics
in a linear setting without loss of accuracy. Contrary to
linearizing the dynamics around a fixed point, which leads
to inaccurate models away from the linearization point, the
Koopman operator evolves a nonlinear system with full fidelity
throughout the state space. For a more comprehensive review
of the Koopman operator, we refer the reader to [34].

Expressing nonlinear systems in a linear manner is a
desirable property for many reasons, such as investigating
the global stability of a system [37], or extending the local
linearization around a point to the whole basin of attraction
[51]. In addition to studying the behavior of complex systems,
the Koopman framework enables the use of linear optimal
control for original nonlinear dynamics. Unfortunately, the
infinite-dimensional nature of the Koopman operator makes
practical use prohibitive.

B. Koopman Invariant Subspaces

There exist nonlinear systems that admit a finite-
dimensional linear Koopman representation. Work in [32] an-
alytically derives such Koopman invariant subspaces for non-
linear systems with a specific polynomial structure, whereas
the authors in [52]–[56] identify such spaces from data. In
these studies, the authors demonstrate that the LQR control
based on the linear representation can outperform LQR control
calculated based on the original, nonlinear dynamics. Unfor-
tunately, Koopman invariant subspaces have only been found
for a few systems, mentioned above. In fact, there can be no
finite-dimensional invariant subspace that includes the states
for systems with multiple fixed points [32].

In the absence of a finite-dimensional Koopman invariant
subspace, a linear propagation of states will induce errors.
Regardless, the benefits of a linear model motivate obtaining



MAMAKOUKAS et al.: DERIVATIVE-BASED KOOPMAN OPERATORS FOR REAL-TIME CONTROL OF ROBOTIC SYSTEMS 3

an approximation to the Koopman operator that will evolve
the nonlinear system with acceptable accuracy. Recent studies
use data-driven regression schemes to approximate the infinite-
dimensional operator K with a finite-dimensional represen-
tation K̃ [27], [31], [41]. In this paper, we adopt the least-
squares method shown in [27], which we detail next. Note
that the regression method assumes basis functions that are
already known, yet our main contribution is in systematically
defining those observables in the first place, which we present
in Section III.

C. Data-driven Finite-dimensional Approximation to Koop-
man Operators

To obtain an approximation to the Koopman operator, K̃
∈ Rw×w, one can choose a set of observable functions Ψ(s) =
[ψ1(s), ψ2(s), . . . , ψw(s)] : RN 7→ Rw (which can include
the states s themselves) and use data to solve a least-squares
minimization problem. To allow for the effect of actuation, (3)
is modified such that the observables include control terms u
as well [31], [40]. For the discrete-time case, this minimization
takes the form

K̃∗d = argmin
K̃d

P−1

∑
k=0

1
2
‖Ψ(sk+1, uk+1)− K̃dΨ(sk, uk)‖2, (4)

where P is the number of measurements. Each measurement
is a set of an initial state sk, final state sk+1, and the actuation
applied at the same instants, uk and uk+1, respectively. The
above expression has a closed-form solution, given by

K̃∗d = AG†, (5)

where

A =
1
P

P−1

∑
k=0

Ψ(sk+1, uk+1)Ψ(sk, uk)
T

G =
1
P

P−1

∑
k=0

Ψ(sk, uk)Ψ(sk, uk)
T

(6)

and † is the Moore-Penrose pseudoinverse. Note that the
time spacing ∆t between measurements sk and sk+1 must be
consistent for all P training measurements.

The data-driven approximation of the Koopman operator is
not inherently different from other system identification tech-
niques. In fact, the Koopman operator can be approximated
using any of the standard regression methods, such as ridge
or lasso regression [57], [58]. More importantly, contrary to
standard system identification tools that may try to estimate
unknown parameters or, more generally, the nonlinear dynam-
ics of a system [38], [59], the Koopman operator framework
places the system identification task in the context of seeking
linear transformations of the states, which is useful for control
[60]–[62] and other purposes, as discussed in Section I.

D. LQR on Koopman Operator

Consider a linear system with states s ∈ RN , control u ∈
RM, and a performance objective

J =
∞

∑
k=0

(sk − sdes,k)
TQ(sk − sdes,k) + uT

k Ruk, (7)

where Q � 0 ∈ RN×N and R � 0 ∈ RM×M are
weights on the deviation from the desired states sdes and the
applied control, respectively. Further, consider the Koopman
representation

Ψ(sk+1, uk+1) = K̃dΨ(sk, uk). (8)

For simplicity, we choose Ψ(s, u) = [ΨT
s (s), ΨT

u (u)]T , where
Ψs(s) ∈ Rws are the functions that depend on the states s and
Ψu(u) ∈ Rwu are the functions that depend on the input u,
where w = ws + wu. Using this notation, we rewrite (8) as[

Ψs(sk+1)
Ψu(uk+1)

]
=

[
A B
C D

] [
Ψs(sk)
Ψu(uk)

]
, (9)

where A ∈ Rws×ws and B ∈ Rws×wu are submatrices of K̃d
that describe the dynamics of the state-dependent functions
and change only when K̃d is updated. We use Ψu(uk) = uk
to ensure that control appears linearly in the model such that

Ψs(sk+1) = AΨs(sk) + Buk. (10)

Given the Koopman dynamics (9), we choose the perfor-
mance objective

JK̃ =
∞

∑
k=0

(Ψs(sk)−Ψs(sdes,k))
TQK̃(Ψs(sk)−Ψs(sdes,k)) + uT

k Ruk,

(11)
where QK̃ � 0 ∈ Rws×ws penalizes the deviation from
the desired observable functions Ψs(sdes). We let the first N
observables be the original states s and set

QK̃ =

[
Q 0
0 0

]
, (12)

so that a meaningful comparison can be made with regards
to the original nonlinear system and the associated objective
function shown in (7). The Koopman representation is con-
ducive to linear quadratic regulator (LQR) feedback of the
form

uk = −KLQR(Ψs(sk)−Ψs(sdes,k)), (13)

where KLQR ∈ RM×ws , the LQR gains, can be readily cal-
culated from A, B in (9) [63], [64]. Note that, for given LQR
gains, the control is updated using only the functions Ψs(s),
leading to minimal computation. For more details on the
control policy used for the Koopman representation, the reader
can refer to [49]. Last, we want to emphasize that our approach
for synthesizing data-driven Koopman representations can be
used with different feedback schemes, such as MPC control.

III. SYNTHESIS OF BASIS FUNCTIONS FOR
ERROR-BOUNDED KOOPMAN REPRESENTATION

This section motivates using higher-order derivatives of
nonlinear dynamics to populate the observables of an approx-
imate Koopman operator. The benefits of a derivative-based
representation are twofold. First, subject to a finite number
of basis functions, it allows one to best capture, locally in
time, nonlinear dynamics. For systems that admit a finite-
dimensional Koopman invariant subspace, it is straightforward
to show that the terms in the observable functions Ψ(s) capture
all higher-order derivatives of the original states. This is the
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reason why the linear representation matches the nonlinear
dynamics with no error. This is also true for the invariant
subspaces found in [32], where the Koopman observable func-
tions are populated using the Carleman linearization approach
[65]–[67]; for the polynomial systems considered there, the
observable functions correspond to the higher-order derivatives
of the nonlinear dynamics. When the derivative functions do
not span an invariant subspace, populating the observables
Ψ(sk) with higher-order derivatives instead of arbitrary basis
functions generates, locally in time, an increasingly (with
the order of derivatives) accurate linear representation of the
nonlinear dynamics.

Second, the derivative-based representation enables the
derivation of error bounds on future predictions. Notably, when
the model is entirely data-driven, these error bounds might not
be enforced, but offer sound bound estimates that still hold,
as we illustrate in Section III-D, but which are then dependent
on the quality of data used in the data-driven process. To
approximate the Koopman operator, so far studies have largely
focused on data-driven methods of the form in (4) that consider
only the local error across one time step, that is

Ψ(sk+1, uk+1)− K̃dΨ(sk, uk), (14)

as used in (4). Another measure of the accuracy of the
Koopman representation is the global error, over an arbitrarily
long time window across all time steps m > 0 (see Fig. 1),
that is

Ψ(sk+m, uk+m)− K̃m
d Ψ(sk, uk). (15)

The derivative-based linear embedding methodology pre-
sented in this work enables the computation of global error
bounds of the Koopman representation. By exploiting the
accuracy properties of Taylor expansions, we can synthesize
Koopman basis functions that bound the model error for any
particular order of linear representation. The error bounds in
turn allow one to select the lowest-order representation that
meets a desired accuracy. This analysis is presented next.

The proposed linear embedding method does not require
knowledge of the dynamics; instead, it requires only that the
time derivatives of the system states of interest be available.
The values of the derivatives can be either evaluated, using
knowledge of the dynamics equations, or numerically esti-
mated from state measurements (using finite differencing or
other methods [68]). The method can be used
• for known nonlinear dynamics: each state derivative is

analytically derived from the dynamics equation and
constitutes a basis function for the Koopman operator
(one basis function per derivative)

• for dynamics whose structure is known but coefficients
might be unknown or changing, as we illustrate in Section
III-C: derivatives are analytically derived from each term
that appears in the dynamics equation; each term that
is computed constitutes a separate basis function for
the Koopman operator (at least one basis function per
derivative)

• for completely unknown dynamics, as we illustrate in
III-D: each state derivative is numerically calculated and

Ψ(sk, uk)
KdΨ(sk, uk)
~

Ψ(sk+2, uk+2)

e1
e2

KdKdΨ(sk, uk)
~ ~

Ψ(sk+1, uk+1)

F
u
n
ct
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n
 S

p
a
ce

 

~

KdΨ(sk+1, uk+1)
~e1

Ψ(sk, uk)
KdΨ(sk, uk)

Ψ(sk+2, uk+2)
Ψ(sk+1, uk+1)

e1

Local Error

Global Error

Ψ(sk+3, uk+3)

KdKdKdΨ(sk,uk)
~ ~ ~

e3

KdΨ(sk+2, uk+2)
~

Ψ(sk+3, uk+3)

e1

Fig. 1: Local and global errors induced by approximate
Koopman operators. The local error is the error induced by
the operator across one step, assuming no error in the initial
conditions. The global error is the total deviation away from
the true states across multiple steps.

constitutes a basis function for the Koopman operator
(one basis function per derivative).

A. Error Bounds of Derivative-Based Koopman Operators

The evolution of a nonlinear function f (t) that is continu-
ously differentiable up to nth order can be approximated with
a Taylor series as

f̃ (tk+1) = f (tk) + f ′(tk) · (tk+1 − tk)

+
f ′′(tk)

2!
· (tk+1 − tk)

2 + · · ·+ f (n)(tk)

n!
(tk+1 − tk)

n,
(16)

where tilde (·̃) denotes the predicted value of a function, and
not its true value.1 To keep the algebraic expressions compact,
let tk+1 − tk = ∆t and f (i)k ,, f (i)(tk), ∀ i ∈ Z ∩ [1, n],
which simplifies the above expression to

f̃k+1 = fk + f ′k · ∆t + f ′′k ·
∆t2

2!
+ · · ·+ f (n)k

∆tn

n!
. (17)

Propagating a function using its derivatives allows one to use
the accuracy of the Taylor series to characterize the error in
the evolution of a function across one time step ∆t. The local
error induced by a Taylor series approximation using up to n
derivatives across one time step is Rn(k) = fk+1− f̃k+1. This
error is calculated using Lagrange’s remainder formula:

Rn(k) =
f (n+1)
c

(n + 1)!
∆tn+1, (18)

where f (n+1)
c , f (n+1)(c) is the time derivative of order n+ 1

evaluated at some time c ∈ [tk, tk+1]. If there exists a positive

1We assume that the true values of the function f and its derivatives are
known at time tk . Uncertainty about the initial values can be readily included
in the formula of the global error, later shown in this paper.
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real number L such that | f (n+1)
c | ≤ L for all c ∈ [tk, tk+1],

then the upper error bound in (18) becomes

|Rn(k)| ≤
L

(n + 1)!
∆tn+1. (19)

For the purpose of applying linear control synthesis tools
to linear representations of nonlinear dynamics, we bring the
Taylor approximation in (17) to a linear matrix form:



f̃k+1

f̃ ′k+1

f̃ ′′k+1
...

f̃ (n)k+1


︸ ︷︷ ︸

Ψ(sk+1)

≈



1 ∆t
∆t2

2
· · · ∆tn

n!

0 1 ∆t · · · ∆tn−1

(n− 1)!

0 0 1 · · · ∆tn−2

(n− 2)!
...

...
...

. . .
...

0 0 0 · · · 1


︸ ︷︷ ︸

K̃d



fk

f ′k
f ′′k
...

f (n)k


︸ ︷︷ ︸

Ψ(sk)

.

(20)

For a fixed ∆t, expression (20) resembles (3), where the
derivatives of the function fk are the observables Ψ(sk).
When representing the Taylor series expansion, the derivative
functions f (i) are known at time step tk and approximated at
time tk+1 by f̃ (i). When training a Koopman operator, pairs
of measurements of the states sk and sk+1 are used to evaluate
the basis functions at the corresponding time steps: Ψ(sk) and
Ψ(sk+1). Note that, in (20), all derivatives of fk are assumed
to be different functions. The analytical expression (20) is
equivalent to a Taylor series expansion (17) across one time
step ∆t for all the basis functions. Therefore, the same error
analysis (19) applies to each observable in (20).

When propagating a function across multiple time-steps us-
ing (20), the observable functions are themselves numerically
propagated instead of being evaluated with measurable states
at each time step, as is the case for a typical integration
scheme. As a result, error accumulates not only in approxi-
mation of the original function f , but in the other observables
as well. To track the error in the original f , therefore, it is
necessary to be able to model the error in all of the basis
functions. Using the accuracy of the Taylor series structure,
we are able to model the error on every basis function and
ultimately bound the model error in f .

Theorem 1. Consider a general nonlinear function f (t) that
is continuously differentiable up to order n. Propagating
f (t) and its first n derivatives using the Taylor-based linear
representation (20) induces an error in f (t) that is given by

ek =
k−1

∑
i=1

n

∑
j=1

e(j)
i

∆tj

j!
+

k−1

∑
i=0

f (n+1)
i,i+1

∆tn+1

(n + 1)!
, (21)

where n ∈ Z≥0 is the number of derivative basis functions
used, k ∈ Z≥1 is the number of time steps into the future,
and, from Lagrange’s remainder formula (18), f (n+1)

i,i+1 is the

n + 1th time derivative of function f evaluated at some time
t ∈ [ti, ti+1]. The error bound is given by

|ek| ≤
Tn+1

(n + 1)!
| f (n+1)

max |, (22)

where T , k∆t is the prediction time horizon and | f (n+1)
max | is

the maximum magnitude of the n + 1th derivative.

Proof. For the derivation of the error expression (21), see
Appendix A. For the derivation of the error bound formula
(22), see Appendix B.

To the best of our knowledge, this is the first work that
provides prediction error bounds on the accuracy of a Koop-
man representation for general nonlinear dynamics. Prediction
error bounds based on Taylor series had previously only been
derived for a single step, and not for an arbitrary number of
time steps into the future, as we derive in this paper.

The error bound (22) is associated with the Koopman
representation (20) for the dynamics of a single function
f . The same methodology can be used to propagate multi-
ple states of a system with coupled dynamics. Specifically,
a system with states s(t) and general nonlinear dynamics
ṡ(t) = g(s(t)) ∈ RN that are continuously differentiable up
to order n

d
dt


s1
s2
...

sN

 =


g1(s)
g2(s)

...
gN(s)

 (23)

can be propagated in discrete time as


s1,k+1
s2,k+1

...
sN,k+1

 =


s1,k + g1,k · ∆t + · · ·+ g(n1)

1,k
∆tn1+1

(n1+1)!

s2,k + g2,k · ∆t + · · ·+ g(n2)
2,k

∆tn2+1

(n2+1)!
...

sN,k + gN,k · ∆t + · · ·+ g(nN)
N,k

∆tnN+1

(nN+1)!

 ,

(24)
where nj for j ∈ Z ∩ [1, N] indicates the highest-order of
derivatives of gj used to propagate the jth state of the original
dynamics (which does not have to be the same for all states).
The above expression can be rewritten in a linear form similar
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to (20)



s1,k+1
g1,k+1

...
g(n1)

1,k+1

s2,k+1
g2,k+1

...
g(n2)

2,k+1

...

sN,k+1
gN,k+1

...
g(nN)

N,k+1


︸ ︷︷ ︸

Ψ(sk+1)

=



T(n1) 0 · · · 0

0 T(n2) · · · 0

0 0
. . .

...

0 0 · · · T(nN)


︸ ︷︷ ︸

K̃d



s1,k
g1,k

...
g(n1)

1,k

s2,k
g2,k

...
g(n2)

2,k

...

sN,k
gN,k

...
g(nN)

N,k


︸ ︷︷ ︸

Ψ(sk)

,

(25)
where

T(nj) =



1 ∆t · · · ∆tnj+1

(nj + 1)!

0 1 · · · ∆tnj

nj!
...

...
. . .

...
0 0 · · · 1


for j ∈ Z ∩ [1, N].

(26)
Note how (25) is grouped into submatrices that propagate

independently each state and its higher-order derivatives. The
basis functions are the states and their derivatives. Propagating
a nonlinear system with states s and nonlinear dynamics
g(s(t)) using (25) is equivalent to propagating each state
separately using (20) and thus induces, for each state, an error
given by an expression similar to (21).

The formulation in (25) uses basis functions that depend,
for simplicity, only on the state s. When working with a
system that has control inputs, one can treat controls u in
a similar fashion and calculate its higher-order derivatives, by
introducing u as dummy states that are the derivatives of the
control input, a common practice [52].

Corollary 1. Consider general nonlinear dynamics ṡ(t) =
g(s(t)) that are continuously differentiable up to order n.
Propagating s(t) using (25) induces a bounded error on state
si, i ∈ Z ∩ [1, N], given by (21), where g(s(t))(i−1) =
f (t)(i).

Proof. Consider the propagation of each state si and its
derivative functions g(·)i . Let each si be a function fi whose nth

i
derivative is f (ni). Then, from Theorem 1, propagating each
state si , fi with (20) induces an error given by (21).

The error bound (22) allows one to calculate the maximum
possible error in each system state when propagating it with
the fixed linear matrix (25). As a result, the bound can be used
to determine the desired number of derivatives that are needed

for each state that would generate minimal error given a fixed
prediction horizon T and subject to the nonlinear dynamics.
Alternatively, the error bound can also be used to compute the
maximum length of the prediction time horizon for which the
state error is bound to remain under a threshold given a set
number of derivative basis functions.

Because, in general, there is no closure of the higher-order
derivatives and the series has to be truncated, the analytical
expression (20) would only lead to an approximate Koopman
operator, as is commented in [32]. Note, for example, that
the highest derivatives in (25) are not updated at all. For this
reason, we use data-driven techniques to obtain a K̃d that more
accurately advances all of the basis functions than the analyti-
cal expression. On the other hand, the error bound (22) applies
to a linear propagation of nonlinear dynamics using (25) and
therefore is no longer guaranteed when a data-driven operator
is used instead. Nevertheless, it can still serve to measure how
amenable nonlinear dynamics are to a linear representation by
revealing the relationship between the magnitude and order
of the derivatives. Furthermore, empirically, the data-driven
model does resemble the Taylor-series structure (25) such that
the error bounds remain relevant.2 Using simulation results,
we next verify the similarity of the data-driven operator to the
analytical expression in (20), as well as the validity of the
error bounds.

B. Error Bound Estimation Using Data-Driven Operator

The error bound formula (22), derived for a linear repre-
sentation of (25), remains relevant to a data-driven operator,
when the latter has similar structure, i.e., small Frobenius
distance, to the Taylor-series form (20). On the other hand,
since an operator computed from data may not take exactly
the form of (25), the bounds shown in (22) are not strictly
enforced, but offer what we refer to as sound bound estimates
in the remainder of the paper. To calculate the bound estimates,
one needs to compute | f (n+1)

max |, the magnitude of the lowest-
order derivative of the system states that is not used in the
basis functions. When dynamics are known, this value can be
calculated numerically. Alternatively, as we show next, one can
exploit the Taylor-series structure of the data-driven operator
to estimate the error bounds beyond the training set that has
been used to generate the Koopman operator even when there
is no knowledge of the dynamics.

Specifically, given a linear representation that approximates
the Taylor-series structure (20), the local error across one time
step induced by the data-driven model can be described by the
Taylor series accuracy. Thus, using (22), the error across one
time step (k = 1) of a function f can be written as

|e1| ≤ | f
(n+1)
max

∆t(n+1)

(n + 1)!
| =| f (n+1)

max |
∆t(n+1)

(n + 1)!
, (27)

2Although the data-driven solution is not guaranteed to bound all local
errors within the Taylor series accuracy, given a training dataset that is a
representative part of the state space, solutions that largely deviate from the
Taylor-series structure in (20) would generate large local errors in parts of the
state space and thus be avoided by the least-squares solution (5).
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where e1 is available from the data-driven training process (4).
Let |e1|max be the maximum local error, i.e., |e1|max ≥ |e1|.
Then, when the training data set is large enough, one can get

|e1|max ≈ | f (n+1)
max |

∆t(n+1)

(n + 1)!
, (28)

which is rearranged to

| f (n+1)
max | ≈ |e1|max

(n + 1)!
∆t(n+1)

. (29)

In short, we use the maximum error across one time step from
the training process to estimate the term | f (n+1)

max |, which in
turn, using (22), allows us to estimate |ek|, the error bound
after k time steps. Alternatively, when no analytical model
of the dynamics is available, the value | f (n+1)

max | can also be
estimated numerically using measurements of f .

C. Synthesis of Derivative-Based Koopman Observables with
Structural Knowledge of Dynamics

The derivative-based approach proposed in this work popu-
lates Koopman observables with the system states s and their
derivative functions. Each derivative is a separate function
that can be computed from the analytical expression when
dynamics are fully known, or numerically estimated from
measurements when no model exists. In this subsection, we
show how we construct the basis functions to exploit structural
knowledge of dynamics that have unknown coefficients.

For simplicity, we assume that the dynamics of each system
state depend on a single term, i.e., a nonlinear function multi-
plied by a coefficient; the case of having multiple such terms
can be handled similarly. In particular, consider a nonlinear
system with states s ∈ RN and dynamics

d
dt


s1
s2
...

sN

 =


c1g1(s)
c2g2(s)

...
cN gN(s)

 , (30)

where ci, i ∈ Z ∩ [1, N], are unknown coefficients and gi(s)
are nonlinear functions of the states s. The second-order time
derivatives of the states s are

d2

dt2


s1
s2
...

sN

 =


c1g′1(s)
c2g′2(s)

...
cN g′N(s)

 , (31)

where g′i(s) denotes the time derivative of gi, and thus

cig′i(s) = ci(
∂gi
∂s1

c1g1 + · · ·+
∂gi
∂sN

cN gN) for i ∈ Z ∩ [1, N].

(32)

For ease of discussion, we limit the analysis to the first two
time derivatives, but the same process can continue to generate
higher-order derivatives and, thus, additional basis functions.

Using the states si, the first-order derivatives gi and the

individual terms
∂gi
∂sj

gj that appear in g′i(s), where i, j ∈ Z ∩

[1, N], we populate the basis functions of the Koopman matrix.
In discrete time, the states are then propagated with


s1,k+1
s2,k+1

...
sN,k+1

 =



s1,k + c1g1,k · ∆t + c1g′1,k
∆t2

2!

s2,k + c2g2,k · ∆t + c2g′2,k
∆t2

2!
...

sN,k + cN gN,k · ∆t + cN g′N,k
∆t2

2!


. (33)

Substituting for the g′i(s) terms, we show the expected form
for a single state s1:

s1,k+1
g1,k+1

{∂g1

∂s1
g1}k+1

{∂g1

∂s2
g2}k+1

...

{ ∂g1

∂sN
gN}k+1


︸ ︷︷ ︸

Ψ(sk+1)

=



1 c1∆t c2
1

∆t2

2
c1c2

∆t2

2
. . . c1cN

∆t2

2
0 1 c1∆t c2∆t . . . cN∆t
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


︸ ︷︷ ︸

K̃d



s1,k
g1,k

{∂g1

∂s1
g1}k

{∂g1

∂s2
g2}k

...

{ ∂g1

∂sN
gN}k


︸ ︷︷ ︸

Ψ(sk)

.

(34)
As before, to improve the accuracy of the linear representation,
we use data to approximate a Koopman operator.

D. Assessment of Error Bound Estimates
Using the single pendulum system, we demonstrate the error

bound estimates for the data-driven linear approximation, both
when the dynamics are known and when they are unknown.
In particular, we show that | f (n+1)

max | can be computed using
the dynamics equations (model-based estimate) when those
are available, or approximated using the residue error in the
training process when the dynamics are unknown (data-driven
estimate), as explained in Section III-B. In both cases, once
| f (n+1)

max | is calculated, the error bounds are computed using
(22). The states are s = [θ, ω]T and dynamics are given by ṡ =
[ω, g

l sin(θ) + u]T , where g = 9.81 m/s2 is the gravitational
constant, l = 1 m is the pendulum length, and u is the control.

For the model-based estimate of the error bounds, the
maximum magnitude of the nth derivative is (for each state)
computed numerically by maximizing the symbolic expression
over the domain of the state space that is used for training.
For the data-driven estimate, the maximum magnitude is
computed using (29) based on the training error. Note that,
when propagating a data-driven operator instead of (25), the
error bound estimates may in theory be violated.

We sample and forward-simulate 5000 initial states s0 for
∆t = 0.01 s to obtain a Koopman operator K̃d via (5), which
we then use on a different randomly selected set of 5000
states to propagate the dynamics for a time horizon T. In both
the training and the testing sets, uniform distributions of the
initial states Uθ0 (−2π rad, 2π rad) and Uω0 (−5 rad/s, 5 rad/s)
are used. For each sample, both in training and in testing, we
apply random inputs generated from a uniform distribution
given by Uu(−5 rad/s2, 5 rad/s2). The observables include
the angle θ and its first three derivatives, derived analytically
based on the dynamics equation.

The obtained structure of the data-driven Koopman operator
resembles the Taylor-series structure (20) (see Fig. 2), which
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Fig. 2: The deviation of the data-driven Koopman operator
from the Taylor-based matrix (20) for the single pendulum
system, where the derivative basis functions are constructed
analytically from the known dynamics. Fig. 2b shows that
the non-zero coefficients (upper triangle) of the linear Taylor
expansion are accurately recovered from the data-driven op-
erator. The zero coefficients (lower triangle) are replaced by
small values that help minimize the least-squares error for the
part of the state space used in the training set. The deviation
differs by orders of magnitude across the basis functions, as
seen in Fig. 2c. As expected, the deviation is smallest for θ,
as it is the one with the highest number of derivatives used in
the basis functions.

adds validity to the data-driven error bound estimation. The
error bound estimates and the actual errors are shown in Fig. 3.
The error bound that is estimated from the structure of the
data-driven operator without knowledge of the dynamics is
reasonably accurate at predicting the maximum error. In addi-
tion, note that the maximum actual error and the error bound
estimates have similar slopes with respect to the prediction
horizon as well as the fact that both the actual error and
the error bound estimates decrease with increasing order of
derivatives used as basis functions.

Next, we demonstrate the performance of the derivative-
based data-driven Koopman operator and the error bound
estimates when dynamics are unknown. Using the single
pendulum system, only the angle and angular velocity are
measured; higher-order derivatives are estimated using central
finite differences [69]. To illustrate the robustness of the
approach to noise, we add zero-mean, Gaussian-distributed
noise N (0, σ2) to the measurements of θ and ω, which are
then also filtered through a moving average of 15 periods for
noise reduction. The higher-order derivatives and the Koopman
operator are computed from the filtered measurements. The
term | f (n+1)

max | is computed as the maximum magnitude of
| f (n+1)|, which is also calculated using central finite differ-
ences [69].

In Fig. 4 we show results for n = 2 and two levels of
noise: low (σ = π/180) and high noise (σ = 15π/180).
Note that the actual maximum error induced by the Koopman

operator remains almost identical, indicating that the presented
error bounds can be used even with high levels of noise after
using a simple denoising method. The error bound estimate
for the low-noise scenario follows closely the error induced
by the Koopman operator. In the high-noise scenario, the
error bound estimate is more conservative. This is because
the error bound formula is highly dependent on the calculated
term | f (n+1)

max |, which is likely to be miscalculated with noisy
measurements. Note that if the training data do not represent
the entire state space, the calculated value for | f (n+1)

max | is
likely to underestimate the true value. On the other hand,
including some safety margin in the | f (n+1)

max | term can make
the error bounds more conservative. These results suggest that,
although the error bound estimates may become less accurate
with increasing levels of noise when dynamics are unknown,
simple denoising methods can render the performance of the
derivative-based Koopman operator robust to noise, suggesting
that the proposed methodology is a promising candidate for
the prediction of unknown systems.

In conclusion, the error bounds are derived with respect to
the analytical Taylor-based Koopman form of (20). However,
we show (Fig. 2) that, in practice, the data-driven Koopman
model has a very similar structure to (20) such that the error
bounds remain relevant estimates. In addition, we verify that
the error bounds reflect reasonably well the prediction error
induced by data-driven Koopman models (Fig. 3), even in the
presence of noise (Fig. 4). In practice, the error bounds, which
depend on the prediction time horizon and the magnitude of
the derivatives of the dynamics, provide a systematic method
to determine the basis functions for a desired balance between
model accuracy and complexity.

Note that, in this work, we do not argue that one should
always use additional basis functions than the original system
states; instead, one could analyze when and how to augment
the basis functions of Koopman operators to improve the
modeling accuracy while being cognizant of increased system
order and complexity. In particular, the derived error bound
estimates can serve as a guide on whether one should do so
and by how many derivatives.

E. Comparison to alternative system identification methods

Finally, we compare the performance of the derivative-based
data-driven Koopman representation approach to alternative
system identification methods using the single pendulum sys-
tem. Specifically, we use SINDy [70], NARX [71], a data-
driven linear model, and the proposed derivative-based data-
driven Koopman approach to obtain models and design MPC
control to invert the pendulum to the upright position.

To train the models we generate trajectories by forward
simulating 500 uniformly-sampled initial states s0 for 0.04
seconds using time steps of ∆t = 0.01 s. That is, each
of the 500 training trajectories contains four measurements,
which are used to compute derivatives for the middle mea-
surements needed for the SINDy algorithm and the proposed
method, as well as make use of delays for NARX. The
initial states are sampled from uniform distributions given
by Uθ0 (−2π rad, 2π rad) and Uω0 (−5 rad/s, 5 rad/s). We
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Fig. 3: Simulated error bound estimates and actual error bounds for the single pendulum system as a function of the prediction
horizon and for increasing orders of derivatives used as Koopman basis functions. The derivative basis functions are constructed
analytically from the known dynamics. Both error bound estimates are calculated using (22), but differ in how they compute
| f (n+1)

max |. Data Est. is the model-free error bound estimate and uses the data-driven Koopman operator and (29) to compute
| f (n+1)

max |; Model Est. is the model-based error bound estimate and uses the analytical dynamics equations to compute | f (n+1)
max |;

Max error is the measured largest deviation as a function of time between the actual value of the state and the one predicted
by the data-driven Koopman operator across all trajectories that evolve from randomly sampled initial conditions. Results
are shown for three different orders of derivatives of θ. Note that state θ has always one more derivative than ω. The
data-driven bound estimates and actual errors can be generated for different parameter choices using a Jupyter notebook at
https://colab.research.google.com/drive/1EPX1XVUHr9gix-pZD 3Ydw7Npzz9n3Jj.
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Fig. 4: Simulated error bound estimates and actual maximum
errors induced by the data-driven Koopman operators for
the single pendulum system when dynamics are unknown
and measurements are noisy. The derivative basis functions
are calculated numerically from the state measurements—no
analytical model is used.

use random inputs generated from a distribution given by
Uu(−10 rad/s2, 10 rad/s2). We train the SINDy model using
the open-source package [72] and the NARX model using
the MATLAB Deep Learning Toolbox [73]. The higher-order
derivatives used for SINDy and the derivative-based Koopman
model are numerically estimated from the angle and angular
velocity measurements.

Fig. 5 shows simulation results for the inversion of the single
pendulum system using MPC control computed from models
obtained with NARX, SINDy, a data-driven linear model based
only on the system states (n = 1, see Fig. 3), and a data-driven
Koopman representation based on the state θ and its first- and
second-order derivative (n = 2). In addition, we also test LQR
control on the Koopman model to demonstrate that similar
control performance can be achieved with LQR gains that are
computed once. The desired states are given by sdes = [0, 0],
the weights for the states and control are Q = diag(5, 0.01)
and R = 0.001, respectively, and the prediction horizon is
T = 0.1 s.

We also compare the control performance of these methods
for 30 initial conditions θ0 and ω0 sampled from uniform
distributions given by Uθ0 (−π rad, π rad) and Uω0 (−2 rad/s,
2 rad/s). The average of the 30 errors is 6.00 (with a standard
deviation of 6.60) for the Koopman-LQR approach; 6.05 (with
a standard deviation of 6.59) for the Koopman-MPC; 6.48
(with a standard deviation of 7.00) for NARX; 6.69 (with
a standard deviation of 7.18) for SINDy; and 7.44 (with a
standard deviation of 7.70) for the linear model.

These results show that the control performance of the
Koopman-MPC method is marginally better than the linear-
MPC, NARX-MPC and SINDy-MPC. Note that in simulation
the comparative performance of the methods considered is
similar using prediction horizons up to T = 1 s. Given that
NARX is computationally expensive, here we report the results
for a short planning horizon so that the performance is closer
to real-time execution. Also, the Koopman-LQR approach
delivers control performance comparable to the Koopman-
MPC method, with the additional benefit that it lends itself
to efficient control computation, which makes it an attractive
choice for online robotic control applications. This is why we
use Koopman-LQR in the simulations and experiments with
the robotic fish in Section IV.

IV. DATA-DRIVEN CONTROL OF TAIL-ACTUATED
ROBOTIC FISH

We illustrate and validate the proposed data-driven modeling
approach using a tail-actuated robotic fish. The states of the
robotic fish are s = [x, y, ψ, vx, vy, ω]T , where x, y are the 2D
world-frame coordinates, ψ is the orientation, vx and vy are
the body-frame linear velocities (surge and sway, respectively),
and ω is the body-frame angular velocity. We use α to indicate
the angle of the tail, actuated with α(t) = αo + αa sin(ωat),
where αa, αo, ωa are the amplitude, bias, and frequency of the
tail beat. To simplify the problem, we keep the frequency fixed
at ωa = 2π rad/s.

https://colab.research.google.com/drive/1EPX1XVUHr9gix-pZD_3Ydw7Npzz9n3Jj


10 IEEE TRANSACTIONS ON ROBOTICS, IN PRESS

Fig. 5: Control of a pendulum system based on data-driven models obtained using SINDy, NARX, a linear model based only on
the system states, and a derivative-based Koopman model whose observables contain the state θ and its first- and second-order
derivatives. The derivative basis functions are numerically estimated from state measurements both for training the Koopman
model and online to implement control—no analytical model is used. All models are used to design MPC control and, in
addition, we use the Koopman model for LQR feedback (Koopman-LQR). Koopman with MPC has the lowest cost (19.71) for
the 10 s simulation, while NARX, SINDy and the linear model result in errors that are 12.43%, 18.32%, and 30.61% higher,
respectively. Koopman-LQR leads to the second best performance (0.97% higher error in comparison to Koopman-MPC).

Fig. 6: Error bound estimates based on derivative-based Koopman models of the robotic fish dynamics (35) for increasing
order of derivatives used in the basis functions. The derivative basis functions are constructed analytically from the known
dynamics. Each additional order of derivatives improves the error bound estimates over the selected prediction horizon. The
error bound estimates are computed using (22) where | f (n+1)

max | is calculated from the training data.

We describe the dynamics of the system with an average
model [74] given by

ṡ =


ẋ
ż
ψ̇
v̇x
v̇y
ω̇


4
=


vx cos(ψ)− vy sin(ψ)
vx sin(ψ) + vy cos(ψ)

ω
f1(s) + K f f4(α0, αa, ωa)
f2(s) + K f f5(α0, αa, ωa)
f3(s) + Km f6(α0, αa, ωa)

 , (35)

where

f1(s) =
m2

m1
vyω− c1

m1
vx

√
v2

x + v2
y +

c2

m1
vy

√
v2

x + v2
y arctan(

vy

vx
)

f2(s) = − m1

m2
vxω− c1

m2
vy

√
v2

x + v2
y −

c2

m2
vx

√
v2

x + v2
y arctan(

vy

vx
)

f3(s) = (m1 −m2)vxvy − c4 sgn(ω)ω2

f4(α0, αa, ωa) =
m

12m1
L2ω2

aα2
a(3−

3
2

α2
o −

3
8

α2
a)

f5(α0, αa, ωa) =
m

4m2
L2ω2

aα2
aαo

f6(α0, αa, ωa) = − m
4J3

L2cω2
aα2

aαo

(36)
and m1 = mb − max , m2 = mb − may , J3 = Jbz − Jaz , c1 =
1
2 ρSCD, c2 = 1

2 ρSCL, c4 = 1
J3

KD, c5 = 1
2J3

L2mc. Parameter

mb is the mass of the robotic fish, max and may are the
hydrodynamic derivatives that represent the added masses of
the robotic fish along the x and y directions, respectively,
Jaz and Jbz are the added inertia effect and the inertia of the
body about the z-axis, respectively, m is the mass of the water
displaced by the tail per unit length, ρ is the water density,
L is the tail length, c is the distance from the body center to
the pivot point of the actuated tail, CD, CL, KD are drag force,
lift, and drag moment coefficients, respectively, and K f and
Km are scaling coefficients measured experimentally [21].

We train a Koopman operator using the control-affine form
of the dynamics (35) that is obtained by substituting

u1 = α2
a(3−

3
2

α2
o −

3
8

α2
a) u2 = α2

aαo. (37)

Because the computed control is in terms of the variables u1
and u2, it needs to be mapped to implementable values for the
amplitude, αa, and the bias, αo, of the tail flapping. To convert
u1 and u2 back to the physical actuation variables, we use a
constrained global minimization solver based on Sequential
Quadratic Programming (SQP) that finds the nearest, in the
space of u1 and u2, feasible actuation values for αa and αo.
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Given u1 and u2, the constrained optimization problem is
posed as

argmin
αa ,αo

√(
u1 − α2

a(3−
3
2

α2
o −

3
8

α2
a)
)2

+
(
u2 − α2

aαo
)2

subject to: αa ∈ [0, 30◦] AND αo ∈ [−45◦, 45◦].
(38)

This minimization is solved before every control update.
Given the unilateral constraints on the forward motion of the

tail-actuated robotic fish (it cannot move backwards), directly
tracking position coordinates becomes rather challenging. For
example, when the target lies behind the robotic fish, the
control solution generates a negative amplitude (to generate
backward motion) that is infeasible and thus the system stops
moving. This behavior has been observed and tackled in
[23] by translating position coordinates into different error
states, associated with the body-frame velocities of the system.
Similarly, in this work, we argue that one can express all
feasible trajectories for the tail-actuated robotic fish in terms
of an angle and a forward velocity profile.

A. Simulation Results

In this section, we present simulation results on the data-
driven modeling and LQR control on the tail-actuated robotic
fish. To decide the optimal order of derivative basis functions,
we compare the error bound estimates over T = 1 s, which is
the feedback rate, using different orders of derivatives. Results
are shown in Fig. 6. We select n = 2 for a reasonable balance
between the increasing complexity of calculating higher-order
derivatives and model accuracy. Next, we populate the ob-
servable functions with the states, their first- (using (35)) and
second-order derivatives, which are derived analytically from
the average model. To allow the identification of unknown
or changing coefficients (as discussed in Section III-C), we
consider each term in the derivatives individually. For example,
d
dt vyω = v̇yω + vyω̇ generates multiple basis functions,
where v̇y and ω̇ are given by (35). Using separate functions
for the time derivatives of each individual term that appears
in the dynamics is similar to using the time derivatives of the
entire equation of a state (e.g. v̈y(t)). Despite increasing the
number of basis functions, we prefer the first approach because
it does not require knowing the coefficients of the individual
terms in advance (e.g. m2

m1
). As a result, we can readily train

the Koopman operator on other robotic tail-actuated fish that
have a different morphology. In this way, we end up with
the system states, the control inputs, and 54 additional scalar
functions, with Ψs(s) ∈ R60 and Ψu(u) = u ∈ R2.

Note that we choose control-dependent basis functions to
be u so as to use LQR feedback. One can also choose basis
functions that include nonlinear control terms in combination
with a different control policy, such as NMPC [52], [75].
Alternatively, one can always convert dynamics that are non-
linear in control by introducing new dummy variables (e.g.
vi) as the control input that are the derivatives of the system
actuation (u̇i = ci(vi − ui)), where ci ∈ R+ dictate the
rate of change [52]. This is in practice also closer to the
physical implementation of actuation that cannot instantly

TABLE I: Simulation parameters for the tail-actuated fish
model dynamics (35).

Simulation Parameters
Parameter Value Parameter Value
mb 0.725 kg ρ 1000 kg/m3

max −0.217 kg S 0.03 m2

may −0.7888 kg CD 0.97
Jbz 2.66× 10−3 kg ·m2 CL 3.9047
Jaz −7.93× 10−4 kg ·m2 KD 4.5× 10−3

L 0.071 m K f 0.7
d 0.04 m Km 0.45
c 0.105 m

change values. In this way, it is then possible to include
nonlinearities in ui, while the system remains still linear with
respect to the control input vi designed by the user.

Next, we train an approximate Koopman operator using
(5). To generate data sk and sk+1, we sample P = 3000
initial conditions for the states with uniform distributions given
by Ux0 (−0.5 m, 0.5 m), Uy0(−0.1 m, 0.1 m), Uψ0 (−π/4 rad,
π/4 rad), Uvx (0, 0.04 m/s), Uvy (−0.0025 m/s, 0.0025 m/s),
Uω(−0.5 rad/s, 0.5 rad/s). For each sample, we apply ran-
dom inputs generated from a uniform distribution given by
Uα0 (−45°, 45°) for the tail angle bias and Uαa(0, 30◦) for the
tail angle amplitude of oscillations. Then, for each sample of
initial conditions sk and controls uk, we use dynamics (35)
and parameters shown in Table I to propagate the states with
the given control for ∆t = 0.005 s and obtain the final states
sk+1. We use the set of sk, sk+1, uk to compute the approximate
discrete Koopman operator (5). Note that the value of uk+1 can
be arbitrary, since we are not trying to predict the evolution of
the control-dependent basis functions. Once we have trained
the Koopman operator, we convert it to the continuous time via
K̃ = log(K̃d)/∆t, extract the state- and control-linearization
matrices A and B, choose the weight matrices Q and R and
compute the infinite-horizon LQR gains.

Fig. 7 shows the velocity tracking performance of the
derivative-based Koopman model in comparison to a linear
data-driven model for the system (35) (with the same set
of states as in (35)) when using LQR-feedback. The desired
trajectory is a figure-8 described by sdes = [0, 0, 135 ·π/180 ·
sin(0.05t + π/2), 0.02, 0, 0.05 · 135 · π/180 · cos(0.05t +
π/2)]. The weights are Q = diag(0, 0, 0.1, 4000, 0, 0) and
R = diag(0.01, 0.01). As is seen in the figure the proposed
derivative-based Koopman modeling approach leads to im-
proved control performance.

B. Experimental Results

1) Experimental Setup
We next use the physical robot shown in Fig. 8 to ex-

perimentally test our approach. An overhead camera captures
the red and blue marks on the robotic fish (see Fig. 8) and
calculates the coordinates of its center and its orientation at
about 3 Hz. The body-frame velocities are estimated using a
Kalman filter. The state derivative functions, provided by the
average model, are then evaluated with the states. To simplify
the modeling and control task, the tail-beat frequency used in
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TABLE II: Amplitude and bias inputs used to collect training dataset.

Actuation values
Amp (◦) 15 20 25 30
Bias (◦) 0 ±20 ±30 ±40 ±50 0 ±20 ±30 ±40 ±50 0 ±20 ±30 ±40 ±50 0 ±20 ±30 ±40 ±50
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Fig. 7: LQR-controlled robotic fish in simulation. The LQR
gains are generated once using the learned Koopman operator.
The derivative basis functions are constructed analytically
from the known dynamics. The desired trajectory is given in
terms of the angle and the forward velocity. Since the position
coordinates are not included in the performance objective (11),
the controlled trajectories are individually shifted to align with
the desired figure-8 shape as closely as possible. Despite using
fixed LQR gains, the controlled systems successfully track
the desired states that were designed to produce a figure-8
pattern. Koopman-LQR has the lower cost (3.35) for the 120
s duration, while the approach based on the data-driven linear
model with the same set of states as in (35) results in an error
that is 95% higher.

Fig. 8: Tail-actuated robotic fish used in experiments, de-
veloped by the Smart Microsystems Lab at Michigan State
University. It maneuvers in water by oscillating its tail fin.

both the training phase and the testing phase is kept constant at
ωa = 2π rad/s. In order not to disturb the periodic movement
of the tail oscillation during tracking, feedback control is
updated at roughly one second. The control commands are
communicated to the robot via Xbee (RF communication).

2) Training Phase
For the training phase, we collect experimental measure-

ments using the robotic fish to compute the approximate
Koopman operator. Throughout each run, we apply constant
tail bias and amplitude for the oscillations of the tail fin. We
conduct a total of 72 runs, with two trials for each of the
36 different combinations of actuation parameters, shown in
Table II. We train the Koopman operator using the same basis
functions as discussed in the simulation section.

To create a consistent mapping with the Koopman operator,
all pairs of measurements sk and sk+1 need to be spaced (in
time) equally apart, as we explain in Section II. For this reason,
and also to decrease the time between measurements to fine
levels (without the constraints of our sampling and filtering
methods), the obtained data is interpolated at ∆t = 0.005 s.
The interpolated data is then used to obtain an approximate
Koopman operator according to (4).

To measure how well the Koopman model captures the
nonlinear dynamics of the robotic fish, we use K̃, learned
from the experimental data, to propagate the identified model
continuously based on the initial states of each of the 72
experimental runs. Then, the predicted simulated trajectories
are compared against the corresponding experimental ones.
For the purposes of illustration, two such comparisons are
shown in Fig. 9. The linear Koopman model, despite not
perfect, reasonably follows the experimental data for at least
five seconds. Note that, because we only minimize the single-
step prediction error (5), it is more likely (compared to
minimizing a multi-step error) that we compute an unstable
Koopman operator, even if the dynamics are stable. In that
case, the long-term predictions would exponentially deviate
and become inaccurate. Imposing stability properties on the
operator is the focus of ongoing work [76], [77].

3) Testing Phase
We use the data-trained Koopman operator to implement

linear feedback control (LQR) for tracking. Using the weight
matrices Q and R, which penalize the tracking error and con-
trol effort, respectively, we define the minimization problem
(11) and calculate the infinite-horizon LQR gains. Contrary
to work in [49], and in order to illustrate the simplicity
and robustness of the proposed scheme, we keep the same
weights across all different tasks, such that the same LQR
gains, (unless the model is updated) are used in every type of
trajectory. The resulting feedback has the form shown in (13).
As mentioned earlier, we argue that, to follow any trajectory,
it suffices to track a desired orientation and forward velocity
and so we design the LQR weights accordingly. Specifically,
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Fig. 9: Fitness between Koopman model and experimental measurements. The green line shows data interpolated from
experimental measurements (blue dots) every ∆t = 0.005 s. The red line shows the evolution of the states using the Koopman
model. The actuation is constant for each of the two runs and is indicated in the caption.

Fig. 10: Outline of the proposed methodology for LQR control
using derivative-based Koopman operators.

the weights used are Q = diag(0, 0, 0.1, 1000, 0, 0) and R =
diag(1, 1). The weights for the angle and forward velocity
are disproportionate to account for the difference in scale
between the velocity of the robotic fish, typically in the order
of 0.01 m/s, and the body orientation, expressed in radians.

We implement the proposed data-driven Koopman method-
ology in two ways. One approach is computing the model and

Fig. 11: Experimental setup for creating fluid disturbances.
The motor is halfway submerged in water, generating ripples
with its propellers.

LQR gains offline once; the other is updating the model and
recalculating the LQR gains online in real time. To update the
Koopman operator online in a memory-efficient manner, we
do not store any previous measurements. Instead, we use (5)
and split it into the P measurements used last to calculate the
Koopman operator and the ∆P new measurements since the
last update, where Ptotal = P + ∆P is the total number of
measurements used. Then,

K̃∗d,new =AnewG†
new, (39)

where

Anew =
1

Ptotal
(AP +

Ptotal−1

∑
k=P

Ψ(sk+1, uk+1)Ψ(sk, uk)
T)

Gnew =
1

Ptotal
(GP +

Ptotal−1

∑
k=P

Ψ(sk, uk)Ψ(sk, uk)
T)

(40)

and A and G are given by (6). The derivation of the formula is
shown in Appendix B-A. Then, the LQR gains are recomputed
as shown in Section II-D using the updated Koopman operator.
We show an outline of the process in Fig. 10.

The proposed method is compared to a PID controller,
a widely-used model-free control method. PID feedback is
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Fig. 12: Experimental results: Average error scores for velocity and angle tracking for PID and two variants of Koopman-LQR,
trained offline and updated online, with and without fluid flow indicated respectively with the waves and no-fan icons. The
four subplots compare the performance for the linear and circular trajectories for each state separately. The error bars indicate
the standard error. The proposed Koopman operator scheme outperforms PID in all tests. Further, updating Koopman-LQR
online improves the performance in the presence of the unmodeled fluid flow. A video of experimental runs is shown at
https://youtu.be/9 wx0tdDta0.

quite effective, requires low computational effort, and does
not require exact knowledge of the dynamics or any of the
model coefficients [78]. In fact, it has been shown to perform
remarkably well on motion and speed control of robotic fish
[12], [25]. However, this method often requires intensive gain
tuning. To tune the PID controller, we utilize the Ziegler-
Nichols’ closed-loop method [79]. By comparing our method
to PID, we hope to demonstrate that our proposed method is
a promising, data-driven feedback scheme that compares well
against a popularly used, effective controller, yet without the
additional overhead of intensive parameter tuning. The two
methods are compared on tracking linear and circular trajec-
tories that are described in terms of the desired orientation and
forward velocity.

The comparison of the proposed Koopman-LQR method
and the PID is conducted over ten trials for both types of
trajectories. We further compare their performance in the
presence of fluid disturbance, generated by a propeller (see
Fig. 11). The results are presented in Fig. 12, which displays
the average error in the two tracked states, together with the
standard error. The standard error is a measure of the expected
variability in the average error, contrary to the standard devi-
ation that measures the expected variability away from the
mean. Note that, for the case of LQR with gains computed
offline, the data used to obtain the Koopman representation
was collected in the absence of fluid disturbance.

From the results, the proposed data-driven Koopman-LQR
scheme, regardless of whether it is updated online, outper-

forms PID in all tasks, with or without fluid disturbance, ex-
cept for tracking the orientation in the linear trajectory, where
both algorithms have similar performance. The difference in
the performance between the Koopman-LQR and the PID is
highlighted in the tracking of the circular trajectory in the
presence of fluid flow, where the angle error is significantly
higher for PID (Fig. 12). Given that angle tracking (in the
linear trajectory) is the only metric where PID is comparable
to our proposed method, we attribute the difference in per-
formance in the presence of fluid flow to the robustness of
our approach and its ability to track the desired trajectory in
a confined space in the presence of unmodeled dynamics.

In the absence of fluid disturbance, the two implementations
of the proposed method (that is, with and without updating
the model and LQR gains in real time) have comparable
results. It is only in tracking the circular trajectory that the
offline implementation tracks the desired velocity better. We
conjecture that this is due to the collisions of the robotic fish
with the side wall (and the unmodeled boundary conditions)
that take place because of the confined space. Introducing
such discontinuous disturbances likely deteriorates the learned
model temporarily; yet it still outperforms the well tuned PID
controller. On the other hand, the major benefit of updating
the model online is, as one would expect, in the presence
of fluid disturbance. There, the real-time updated method
significantly outperforms the offline-trained Koopman-LQR
scheme, highlighting the importance of updating the model
online in environments that constantly change.

https://youtu.be/9_wx0tdDta0
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V. DISCUSSION AND FUTURE WORK

In this paper, we use the Koopman operator framework to
develop derivative-based data-driven linear representations of
nonlinear systems, suitable for real-time feedback. The pro-
posed synthesis of the observable functions aims at minimizing
the representation error without requiring knowledge of the
dynamics. Utilizing Taylor series error bounds, we characterize
the approximation error induced by the Koopman operator and
use the error bound formula to decide the order of derivatives
for synthesizing the basis functions. LQR is then used as an
example of efficient control synthesis based on the trained
Koopman operator. In fact, unless the model is updated online,
the LQR gains are computed only once. We demonstrate the
efficacy of our approach with simulation and experimental
results using a case study of a tail-actuated robotic fish.

One of the most promising aspects of the derivative-
based synthesis of Koopman operators is the application to
completely unknown dynamics. In that case, the proposed
method relies on numerically estimating the state derivatives,
amplifying any noise present in the measurements and possibly
worsening the accuracy of the error bound estimates. As
simulation results suggest, however, after implementing a
simple moving average filter, the performance of the Koopman
operator remains robust even for high noise levels. While the
error bound estimates may be violated, they remain close
to the true bounds. Such results merit further research on
more complicated dynamics using more sophisticated noise
reduction schemes. In fact, as part of early-stage efforts of
underwater exploration, we have tested our derivative-based
Koopman approach to the unknown dynamics of a soft robotic
fish [80], where we numerically estimate state derivatives us-
ing high-gain observers and are able to predict with reasonable
accuracy the evolution of the states.

The modeling performance of the proposed Koopman ap-
proach is comparable to state-of-the-art data-driven modeling
methods, such as SINDy and NARX. This is in part shown via
the comparison of MPC control performance, based on these
different modeling schemes. On the other hand, as a linear
model, the Koopman approach lends itself readily to efficient
control design tools, an example of which is LQR. In fact,
LQR based on a Koopman model delivers control performance
comparable to these MPC-based methods. In short, this work
develops a systematic approach for constructing the Koopman
operator with high fidelity, which can be used for various
model-based control schemes (as illustrated here with MPC
and LQR). The advantage over other nonlinear data-driven
methods is the linear nature of the model, which allows us
to more efficiently compute the controller (e.g., LQR). This
also justifies why we use LQR in the later simulation and
experiments for the robotic fish example.

Although the proposed method can be used for any system
that can benefit from data-driven methods or reduction of the
nonlinearity, underwater robotics is perhaps the most suitable
application for this method, due to the inherent environmental
uncertainty, the highly nonlinear dynamics, and the need for
controllers that use limited computation (to preserve battery
use or due to limited computational power). While this method

could certainly be applied to other systems, it perhaps would
not be as useful for low-dimensional systems, with known
dynamics and few nonlinearities.

This work can be further expanded in multiple ways. We
believe that the modeling is worsened by the average dynamics
(35) used to describe the longer-term behavior of the tail-
actuated fish. In fact, the average model borrowed from [74]
is inaccurate, because it assumes that the tail bias has no
effect on the angular velocity if the amplitude is zero (u2 = 0
when αa = 0). However, when the system already has forward
velocity, the orientation of the tail certainly induces a rotation
to the movement. Thus, abandoning the average model, and
instead using Kirchoff’s equations for a rigid body in fluid
environment, could improve the model fitness. Alternatively,
one could also use a system identification algorithm, such
as SINDy [38], to first obtain a model for the nonlinear
dynamics of the system. Besides identifying the underlying
dynamics, we are also interested in experimentally testing
this methodology on entirely unknown dynamics where we
use measurements to numerically compute the derivatives of
the system states and populate the Koopman basis functions.
Robotic fish with different morphologies, such as fish pro-
pelled with pectoral fish, are possible candidates for further
testing. We are also interested in computing error bounds
for general basis functions, not limited to derivatives of the
dynamics.

Last, note that work in [81] uses Koopman operators with
time delay observables to model and control (also using LQR
feedback) a soft robotic arm. The authors comment that the
time delay observables help better capture the momentum of
the dynamics. We believe that time delay observables are
equivalent to derivative-based observables given that the latter
can be approximated numerically from past measurements
[68]. Interestingly enough, the authors in [81] observe a steady
increase in predictive power as they increase the number
of time delays in the observables, which we consider to be
analogous to including higher-order derivatives in the basis
functions. Investigating the connection between time delay ob-
servables and derivative-based observables can reveal whether
the error bound formula presented in this work can be also
utilized in other applications of Koopman models, without the
need to numerically estimate derivatives [82]–[85].
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APPENDIX A
GLOBAL ERROR FOR TAYLOR-BASED KOOPMAN

OPERATORS

In each time step, there is error induced in the updated
function. Let e(m)

k indicate the deviation from the accurate



16 IEEE TRANSACTIONS ON ROBOTICS, IN PRESS

value of the f (m)
k function at time tk, where m ∈ Z ∩ [0, n].

That is,

ek = f̃k − fk

e′k = f̃ ′k − f ′k
...

e(n)k = f̃ (n)k − f (n)k

(41)

Next, consider how previous errors accumulate in the pre-
diction of a function:

f̃k+1 = f̃k + f̃ ′k · ∆t + f̃ ′′k ·
∆t2

2!
+ · · ·+ f̃ (n)k

∆tn

n!

=( fk + ek) + ( f ′k + e′k) · ∆t + ( f ′′k + e′′k ) ·
∆t2

2!

+ · · ·+ ( f (n)k + e(n)k )
∆tn

n!

= fk + f ′k · ∆t + f ′′k
∆t2

2!
+ · · ·+ f (n)k

∆tn

n!

+ ek + e′k · ∆t + e′′k ·
∆t2

2!
+ · · ·+ e(n)k

∆tn

n!︸ ︷︷ ︸
error terms

,

(42)

such that

ek+1 =ek + e′k · ∆t + e′′k ·
∆t2

2!
+ · · ·+ e(n)k

∆tn

n!

+
∆tn+1

(n + 1)!
f (n+1)
k,k+1 ,

(43)

where the last error term is from Lagrange’s remainder formula
and is added at each step. Remember, f (n)k,k+1 is the nth
derivative of a function evaluated at some t ∈ [tk, tk+1].
Similarly,

ek =ek−1 + e′k−1 · ∆t + e′′k−1 ·
∆t2

2!
+ · · ·+ e(n)k−1

∆tn

n!
+

∆tn+1

(n + 1)!
f (n+1)
k−2,k−1

...

e3 =e2 + e′2 · ∆t + e′′2 ·
∆t2

2!
+ · · ·+ e(n)2

∆tn

n!
+

∆tn+1

(n + 1)!
f (n+1)
2,3

e2 =e1 + e′1 · ∆t + e′′1 ·
∆t2

2!
+ · · ·+ e(n)1

∆tn

n!
+

∆tn+1

(n + 1)!
f (n+1)
1,2 ,

(44)
where e1 = f (n+1)

0,1
∆tn+1

(n+1)! ; in the first iteration, we assume the
knowledge of the exact values of all derivatives up to order n,
such that the only numerical error comes from the inaccuracy
of the Taylor series expansion. Without loss of generality, the
functions are assumed to be known exactly at k = 0. That is,
e0 = 0, e′0 = 0, . . . , e(n)0 = 0. Thus, we can express the error
of a function f as

ek =(
k−1

∑
i=1

e′i · ∆t + e′′i ·
∆t2

2!
+ · · ·+ e(n)i

∆tn

n!
+ f (n+1)

i,i+1
∆tn+1

(n)!
)

+ f (n+1)
0,1

∆tn+1

(n + 1)!
(45)

Similarly, for the errors associated with the higher-order terms,
we have

e′k = (
k−1

∑
i=1

e′′i · ∆t + e′′i ·
∆t2

2!
+ · · ·+ e(n)i

∆tn−1

(n− 1)!

+ f (n+1)
i,i+1

∆tn

(n)!
) + f (n+1)

0,1
∆tn

(n)!
...

e(n−1)
k = (

k−1

∑
i=1

e(n)i · ∆t + f (n+1)
i,i+1

∆t(n+1)−(n−1)

((n + 1)− (n− 1))!
)

+ f (n+1)
0,1

∆t(n+1)−(n−1)

((n + 1)− (n− 1))!

e(n)k = (
k−1

∑
i=1

f (n+1)
i,i+1

∆tn+1−n

(n + 1− n)!
) + f (n+1)

0,1
∆tn+1−n

(n + 1− n)!
(46)

In general, the error of the p-th derivative of a function f at
time tk is given by

e(p)
k =

(
k−1

∑
i=1

(( n−p

∑
j=1

e(j)
i

∆tj

j!
)
+ f (n+1)

i,i+1
∆tn+1−p

(n + 1− p)!

))

+ f (n+1)
0,1

∆tn+1−p

(n + 1− p)!
,

(47)

which can be simplified to

e(p)
k =

k−1

∑
i=1

n−p

∑
j=1

e(j)
i

∆tj

j!
+

k−1

∑
i=0

f (n+1)
i,i+1

∆tn+1−p

(n + 1− p)!
, (48)

which is split into the error from the derivative inaccuracies
and the error induced by the Taylor series expansion at each
step. Note that n is the number of derivatives used to propagate
f , where p ∈ Z ∩ [0, n] indicates the order of the derivative
of a function for which the error is calculated (p = 0 refers
to the original function f ).

APPENDIX B
GLOBAL ERROR BOUNDS FOR TAYLOR-BASED KOOPMAN

OPERATOR

First, consider the error in f when no derivative basis
functions are used, that is, n = 0. Then,

ek =
k−1

∑
i=0

f (1)i,i+1
∆t1

1!
(49)

|ek| =|
k−1

∑
i=0

f (1)i,i+1
∆t1

1!
| (50)

|ek| ≤
∆t1

1!

k−1

∑
i=0
| f (1)i,i+1| (51)

To further simplify the analysis, we can assume a maximum
value of f (1), | f (1)i,i+1| ≤ | f

(1)
max| for all i ∈ Z ∩ [0, k − 1].

Then,

|ek| ≤
∆t1

1!

k−1

∑
i=0
| f (1)max| (52)

|ek| ≤k · ∆t · | f (1)max| = T · | f (1)max|, (53)
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where T , k · ∆t is the time window that we are approximat-
ing the function over.

Similarly, we compute the error bound for n = 1 (one
derivative of f in the basis functions). Then,

ek =
k−1

∑
i=1

e′i∆t +
k−1

∑
i=0

f (2)i,i+1
∆t2

2!
, (54)

where e′i is given by (49). Note that f (1) becomes f (2); what
was ei is now e′i and the first-order derivative of e′i is the
second-order derivative of ei. Thus,

ek =
k−1

∑
i=1

( i−1

∑
j=0

f (2)j,j+1
∆t1

1!
)
∆t +

k−1

∑
i=0

f (2)i,i+1
∆t2

2!
(55)

|ek| ≤
k−1

∑
i=1

( i−1

∑
j=0
| f (2)j,j+1|

∆t1

1!
)
∆t +

∆t2

2!

k−1

∑
i=0
| f (2)i,i+1| (56)

To further simplify things, we again use | f (2)i,i+1| ≤ | f
(2)
max| for

all i ∈ Z ∩ [0, k− 1], such that

|ek| ≤
k−1

∑
i=1

( i−1

∑
j=0
| f (2)max|

∆t1

1!
)
∆t +

∆t2

2!

k−1

∑
i=0
| f (2)max| (57)

|ek| ≤
k−1

∑
i=1

i| f (2)max|∆t2 + k · ∆t2

2
| f (2)max| (58)

|ek| ≤| f
(2)
max|∆t2

k−1

∑
i=1

i + k · ∆t2

2
| f (2)max|. (59)

Using the property ∑n
i=0 i = ∑n

i=1 i = n(n+1)
2 ,

|ek| ≤| f
(2)
max|∆t2 (k− 1)k

2
+ k · ∆t2

2
| f (2)max| (60)

|ek| ≤| f
(2)
max|∆t2 k2 − k

2
+ k · ∆t2

2
| f (2)max| (61)

|ek| ≤
(k · ∆t)2

2
| f (2)max| =

T2

2
| f (2)max|. (62)

From n = 0 and n = 1, we notice a pattern in the error
bound expression. Using proof by induction, we next show
that the error bound is given by

|ek| ≤
Tn+1

(n + 1)!
| f (n+1)

max |. (63)

Base Case: n = 0

From (53), it is true that, for n = 0,

|ek| ≤T · | f (1)max|. (64)

Induction Step:
Assuming that the relationship holds for n− 1, we show it

is also true for n. For the case of using basis functions with
derivatives up to order n, the error in the derivative function
of order p = 0 is, using (48), given by

ek =
k−1

∑
i=1

n

∑
j=1

e(j)
i

∆tj

j!
+

k−1

∑
i=0

f (n+1)
i,i+1

∆tn+1

(n + 1)!
. (65)

Taking the absolute value of the error,

|ek| =|
k−1

∑
i=1

n

∑
j=1

e(j)
i

∆tj

j!
+

k−1

∑
i=0

f (n+1)
i,i+1

∆tn+1

(n + 1)!
| (66)

≤
k−1

∑
i=1

n

∑
j=1
|e(j)

i |
∆tj

j!
+

k−1

∑
i=0
| f (n+1)

i,i+1 |
∆tn+1

(n + 1)!
, (67)

where
∆tj

j!
and

∆tn+1

(n + 1)!
are non-negative. Then, we use the

relationship to substitute for the terms |e(j)
i |. Note that |e(1)i |

is equivalent to |ek| using n − 1 derivatives. Similarly, each
term |e(j)

i | for j ∈ Z ∩ [1, n] is equivalent to |ek| for n− j
derivatives. Thus, we use the relationship that holds for up to
n− 1 derivatives, such that

|ek| ≤
k−1

∑
i=1

n

∑
j=1
| (i∆t)n+1−j

(n + 1− j)!
f (n+1)
max |

∆tj

j!

+
k−1

∑
i=0
| f (n+1)

i,i+1 |
∆tn+1

(n + 1)!

=| f (n+1)
max |∆tn+1

k−1

∑
i=1

n

∑
j=1

in+1−j

(n + 1− j)!j!

+ | f (n+1)
max |

k−1

∑
i=0

∆tn+1

(n + 1)!
,

(68)

where | f (n+1)
max | ≥ | f

(n+1)
i,i+1 |. Next, we use j′ = n + 1− j to

simplify the inner sum term
n

∑
j=1

in+1−j

(n + 1− j)!j!
=

1

∑
j′=n

ij′

(j′)!(n + 1− j′)!
, (69)

which can be rewritten for j and the summation order can also
be reversed such that

|ek| ≤| f
(n+1)
max |∆tn+1

k−1

∑
i=1

n

∑
j=1

ij

(n + 1− j)!j!

+ | f (n+1)
max |

k−1

∑
i=0

∆tn+1

(n + 1)!
.

(70)

We can simplify

| f (n+1)
max |

k−1

∑
i=0

∆tn+1

(n + 1)!
= k| f (n+1)

max |
∆tn+1

(n + 1)!
, (71)

such that

|ek| ≤| f
(n+1)
max |∆tn+1

k−1

∑
i=1

n

∑
j=1

ij

(n + 1− j)!j!

+ k| f (n+1)
max |

∆tn+1

(n + 1)!

=

[
k−1

∑
i=1

n

∑
j=1

ij

(n + 1− j)!j!
+

k
(n + 1)!

]
| f (n+1)

max |∆tn+1.

(72)
Using the binomial coefficient

a!
(a− b)!b!

=

(
a
b

)
, (73)
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to rewrite the term (n + 1− j)!j!,

|ek| ≤
[

k−1

∑
i=1

n

∑
j=1

ij

(n + 1)!

(
n + 1

j

)
+

k
(n + 1)!

]
| f (n+1)

max |∆tn+1.

(74)
Switching the summation order,

|ek| ≤
[

n

∑
j=1

(
n + 1

j

) k−1

∑
i=1

ij + k

]
| f (n+1)

max |
∆tn+1

(n + 1)!
. (75)

To use Pascal’s identity [86]:
k

∑
p=0

(
k + 1

p

) n

∑
j=1

jp = (n + 1)k+1 − 1, (76)

we rewrite the error bound as

|ek| ≤
[

n

∑
j=0

(
n + 1

j

) k−1

∑
i=1

ij −
(

n + 1
0

) k−1

∑
i=1

i0 + k

]

| f (n+1)
max |

∆tn+1

(n + 1)!
,

(77)

such that

|ek| ≤
[
(kn+1 − 1)− (k− 1) + k

]
| f (n+1)

max |
∆tn+1

(n + 1)!

=kn+1| f (n+1)
max |

∆tn+1

(n + 1)!

=
Tn+1

(n + 1)!
| f (n+1)

max |,

(78)

where T = k · ∆t. Therefore,

|ek| ≤
Tn+1

(n + 1)!
| f (n+1)

max | for all n ∈ Z≥0. (79)

A. Incremental Update of Koopman Operator

Consider P measurements used to last update the Koop-
man operator and ∆P new measurements. We incrementally
compute a Koopman operator using all Ptotal = P + ∆P
measurements as follows. The Koopman operator is computed
using (5), which we split the expression into past and new
measurements, such that

Anew =
1

Ptotal

Ptotal−1

∑
k=0

Ψ(sk+1, uk+1)Ψ(sk, uk)
T

=
1

Ptotal
(

P−1

∑
k=0

Ψ(sk+1, uk+1)Ψ(sk, uk)
T

+
Ptotal−1

∑
k=P

Ψ(sk+1, uk+1)Ψ(sk, uk)
T)

(80)

and, using

A =
1
P

P−1

∑
k=0

Ψ(sk+1, uk+1)Ψ(sk, uk)
T , (81)

we can rewrite Anew as

Anew =
1

Ptotal
(PA+

Ptotal−1

∑
k=P

Ψ(sk+1, uk+1)Ψ(sk, uk)
T .

(82)

Similarly,

Gnew =
1

Ptotal
(GP +

Ptotal−1

∑
k=P

Ψ(sk, uk)Ψ(sk, uk)
T). (83)
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Hawkes, “Modeling, reduction, and control of a helically actuated
inertial soft robotic arm via the Koopman operator,” arXiv preprint
arXiv:2011.07939, 2020.

[82] H. Arbabi and I. Mezic, “Computation of transient Koopman spectrum
using hankel-dynamic mode decompoisition,” in APS Division of Fluid
Dynamics Meeting Abstracts, 2017, pp. G1–009.

[83] H. Eivazi, L. Guastoni, P. Schlatter, H. Azizpour, and R. Vinuesa, “Re-
current neural networks and Koopman-based frameworks for temporal
predictions in turbulence,” arXiv preprint arXiv:2005.02762, 2020.

[84] M. Kamb, E. Kaiser, S. L. Brunton, and J. N. Kutz, “Time-delay
observables for Koopman: Theory and applications,” SIAM Journal on
Applied Dynamical Systems, vol. 19, no. 2, pp. 886–917, 2020.

[85] M. Korda, M. Putinar, and I. Mezić, “Data-driven spectral analysis of
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