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Multirate Sampled-Data Output Feedback Control
With Application to Smart Material Actuated Systems
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Abstract—We consider multirate sampled-data output feedback
control of a class of nonlinear systems using high-gain observers
where the measurement sampling rate is made faster than the
control update rate. We show that, in the presence of bounded
disturbances, given a sampled data state feedback controller that
achieves stabilization with respect to a closed set, the multirate
output feedback controller recovers stabilization of the same set
provided the measurement sampling rate is sufficiently fast. As
an application we consider the control of smart material actuated
systems. This scheme combines a discrete-time high-gain ob-
server with a hysteresis inversion controller where the hysteresis
is modeled using a Preisach operator. Experimental results for
the control of a shape memory alloy actuated rotary joint are
provided.

Index Terms—Hysteresis, multirate, nonlinear observers.

I. INTRODUCTION

T HE study of nonlinear sampled-data systems has received
significant attention due to the fact that modern control

systems are almost always implemented digitally [4]. See [5],
[18], [25], [26] and the references therein for efforts in this
direction. There are several approaches to the design of dig-
ital controllers. One main approach is the design of a contin-
uous-time controller based on a continuous-time plant model
followed by controller discretization. For this design method,
stability of the continuous-time plant is typically achieved by
choosing a sufficiently small sampling period [31]. Results
on sampled-data output feedback control and digital observers
for nonlinear systems can be found in [7], [15], [18], [20], [23],
and [29]. In [29], multirate design of a sliding-mode observer
is considered where the observer processing rate is higher than
the control update rate. In [27], multirate sampled-data stabi-
lization in the presence of time delay was studied for the case
when the control rate is made faster than the measurement rate.
In [7], a continuous-time state feedback controller is discretized
and implemented using a discretized high-gain observer. It was
shown that the output feedback controller stabilizes the origin
of the closed-loop system for sufficiently small sampling period
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Fig. 1. Diagram of the multirate control scheme showing a sampled-data (SD)
controller and discrete-time high-gain observer (DHGO).

and recovers the performance under continuous-time state feed-
back as the sampling period is decreased. For the discretized
high-gain observer more accurate estimation of the system states
is achieved by faster sampling of the output.

In this paper we seek to study the stability of a system under
sampled-data output feedback, where the control rate is fixed by
the sampled-data state feedback design, while the output sam-
pling rate is faster. The multirate sampled-data output feedback
control scheme is illustrated in Fig. 1 for the class of nonlinear
systems under consideration (see below). Here we allow two
measured outputs and , of which will be the driving input
of the high-gain observer. We sample the output with sam-
pling period . We apply the control signal at the same rate
through a zero-order hold (ZOH) where the control is held con-
stant in between sampling points. The output is sampled at a
faster rate where we use the period . The central contri-
bution of this paper is the demonstration of closed-loop stability
for the output feedback system when the measurement sampling
rate is made faster than the control update rate. In addition, the
inclusion of exogenous signals, which may represent bounded
disturbances or reference signals, distinguishes this paper from
the results of [7]. Due to the presence of these exogenous signals
we consider stabilization with respect to a closed set that con-
tains the origin of the closed-loop system. We provide analyt-
ical results by showing that with a sampled-data state feedback
controller design that achieves stabilization with respect to ,
the closed-loop trajectories under the multirate output feedback
controller will come arbitrarily close to . Further, we show
that if the closed-loop system under sampled-data state feedback
is exponentially stable, then the trajectories of the closed-loop
multirate output feedback system will exponentially converge
to the origin.

One area of application that may benefit from a multirate con-
trol scheme is the case of systems that employ computationally
demanding controllers where the control update rate is dictated
by the state feedback design. As an example we consider the
control of smart material actuated systems that use hysteresis
inversion algorithms [30]. In addition to hysteresis, difficulty in
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measuring system states in smart material applications points to
output feedback control designs [10].

This paper is organized as follows. In Section II we present
the class of nonlinear systems under consideration and derive
the closed-loop system under multirate sampled-data output
feedback. Section III provides the analytical results where we
study the closed-loop stability of the multirate output feedback
controller in the presence of bounded disturbances, given a
sampled-data state feedback controller that uniformly globally
asymptotically stabilizes a set containing the origin. Section IV
applies the multirate control scheme to the control of smart
material actuated systems and Section V provides some experi-
mental results based on multirate output feedback control of a
shape memory alloy actuated rotary joint.

II. CONTROL DESIGN

A. Class of Systems

Consider the nonlinear system

(1)

(2)

(3)

(4)

where and are the states, is the input,
and are the measured outputs, and

is vector of exogenous signals. The matrix , the
matrix , and the matrix are given by

...
...

...

Assumption 1:
1) is continuously differentiable, and are

bounded, and takes values in the compact set .
2) The functions : , :

, and : are locally Lip-
schitz in their arguments, uniformly in , over the domain
of interest.

One source for the model (1)–(4) is the normal form of input-
output linearizable systems, as discussed in [17]. In addition to
the normal form, this class of systems also arises in mechanical
and electromechanical systems where the position is measured,
but its derivatives, the velocity and acceleration, are not mea-
sured. The high-gain observer takes the form

(5)

where is the estimate of the state and is a nominal model
of . The gain matrix is given by

where is a small positive parameter and the roots of
have negative real parts.

Assumption 2: The function is locally Lipschitz in its ar-
guments, uniformly in , over the domain of interest, and glob-
ally bounded in .

The global boundedness in can always be achieved by sat-
uration outside a compact set of interest. It is required to over-
come peaking in the transient behavior of the high-gain observer
[11].

To study the closed-loop system under multirate output feed-
back control, we need a description of the system dynamics in
discrete-time. Rewrite (1) and (2) as

(6)

where and

The control is applied to the system through a zero-order hold,
thus it is held constant in between sampling points. In what fol-
lows, we will allow the discrete-time control to be corrupted by
a bounded disturbance that takes values in the known com-
pact set . In Section IV, when we consider applications
to smart material systems this disturbance will result from hys-
teresis inversion error. For now, the control will be taken as
the synthesized control plus a general disturbance

where the discrete-time index denotes the sampling in-
stant . The solution of (6) over the sampling period

is given by

(7)

By adding and subtracting terms to the integral and using the
Lipschitz property of the function we can arrive at

where and are Lipschitz constants of with respect and
, respectively, for all and all belonging to the compact

set that will be determined shortly. From Assumption 1 this
simplifies to

for some positive constant . Applying the Gronwall-Bellman
lemma to the above equation results in the inequality

(8)

Based on the foregoing, we may describe the dynamics of the
system (6) at the sampling points by the following discrete-time
equation:
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(9)

where the integral term in (7), with dependence on the exoge-
nous signal , is captured by the time-varying function . Fur-
thermore, is bounded uniformly in , for sufficiently
small, on compact sets of . This model and (8) describe the
discrete-time plant dynamics and the intersampling behavior,
respectively. We consider a discrete-time dynamic controller
based on single-rate state feedback

(10)

(11)

where .
Assumption 3:

1) The functions and are locally Lipschitz in their argu-
ments, uniformly in , over the domain of interest.

2) and are globally bounded functions of .
To simplify the presentation let , where
and . Next augment the discrete-time system (9)
with (10)

Using (11) the closed-loop system under slow sampled-data
state feedback can be written as

(12)

(13)

Due to the presence of the bounded error and the exogenous
signal , we assume the existence of a single-rate sampled-data
state feedback controller that renders a closed set containing the
origin uniformly globally asymptotically stable (UGAS). We
work with the notion of UGAS found in [16]. Let be a closed
subset of that contains the origin. The size of depends on
the size of the signals and . The distance of a point
to the set is given by

(14)

With this definition the closed-loop state feedback system is
UGAS with respect to if and only if there exists a class
function such that the solution of (12)–(13), , which de-
pends on the initial state , , and , satisfies

for all , , , and .
We state our assumptions on the closed-loop single-rate state
feedback system.

Assumption 4: The closed-loop sampled-data state feedback
system (12)–(13) is UGAS with respect to the closed set and
there exist a function (dependent on ), class functions

and (independent of ), a continuous positive definite
function (dependent on ), and a constant such that
the following inequalities hold:

(15)

(16)

for all .
Remark 1: We note that for UGAS discrete-time systems

with disturbances, Theorem 1 of [16] guarantees the existence
of a smooth Lyapunov function that depends on and
satisfies (15)–(16). Assumption 4 is a bit stronger in that we re-
quire the functions and to be independent of . Further,
due to the difficulty in computing exact discrete-time models for
nonlinear systems we note that the function in (9) is typically
unknown. Assumption 4 may be satisfied by applying the results
of [24], [25], and [26]. In [24] sufficient conditions are given to
show stability of an exact discrete-time plant model based on
a controller that stabilizes an approximate discrete-time non-
linear model using the notion of Lyapunov semiglobal practical
input-to-state stability (SP-ISS). Under SP-ISS, the class
functions that bound the Lyapunov function are allowed to be
independent of the sample time.

As mentioned in the introduction, in the design of discrete-
time controllers, boundedness of the trajectories of the contin-
uous-time plant is typically provided by choosing the sampling
period small enough. This can be demonstrated by consid-
ering the Lyapunov function . We note that for any

the sets

(17)

are compact subsets of . From (15)–(16) we have that any
that starts in will remain in for all , therefore

are bounded. Using this fact, the Lipschitz continuity
property of and , and the boundedness of and it follows
that is bounded. Let be a positive constant independent
of such that for all . Further, let be a
Lipschitz constant of with respect to over the compact set

. The sampling period can be chosen small
enough that will always remain in . Indeed, for

and we can use (8) to show that
where as . Thus, in the sampled-data

state feedback design, can be chosen so that will be
bounded.

The discretized high-gain observer is implemented by first
scaling the observer states according to where

. This yields

(18)

where and
. With this scaling, the right-hand side

of (18) is of the order , compared with in (5). Equation
(18) is discretized using the forward difference method. For the
dynamics under fast sampling we use the index to indicate
the sampling points that are equally spaced with period . We
obtain

(19)

(20)

where , , and . We
point out that , , and evolve in the slow sampling
time and are constant for all where .
The dependence of on in (18) and in (19) allows for
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the possibility that components of these exogenous signals may
be measurable or available online, as it is the case with refer-
ence signals. If they are not available, as in the case with unmea-
surable disturbances, we may simply omit them in the nominal
model . As in [7] we take where is a positive
constant chosen such that the matrix has all its eigenvalues
inside the unit circle. We choose such that the ratio of
the slow and fast sample rates is a positive integer. The observer
estimates are downsampled for use in the output feedback con-
troller. Letting we denote the estimates under the
slow sampling period by . This gives the fol-
lowing output feedback controller:

(21)

(22)

The idea of globally bounding the control outside a compact
region of interest to overcome the peaking phenomenon was
studied in [11]. As discussed in [18], peaking in the initial time
instant can be overcome by setting the initial control to some
arbitrary values and then using the observer estimates after they
have recovered from peaking. We take a similar approach here
by using the control

for
for

(23)

Because of the flexibility of the multirate scheme, we can choose
the output sampling rate sufficiently fast so that the estimates
recover from peaking during the period . In this case we
only have to set the control to some initial value .
Furthermore, the states of the plant will not grow by more
than from its initial condition during this period. How-
ever, the control still needs to be globally bounded to prevent
any peaking that occurs after the initial time. Still, the control
scheme (23) prevents controller saturation during the peaking
period. We will proceed with an arbitrary . In the forthcoming
analysis we need a model that describes the observer error dy-
namics. The derivation of such a model is similar to [7] and
is omitted here due to space limitations. It uses the relations

and the
scaled estimation error

(24)

where satisfies the equation
and the term is used to eliminate terms

in the estimation error that appear with negative powers of .
Rearranging (24) we have the state estimate given by

(25)

where and are
analytic functions of . It can be shown that satisfies the
equation

(26)

where has all its eigenvalues inside the unit circle and ,
with dependence on , is a time-varying function that is locally
Lipschitz in its arguments, uniformly bounded in , for suffi-
ciently small, and globally bounded in . Also, the control

is taken from (23). Together with (26) the closed-loop system
under multirate output feedback control is given by

(27)

(28)

(29)

where (29) describes the state estimates under the slow sample
period with . Notice that by setting and

in (29) we have and thus (28) becomes identical
to the slow sampled-data state feedback system (12)–(13).

III. MAIN RESULTS

In this section we present stability results for the closed-loop
system under multirate output feedback control. Our first result
shows that the trajectories of the closed-loop system under mul-
tirate output feedback are bounded and ultimately bounded. The
proof is given in Appendix I.

Theorem 1: Consider the closed-loop system under multirate
output feedback (26)–(29). Let Assumptions 1–4 hold and let

and be any compact subsets of and , respectively.
Then, for trajectories starting in the following
holds

• There exist such that for all , and
are bounded for all and all .

• Given any , there exists , , and ,
such that for every , we have

(30)

• Given designed so that under sampled-data
state feedback (10)–(11) is bounded in of (17) then, for
all the continuous-time trajectories
under multirate output feedback are bounded for all
and satisfy

(31)

where as .
Remark 2: The above result covers the regulation and

tracking problems in the presence of bounded disturbances. In
Assumption 1 we assume that the derivative of the exogenous
signal is bounded as well. This assumption is satisfied for
reference trajectories that have been appropriately smoothed by
filtering. Otherwise, it may be possible to relax this assumption
by applying the results of [20]. We note that in the tracking
problem formulation, the state represents the tracking error.
Stabilization of the origin is a special case when the set is the
origin. In this case Theorem 1 shows boundedness and ultimate
boundedness of the trajectories of the closed-loop multirate
output feedback system.

Remark 3: Comparison of Theorem 1 with the single-rate re-
sults of [7] shows that in addition to the multirate output feed-
back design scheme we have included bounded disturbances
and exogenous signals. This analysis is useful when considering
tracking problems and applications where plant nonlinearities
cannot be exactly canceled.

Under stronger conditions on the closed-loop system we may
show that the trajectories converge to the origin. With
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and then and the closed-loop system under
multirate output feedback can be written as

(32)

(33)

(34)

(35)

where the function is uniformly bounded in , for suffi-
ciently small, and the control scheme is taken from (23) with

. The single-rate state feedback
system for this case can be expressed as

(36)

(37)

where the control . Under the as-
sumption that the functions , , and are continuously differ-
entiable and the origin of the single-rate state feedback system
(36)–(37) is locally exponentially stable we can show that the
trajectories of the multirate output feedback system (32)–(35)
converge to the origin exponentially fast. We state this result in
the following theorem; the proof is given in Appendix II.

Theorem 2: Consider the closed-loop system under mul-
tirate output feedback (32)–(35) and the control (23) with

. Suppose the origin
of (36)–(37) is exponentially stable and the functions ,

, and are continuously differentiable in a
neighborhood of the origin. Let Assumptions 1–3 hold and let

and be any compact subsets of and , respectively.
Then, for trajectories starting in there exists

such that for all the trajectories of the
discrete-time system (32)–(35) converge to the origin exponen-
tially fast in the slow sample time and the continuous-time
trajectory decays to zero, exponentially fast, as .

IV. APPLICATION TO SMART MATERIAL SYSTEMS

A single-rate output feedback control scheme using high-gain
observers may require elevated sampling rates for the entire con-
troller, control and estimation. The multirate scheme may have
computational advantage by processing the control at a rate de-
signed under state feedback and only increasing the sampling
rate of the estimation. Thus, from a practical point of view the
multirate scheme may be more cost effective. This may prove
useful in applications that require computationally demanding
controllers such as model-based control. Furthermore, the sta-
bility results in the presence of bounded disturbances of the pre-
vious section may be useful in designs where the controller con-
tains an inexact plant model that is used to cancel plant non-
linearities. This brings us to the current section where we con-
sider an application of the multirate scheme to the control of
smart material actuated systems. The actuator model we use is
shown in the dotted box of Fig. 2. It is comprised of a hysteresis
operator, denoted by , in cascade with linear dynamics .
Smart material actuator models of this form are discussed in
[6] and [32]. The input to the hysteresis operator is the signal

Fig. 2. Diagram of the hysteresis inversion compensation. The smart material
actuator model appears in the dotted box.

Fig. 3. Delayed relay.

that is generated by the controller. The output of the actu-
ator, namely, is the input to the plant we wish to control.
We allow this actuator to drive a nonlinear plant of the form
(1)–(4). The control scheme will employ a sampled-data con-
troller followed by an inversion operator to cancel the ef-
fect of the hysteresis as shown in Fig. 2. This inversion is subject
to modeling error and the sampled-data controller is designed
to stabilize the system dynamics in the presence of this error.
The control update rate will be fixed by the sampled-data
state feedback design using hysteresis inversion. We model the
hysteresis using a Preisach operator, which is briefly reviewed
here. A more detailed discussion is given in [22] and [33]. The
Preisach operator is comprised of delayed relay elements
called hysterons. The switching thresholds of these elements are
denoted by as shown in Fig. 3. The output of the hys-
teron is described by , , where
is a continuous function on and is an ini-
tial configuration. The Preisach operator can be described as
a weighted superposition of all hysterons. Define the Preisach

plane as . Each pair is
identified with the hysteron . The output of the Preisach
operator is given by

(38)

where the weighting is called the Preisach density and is an
initial configuration of all hysterons. It is assumed that
and if or for some . Consider

the finite triangular area .
At any time , we can divide into two regions, and ,
where ( , resp.) consists of points such that
at time is ( , resp.). The boundary between and
is called the memory curve, which characterizes the memory of
the Preisach operator. The set of all memory curves is denoted
by and , corresponding to , is called the initial memory
curve. In this paper we will make use of the following properties
of the Preisach operator.

Theorem 3: [33]: Let be continuous on and .
1) (Rate Independence) If is an increasing

continuous function, , and , then
.

2) (Piecewise Monotonicity) If is either nondecreasing
or nonincreasing on some interval in , then so is

.
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The hysteresis nonlinearity can be identified by discretizing
the input range into uniform intervals, which generates a dis-
cretization grid on the Preisach plane. The Preisach operator
can then be approximated by assuming that inside each cell of
the grid, the Preisach density function is constant. This piece-
wise constant approximation to an unknown density function
can be found by identifying the weighting masses for each cell
using a constrained least squares algorithm and then distributing
each mass uniformly over the corresponding cell [30]. We con-
sider a discretization of level of the Preisach operator. Also,
let the Preisach density function be nonnegative and constant
within each cell. Given an initial memory curve and a de-
sired value , the inversion problem is to find a value such
that . This is done by applying the algorithm given
in [30]. The inversion error of the Preisach operator can be quan-
tified in terms of the level discretization approximation and the
error in identifying the weighting masses. Indeed, let

(39)

(40)

as shown in Fig. 2. The control signal is applied to the system
through a zero-order hold. Also, due to the rate independence
of the Preisach operator, will be constant in between sam-
pling points. We denote the signal at the sampling point by

. The inversion error is defined by

(41)

The signal is designed under sampled-data state feedback
and takes the form of (10)–(11). Given a bounded sequence
it can be shown ([30]) that the inversion error satisfies a bound
of the form

(42)

for some positive constant , where is the error in identifi-
cation of the weighting masses and is the saturation of the
hysteresis. Saturation is common in smart materials. For ex-
ample, magnetostrictives exhibit magnetization saturation and
shape memory alloys exhibit strain saturation. Equation (42)
shows that the inversion error decreases with decreasing identi-
fication error and with ever-finer discretization grids (increasing
the level ). Based on this quantification of the upper bound on
the inversion error, we have that belongs to a known com-
pact set which we denote . Thus, in the presence of the
bounded hysteresis inversion error we consider stabilization
of a closed set that contains the origin and whose size is deter-
mined by . Now, consider the plant (1)–(4) as the system that
is driven by the smart material actuator. We can absorb the ac-
tuator dynamics into the internal dynamic (1). Then using
(39), (40), and (41) we obtain the following equivalent system
that is subject to hysteresis inversion error:

(43)

(44)

(45)

(46)

Thus, with a single-rate partial state feedback control , de-
signed with sample period , that renders a closed set con-
taining the origin uniformly globally asymptotically stable we

Fig. 4. Robotic joint actuated by two SMA wires.

Fig. 5. Picture of the SMA actuated robotic joint setup.

can design a discrete-time high gain observer (19)–(20) with fast
sampling period to achieve closed-loop stability of the
output feedback system. Indeed, this output feedback control
takes the form (21)–(22). Next, we provide experimental results
to illustrate the idea.

V. EXPERIMENTAL RESULTS

In this section, we apply multirate output feedback control
to a shape memory alloy (SMA) actuated robotic joint. SMAs
are metallic materials that exhibit coupling between thermal and
mechanical energy domains. The shape memory effect (SME)
results from a transition between two structural phases that is
hysteretic in nature. For more detailed information on the SME
consult [9]. The name shape memory results from the mate-
rial’s ability to “remember” an initial shape. For example, SMA
wire can be stretched and upon heating the wire, it will contract
back to its initial shape. Thus, this thermal/mechanical coupling
has motivated the use of SMA as an actuator. Control of shape
memory alloy actuated systems can be found in [3], [8], [10],
and [14]. Also, control and modeling of hysteresis in SMA has
been considered in [12], [13], [21], and [35]. Fig. 4 shows a di-
agram of the rotary joint. The picture in Fig. 5 illustrates the
experimental setup which is similar to the setup used in [12].
This two-wire configuration is referred to as a differential-type
actuator (see [12]–[14]). The rotating joint consists of a 0.5 inch
diameter shaft and two Nitinol wires 10 inches in length and
0.008 inches in diameter. These wires are stretched by 2% of
their length. Alternate heating and cooling of the two wires pro-
vides clockwise (CW) and counterclockwise (CCW) rotation.
With this configuration the actuator can achieve up to 60 de-
grees rotation in each direction. Bipolar current is supplied to
the actuator where positive current gives CW rotation by heating
one wire and negative current gives CCW rotation by heating
the other. The joint rotation angle is obtained through an 8192
counts/rev incremental encoder.

For these experiments, we use a model similar to the one
shown in Fig. 2. A Preisach operator is used to capture the non-
linearity between the wire temperature and the output angle.
Further, we use the following static relationship between the ap-
plied current and the wire temperature

(47)
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Fig. 6. Measured output, current input, and identified hysteresis.

Fig. 7. Identified Preisach weighting masses.

where is the wire temperature, is the ambient tem-
perature, and and are values obtained
from the wire’s material properties [1]. Heat dynamic models
for SMA have been considered in the literature (e.g., [10] and
[35]), but the relation (47) proved suitable for testing the multi-
rate scheme. As mentioned above, identification of the Preisach
weights was conducted using a constrained least squares algo-
rithm. The measured rotation angle is shown in Fig. 6 (top left);
this angle was generated by the supplied current (top right). The
identified hysteresis nonlinearity is also illustrated (bottom left).
Using the equation we can construct a
Preisach operator that maps the temperature to the measured
angle. This map is shown in the bottom right plot of Fig. 6. Note
that the sign of the temperature indicates which wire is being
heated. The identified Preisach weighting masses are shown in
Fig. 7. The following second order transfer function, identified
from the joint’s frequency response, captures the dynamics:

To close the loop, we use PID as our sampled-data controller
in cascade with the hysteresis inversion operator as in Fig. 2.
The computed current applied to the ZOH is given by

where and is the PID

Fig. 8. Angle regulation experimental results for SR (left) and MR (right).

Fig. 9. Tracking experimental results for SR (left) and MR (right).

control. The term is chosen proportional to and pro-
vides an additional degree of freedom in the control design.

The control current is saturated outside amps.
To test the multirate controller, we use the linear discrete-time
high-gain observer, (19)–(20) with , to estimate the an-
gular velocity of the rotary joint based on the measured rotation
angle. The observer parameters are taken to be: , ,
and , where . Fig. 8 shows the results of a reg-
ulation experiment where the controller attempts to rotate the
joint to an angle of and maintain it there. The plot
compares the response of a single-rate controller with a sam-
pling period of 0.05 s against the response of the multirate con-
troller where the measurement period was . The
PID gains are , , for the proportional,
integral, and derivative terms, respectively and . As
can be clearly seen, the single-rate scheme was unable to sta-
bilize the system under this large sampling period. The mul-
tirate controller, with the more accurate state estimation, was
able to achieve stabilization. Fig. 9 shows a similar result for
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Fig. 10. Comparison of Hysteresis inversion (left) with PID (right).

the tracking problem, where the angular reference is a sinusoid
of 0.4 rad/s. For this experiment , , ,
and . The plot of the single-rate case exhibits a
small oscillation in the response. This behavior can be seen in
the current control signal, where it oscillates between positive
and negative. Such a control response can prematurely fatigue
the SMA wire. The multirate case shows a more satisfactory re-
sponse. We note that, for the single-rate case, stability can be
achieved by faster sampling, but these results demonstrate the
added stability for the multirate case with the chosen control
sampling rate. Finally, we compare the PID with hysteresis in-
version controller to PID without inversion. In both cases we use
a single-rate controller with sampling period of 0.01 s and the
PID gains were tuned to try and minimize the tracking error at
this sampling period. Fig. 10 shows that the controller with hys-
teresis inversion achieves stable tracking with , ,

, and . For the PID case, the response at
this sampling period is oscillatory and the control signal contin-
uously saturates. The example shown in the figure corresponds
to , , . Stabilization is achieved for the
PID case with faster sampling, but this comes at the expense of
larger control effort than the hysteresis inversion case. Indeed,
using a sampling rate of , experiments were con-
ducted where the PID gains were tuned to give a similar tracking
performance for the two controllers. Under the PID with hys-
teresis inversion scheme, a 27% reduction in the R.M.S of the
control signal was found when compared to the PID without in-
version.

VI. CONCLUSION

We have studied multirate sampled-data output feedback con-
trol using a discrete-time high-gain observer. Given a sampled-
data state feedback controller that, in the presence of bounded
disturbances, globally asymptotically stabilizes a set containing
the origin, the multirate observer recovers the same set as .
Moreover, stability is obtained with the same control update rate

that was chosen under the state feedback design with a suffi-
ciently fast output sampling rate. This analysis builds on the re-
sults of [7] by considering bounded exogenous signals, which
were not considered in [7], and allowing the flexibility to sepa-
rate the control and measurement sampling rates. In the absence
of disturbances we were able to show exponential convergence
to the origin for the multirate output feedback system given an
exponentially stabilizing single-rate state feedback control.

As an application we have considered smart material actuated
systems where the closed-loop control is based on hysteresis in-
version. Experimental results of a shape memory alloy actuated
rotary joint demonstrate the added degree of stability of the mul-
tirate scheme over a single-rate scheme under sampling period

. We have also seen that PID control with hysteresis inversion
can provide added stability with lower control effort than with a
PID controller alone. For the robotic joint, we have used an em-
pirically-based model similar in structure to Fig. 2. This model
proved adequate for testing the multirate output feedback con-
trol scheme with hysteresis inversion. The results demonstrate
good control performance for the regulation and tracking prob-
lems considered.

In addition to the experimental results presented, simulation
studies were conducted to examine the effect of peaking on the
multirate scheme. In [2] a numerical example highlights some
of the stability properties of the multirate output feedback con-
troller and its ability to handle peaking in the estimates. There
it was seen that the multirate scheme is less sensitive to the
peaking phenomenon then the single-rate scheme. That is, in
the presence of an impulsive-like disturbance that may occur at
any time, the control signal did not saturate as easily under the
multirate scheme compared to the single-rate scheme.

APPENDIX I
PROOF OF THEOREM 1

First, consider the closed-loop system under sampled-data
state feedback (12)–(13). From Assumption 4 and the dis-
crete-time converse Lyapunov theorem of [16] there is a smooth
Lyapunov function that depends on and satisfies
(15)–(16). Let denote the compact set .
We choose so that is in the
interior of . We take as the Lyapunov
function for the observer error dynamics where is positive
definite and satisfies . Also, from ([28,
Ch. 23, Th. 23.7]) we have that . Consider the sets

, where
and is a compact subset of for any . We

take so that
(defined in 17) and we show that for starting in ,

remains in . Due to the boundedness of and in
we have and

for all where
and are positive constants independent of . Using

(7) it is straightforward to show that the exact discrete-time
model for (6) is locally Lipschitz in with Lipschitz constant

. Further, letting be the Lipschitz constant of with
respect to , the exact discrete-time model for (6) is locally
Lipschitz in with Lipschitz constant . Using this fact
and Assumption 3 we conclude that is locally Lipschitz in
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. Considering (11), (23), and (29) along with the
Lipschitz continuity of and we have that

for all and for some positive constants and
dependent on , but independent of . From the foregoing,

it can be shown that in the set

(48)

for some positive constant that depends on . We can
choose small enough that
cannot leave . This can be seen from

for ,
. Likewise, for we

have for

where

Thus, is positively invariant. For the observer error dynamics
(26), we can arrive at

(49)

where and . For
, we obtain

It can be seen that for large enough, .
Therefore, is positively invariant.

With the initial conditions we have
that , where depends on and . Since
is in the interior of , is in . From (13), as long as

, then

(50)

for some positive constant dependent on . Hence,
remains in for for some positive constant .
With and , we can rewrite (49)
as

Then for , we can choose large enough that
for .

Hence

(51)

And enters for To
show boundedness of trajectories, let

(52)

and note that for all . From (50),
for all . We can select such that for

all , . This can be seen by
using (52) to obtain
where the left-hand side tends to zero as . This ensures
that enters the set before leaves

. Thus, is bounded for all . The trajectory
enters the set during the time period
(where the notation denotes the largest integer greater than
or equal to ) and remains there for all . Further-
more, it is bounded by (51) prior to entering this set. Now, since

which is a subset of we can apply (8) and (23) to
show that all closed-loop trajectories are bounded by choosing

. From the boundedness of , , and
and using (8), it can be seen that there exist a where

as satisfying (31).
Ultimate boundedness follows by an argument similar to [7].

Indeed since , then given any
we can find dependent on such that for all

and all . Now, consider the compact set
and let

and note that as . We have that the set
is compact and

. Rewrite (48) as

Therefore, with , we have that

whenever . Further,
. Thus there exists a finite time

such that enters the set . Now, con-
sider the time . For and

we obtain
. Therefore, remains

in the set . On the other hand, for
and

we have .
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Hence, may leave but remains
in a set defined by where as

. Now, for in the set ,
we have . Therefore

. Thus,
, . In other words, for

belonging to the set at time , then
must be in the set for all .

From (15) for all . Using
this we can find an dependent on such that
for all and all for a finite time . From the
foregoing, we obtain (30) where .

APPENDIX II
PROOF OF THEOREM 2

We study the closed-loop system in the slow sample time
and show that the discrete-time trajectories converge exponen-
tially to the origin. To do so, we will need a description of (34)
in the slow sampling time . We note that the ratio of the sam-
pling rates is taken to be a positive integer. Also, we
will work locally, so consider a ball of radius
around the origin . The results of the Theorem
1 guarantee that for small enough, the trajectories will enter
this set in finite time. Furthermore, the functions and

are continuously differentiable in a neighborhood of the
origin. We begin by studying (34) over one slow time period

. Consider the discrete-time state (33) and the estima-
tion error dynamics in the fast sampling time

��������������������� �� �������
�

��������� ����� �� � (53)

�������	� �����
�������� ����� �� ����� ����� 
�� (54)

Performing the accumulation of (54) over the interval
it is not clear that the right-hand-side

converges to an . To show this, we will use a change
of variables. First, we note that (53)–(54) has a two-time
scale behavior. For (54), we have the quasi-steady-state re-
lation .
We seek a solution to the above equation in the form

where is a continuously
differentiable function of its arguments and .
This equation describes an -dimensional manifold
in the -dimensional state space of and
is called the slow manifold of (53) and (54). Evaluating

at and substituting the
difference (53) and (54) results in the following manifold
condition:

(55)

Setting we have

(56)

Because , is nonsingular. Therefore,
. Using the implicit function theorem ([34])

we have that satisfies (55) for sufficiently small.

Furthermore, due to (56) this function is . Consider now
the change of variables

(57)

which along with (55) results in

(58)

We rewrite the right hand side as

(59)

where . Therefore, is an
equilibrium point of the transformed system. The function is
continuously differentiable with convex domain . From
([17, ex. 3.23, pg. 108]) we have the following relation:

Define the right-hand side of this equation as

Due to the fact that and are bounded and belong to the set
, we can treat the equation

(60)

as a time-varying linear system. Let
. Since for

some positive constant , it follows from ([28, Th. 24.7]) that,
for sufficiently small, the state transition matrix, ,
of (60) satisfies where
and is a positive constant. In addition, it can be shown that
there exist such that the following properties are satisfied
uniformly in for all : , , and

where , , and are positive constants.
Now let . It can be shown (by
the discrete-time counterpart of [19,Ch 5., Lemma 2.2]) that
there exist positive constants , , and such that
for all we have that .

From (60) we have . The

accumulation over the period is given by

(61)

Since is and we have that .
Using this and the fact that is , we rewrite (61) as

where the function is
continuously differentiable. We now have an equation that de-
scribes the evolution of the estimation error in the slow sample
time . Consider the control (23) and (35) and substitute these
expressions into (57). We get ,

. Dropping the nota-
tion, we redefine the right-hand side of the above equation as
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where is continuously dif-
ferentiable. By noting that for , the implicit func-
tion theorem shows us that there is an open set containing

such that

(62)

where the function is continuously differentiable in . From
the ultimate boundedness of Theorem 1, we can choose small
enough to guarantee that we are in . Let
denote the right-hand side of (32)–(33) where and

and are given by (35) and (23), respectively. Using (62) we
write the closed-loop system in the slow sample time in terms
of and as

(63)

(64)

Using (63) and (64) through the change of variables (57) we
can show that all closed-loop trajectories exponentially con-
verge to the origin. To do this we begin by setting and

in (63). This results in the reduced system
, which is the closed-loop system under sam-

pled-data state feedback. Linearizing about we obtain
where by hypothesis.

Next, we linearize the full system (63)–(64) about
to obtain

(65)

(66)

where and are continuous functions. We have that for any
and there exist such that

and for all
. Since is continuous, we can choose so that

implies through the change of vari-
ables . We need to weaken the variable in the linear
part of (65). This is accomplished by choosing a matrix that
satisfies . Now,
consider the composite Lyapunov function

where the matrix is pos-
itive definite and satisfies . It can be
shown that there is sufficiently large and sufficiently small
such that the following holds uniformly in for all :

where are positive
constants. We have where

for some positive constants that, in general, depend on
and for functions , , and that are quadratic polynomial
functions of . From the foregoing it can be shown that there

exist , dependent on but independent of and , suffi-
ciently small; , dependent on but independent of ,
sufficiently large; and dependent on , , and

such that for all , , and
the matrix is positive definite. Therefore, from the ultimate
boundedness of and we have that
for all where is some positive integer and and

are positive constants. In the absence of the time varying
disturbance , the inequality (8) reduces to

for all . Using this, the control (23), and (35)
it can be shown that , for
some positive constant and , where

since . From the boundedness of for all
, it can be shown that is exponentially convergent for

all .
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[20] D. S. Laila, D. Nešić, and A. R. Teel, “Open and closed loop dissipation
inequalities under sampling and controller emulation,” Eur. J. Control,
vol. 8, pp. 109–125, 2002.

[21] S. Majima, K. Kodama, and T. Hasegawa, “Modeling of shape
memory alloy actuator and tracking control system with the model,”
IEEE Trans. Control Syst. Tech., vol. 9, no. 1, pp. 54–59, Jan. 2001.

[22] I. D. Mayergoyz, The Preisach Model for Hysteresis. Berlin, Ger-
many: Springer-Verlag, 1991.

[23] P. E. Moraal and J. W. Grizzle, “Observer design for nonlinear systems
with discrete-time measurements,” IEEE Trans. Autom. Control, vol.
40, no. 3, pp. 395–404, Mar. 1995.
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