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Abstract
Conjugated polymers are promising actuation materials for biomimetic robots and biomedical
devices. Large bending is involved in some of these applications. This poses significant
challenges in electromechanical modeling, because the linear elasticity theory is only valid
when the strain is small. In this paper an effective strategy based on the nonlinear elasticity
theory is proposed to model the mechanical output of a trilayer conjugated polymer beam under
actuation. Instead of using the elastic modulus as in the linear elasticity theory, we use a
nonlinear strain energy function to capture the stored elastic energy under actuation-induced
swelling, which further allows us to compute the induced stress. The deformation variables are
obtained by numerically solving the force and bending moment balance equations
simultaneously. Experimental results have demonstrated that the proposed model shows
superiority over the linear model, and is able to capture the actuation behavior well under large
actuation voltages. The proposed framework can also be applied to the analysis of large
deformations in some other electroactive polymers.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electroactive polymers (EAPs) are promising actuation and
sensing materials with potential applications in robotics and
biomedical systems [1–6]. One class of EAP materials
is conjugated polymers or conducting polymers [7–9].
Polypyrrole (PPy) and polyaniline (PANI) are two of the most
commonly used conjugated polymers for actuation purposes.
The backbones of conjugated polymers have alternating single
and double carbon–carbon bonds (conjugation), which results
in positive charge carriers and thus electrical conductivity. The
electrons can be removed from the polymers electrochemically
by applying a sufficiently positive potential (oxidation), during
which negatively charged anions can be incorporated into
the polymer backbone to maintain the charge neutrality.
Application of a sufficiently negative potential can reverse

3 Author to whom any correspondence should be addressed.

the process and repel the trapped anions out of the polymer
(reduction). Volumetric change (swelling) introduced by the
mass transport of ions during reduction/oxidation is considered
to be the primary mechanism of actuation [8]. One advantage
of conjugated polymer actuators is that they can generate
large swelling under low actuation voltages. The strains
generated by PPy actuators are typically between 1% and
10% [7, 10]. A 20% contraction was observed in the thickness
direction of a PANI film [11]. Conjugated polymer actuators
have numerous potential applications, such as microfluidic
pumps [12], blood vessel connectors [13], and microvalves for
flow control [14]. Different configurations of actuators have
been exploited for these applications, e.g., bilayer benders [1],
trilayer benders [15, 16], and linear extenders [7, 10].

It is important to model the sophisticated electrochemical
mechanism of conjugated polymer actuators for precise control
of their force and/or displacement output in many of the
envisioned applications. A complete model can generally be
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divided into two major components. The first component is
to understand the dynamic relationship between the amount
of transferred ions and the applied potential. There has been
extensive modeling work on this, such as the ‘diffusive-elastic-
metal’ model [17], which considers diffusion as the dominant
mechanism of ion movement. The second component is
to predict the mechanical output based on the swellings
introduced by the transferred ions. The classical beam theory
has been used to model the bending curvature for bilayer
PPy actuators [18, 19] and trilayer actuators [20]. However,
the model is only valid when the ion movement-induced
swelling is small so that the following two assumptions hold:
(1) the strain and the stress can be related linearly; (2) the
geometry nonlinearities can be neglected. Alici and co-workers
modeled the bending curvature and force output for trilayer
PPy actuators by using finite element analysis in analogy
with a thermally driven beam, but no analytical model was
presented [21]. Tensile strength experiments have shown that
the strain and stress relationship of PPy film becomes clearly
nonlinear as the strain is increased over 4% [22, 23]. These
results indicate that the linear model based on the assumption
that the stress varies linearly with the strain becomes invalid
as the deformation gets large. Therefore, it is imperative to
develop a nonlinear model to predict the actuator performance
for applications in which large actuation is involved.

In this paper, a nonlinear elasticity-based method is
proposed to capture the mechanical deformation induced
by transferred ions. A trilayer PPy actuator, which has
two PPy layers sandwiching an amorphous polyvinylidene
fluoride (PVDF) layer, is used as an example to illustrate the
framework of the analysis. Neo-Hookean type strain energy
functions are used for both PPy and PVDF to capture the
nonlinear stress–strain relationship, which incorporates the
effect of swelling [24]. The actuation-induced stresses are
derived from the strain energy functions. The equilibrium
configuration under a quasi-static actuation voltage is then
obtained by solving the force and moment balance equations
simultaneously. Experiments have been conducted to verify the
effectiveness of the proposed model. For comparison purposes,
a linear elasticity theory-based model is also used. When the
applied voltages are small, the predictions by both models are
close to experimental data. But the nonlinear elasticity model
fits the experimental data better as the input voltage increases,
which shows the superiority of the method in modeling large
deformations of conjugated polymers.

The remainder of the paper is organized as follows. In
section 2, the electrical impedance module and electromechan-
ical coupling are first introduced. Then the derivation of the
mechanical model based on the nonlinear elasticity theory is
presented in section 3. Experimental setups are described in
section 4. The results are discussed in section 5. Conclusions
are provided in section 6.

2. Review of a linear model

The working principle of a trilayer PPy actuator is illustrated in
figure 1. In the middle is an amorphous, porous polyvinylidene
fluoride (PVDF) layer that serves as both a backing material

Figure 1. Illustration of the actuation mechanism of a trilayer
polypyrrole actuator. Left: a sectional view of the trilayer structure;
right: bending upon application of a voltage.

and a storage tank for the electrolyte. On both sides of the
actuator are the PPy layers. When a voltage is applied across
the actuator, the PPy layer on the anode side is oxidized while
the other layer on the cathode side is reduced. The oxidized
layer absorbs anions and expands, while the reduced layer
gives up anions and contracts. The differential expansion thus
leads to bending of the actuator, as shown in figure 1.

In this section, a linear model for the trilayer conjugated
polymer actuator will be reviewed. The model has three
cascaded modules: (1) the electrical admittance module,
(2) the electromechanical coupling module, and (3) the
mechanical module. While the first and second modules are
adopted in the current work, the third module will be replaced
by a nonlinear elasticity theory-based module.

2.1. Electrical admittance module

As the first step to model the electrochemomechanical phe-
nomenon, the admittance model is important; it characterizes
the relationship between the current through the polymer and
the actuation voltage. One can integrate the current to obtain
the amount of the transferred ions and furthermore calculate
the swelling of the polymer. A diffusive-elastic-metal model
is proposed for PPy based on the Randles equivalent circuit
model, in which the ion transport within the polymer is deter-
mined by the diffusion law [17, 25]. The admittance model in
the Laplace domain is

I (s)

U(s)
= s[

√
D
δ

tanh(h
√

s/D) + √
s]

√
s

C + Rs3/2 + R
√

D
δ

s tanh(h
√

s/D)
, (1)

where s is the Laplace variable, D is the diffusion coefficient,
δ is the thickness of the double layer at the polymer/electrolyte
interface, h is the thickness of each PPy layer, C denotes
the double-layer capacitance, and R is the electrolyte and
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Figure 2. Definitions of parameters used in the linear mechanical
model.

contact resistance. When a DC voltage U is applied across
the polymer, the total transferred charges can be calculated by
using the Final Value Theorem [26] on (1):

Q = k1U, (2)

where k1 = 1
2 (1 + h

δ
)C . This means that the amount of

transferred charges at the steady state is proportional to the
applied voltage. The proportionality constant can be calculated
based on the fundamental parameters or measured directly
from the experiments. In this paper, the experimental method
is used to obtain the value of k1 for different samples.

2.2. Electromechanical coupling module

The ions transferred to the polymer cause expansion of the
polymer. It has been observed that the volume change can
be captured by k2ρ, where k2 is the swelling-to-charge ratio
and ρ is the density of the transferred charges [17, 18]. In
order to obtain ρ, the transferred charge Q is obtained by
integrating the current, which consists of a component due to
ion diffusion into the PPy layer and a component due to double-
layer charging [17]. Because the bulk capacitance of the PPy is
much larger than the double-layer capacitance, the charges in
the double layer at the steady state are negligible compared to
that in the bulk of PPy [20]. Therefore the transferred charge
density ρ is

ρ = Q

V
, (3)

where V is the volume of the PPy layer.

2.3. Linear mechanical model

The bending of the trilayer beam can be predicted based on the
linear elasticity theory after the swelling ratios are determined
for different layers. One key assumption for the linear model
is that the relationship between the stress and strain is linear,
given by the small strain Young’s modulus, which is reasonable
when the strain is sufficiently small. The elastic strain is
obtained through the elementary beam theory by assuming
that the strain changes linearly in the thickness direction with
the distance from an appropriately located neutral line in the
thickness direction [27] (represented by x in figure 2):

ε(x) = κx, (4)

where κ is the curvature to be determined.

When there is no external load, the beam curvature can be
obtained by solving the force and moment balance equations
simultaneously:∫ −h1

−h2

σPPy1(x) dx +
∫ h1

−h1

σPVDF(x) dx

+
∫ h2

h1

σPPy2(x) dx = 0, (5)

∫ −h1

−h2

σPPy1(x)x dx +
∫ h1

−h1

σPVDF(x)x dx

+
∫ h2

h1

σPPy2(x)x dx = 0, (6)

where h1 and h2 are as defined in figure 2. By superimposing
the bending effect term upon the swelling term, the normal
stresses in the PPy and PVDF layers along the beam direction
are taken to be

σPPy1(x) = EPPyε(x) − EPPyk2ρ, (7)

σPVDF(x) = EPVDFε(x), (8)

σPPy2(x) = EPPyε(x) + EPPyk2ρ, (9)

where EPPy and EPVDF are the small strain Young’s moduli of
the PPy and PVDF, and PPy1 and PPy2 represent the reduced
and oxidized PPy layers, respectively. For a symmetrical
trilayer actuator, with the assumption that the thickness of the
two PPy layers remains constant, it follows from (5) that the
neutral line is the beam center line. Therefore, the actuation-
induced curvature κ can be evaluated from (6) and the free-
bending response is obtained by combining (1), (3), and (6):

κ(s)

U(s)
= γm

√
D
δ

tanh(h
√

s
D ) + √

s
√

s
C + Rs3/2 + R

√
D
δ

s tanh(h
√

s
D )

, (10)

where γm is defined as

γm
�= 3k2[(1 + h2−h1

h1
)2 − 1]

2h1W L(h2 − h1)[(1 + h2−h1
h1

)3 + Epvdf

Eppy
− 1] .

Although (10) is only used later for steady-state analysis, it is
provided here to give a complete description of the actuation
mechanism. It will also be useful in the future, when dynamic
deformation is considered. Note that one can incorporate the
viscoelasticity of the materials by using frequency-dependent
Young’s moduli for PPy and PVDF [28]. When a DC voltage
U is applied across the polymer, the steady-state curvature is
obtained based on (2):

κ = γmk1U. (11)

3. Nonlinear mechanical model based on a swelling
framework

Large swelling and bending present challenges to the
mechanical model based on the linear elasticity theory. Firstly,
when the deformation is large, the swelling effect and the
bending effect are coupled and thus cannot be superimposed
as those in (7) and (9) due to the geometric nonlinearities.
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Secondly, the strain–stress relationship of PVDF and PPy films
becomes nonlinear as the strain increases [22, 23, 29, 30].
Thirdly, under large swelling, the symmetrical trilayer
arrangement generates a neutral line that is no longer at the
center line due to the geometric nonlinearity. Therefore, the
nonlinear elasticity theory-based method is introduced in this
section to model large bending motions.

3.1. Definition of swelling

We use ν1 and ν2 to denote the swellings of the reduced and
oxidized PPy layer, respectively. The swelling is defined as
the ratio between the volume after electrical actuation and the
original volume. If νi > 1, the volume is increased; if νi < 1,
the volume is decreased. Assuming that the volume change is
proportional to the transferred charge density, one can calculate
ν1 and ν2 at the steady state:

ν1 = V0 − k2ρV0

V0
= 1 − k2ρ, (12)

ν2 = V0 + k2ρV0

V0
= 1 + k2ρ, (13)

where V0 represents the original volume. The value of k2

can be determined by experimental data; it has the order of
10−10 m3 C−1 [17]. When one PPy layer is reduced and repels
dopants, the other PPy layer is oxidized and accepts dopants.
Therefore, the PVDF layer is merely an ion conducting layer,
and we assume that its volume does not change.

3.2. Finite strain tensors

In linear elasticity the infinitesimal strain tensor is used
to capture the structural deformation, where ‘infinitesimal’
implies that the theory is only valid as the displacement
gradient is vanishingly small. However, the strain can be
significant in many applications. Thus the finite strain tensors
are introduced in nonlinear elasticity, which will be adopted
below.

Consider a trilayer beam that bends because of differential
swellings in the two outer layers. The reference configuration
is in Cartesian coordinates, while the deformed configuration
is in cylindrical coordinates for the convenience of modeling
the bending. This is shown in figure 3, where x represents the
thickness coordinate, y represents the length coordinate, and
z stands for the width coordinate. The axes in the cylindrical
coordinates are labeled by r , θ , and ς , which represent the
radius, azimuth, and width coordinates, respectively. Because
the length of the beam is usually much larger than the width, it
is assumed that there are no changes along the width direction
z, which means

ς = z. (14)

The bending angle θ is considered to be proportional to
the position along the y axis in the reference configuration,

θ = αy, (15)

Figure 3. Illustration of the reference configuration and the
deformed configuration.

where α is a proportionality constant that will be determined
by the analysis. The bending radius r is assumed to be
independent of y and z,

r = r(x). (16)

The orthonormal basis vectors in the Cartesian coordinates are
denoted by ex, ey, and ez, and they are denoted by er, eθ , and
eς in the cylindrical coordinates. By definition, these vectors
are represented by

ex =
( 1

0
0

)
, er =

( 1
0
0

)
,

ey =
( 0

1
0

)
, eθ =

( 0
1
0

)
,

ez =
( 0

0
1

)
, eς =

( 0
0
1

)
.

For ease of analysis, the dyadic product is denoted by the
symbol

⊗
. It operates as follows:
( x1

x2

x3

)
⊗
( y1

y2

y3

)
=
( x1y1 x1 y2 x1y3

x2y1 x2 y2 x2y3

x3y1 x3 y2 x3y3

)
. (17)

This gives the matrix representations

er ⊗ ex =
( 1 0 0

0 0 0
0 0 0

)
, (18)

eθ ⊗ ey =
( 0 0 0

0 1 0
0 0 0

)
, (19)
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eς ⊗ ez =
( 0 0 0

0 0 0
0 0 1

)
. (20)

Suppose that the deformation takes a particle at location X with
Cartesian coordinates (x, y, z) in the reference configuration
to the location � with cylindrical coordinates (r, θ, ς) in the
deformed configuration. The deformation gradient is defined
as

F = ∂�

∂X
⇐⇒ d� = F dX, (21)

where
d� = dr er + r dθ eθ + dς eς ,

dX = dx ex + dy ey + dz ez.

From (14)–(16), the deformation gradient is written as

F = dr

dx
er ⊗ ex + rαeθ ⊗ ey + eς ⊗ ez

=
( dr

dx 0 0
0 rα 0
0 0 1

)
. (22)

The left Cauchy–Green deformation tensor is B = FFT, where
superscript T denotes transpose [31], so in the present case

B = λ2
r er ⊗ er + λ2

θ eθ ⊗ eθ + eς ⊗ eς

=
(

λ2
r 0 0

0 λ2
θ 0

0 0 1

)
, (23)

where the principal stretches are

λr � dr

dx
, λθ � rα. (24)

We assume that both PVDF and PPy are mechanically
incompressible. This assumption is based on relevant literature
(see [32, 33] for PVDF and [34] for PPy) and will also be
justified in part by later experimental validation of the model.
For such incompressible materials, the deformation satisfies
the constraint that the volume is not changed by the bending
after swelling, which means

det F = ν, (25)

where ν is defined to be the swelling ratio in the different
layers,

ν =

⎧⎪⎨
⎪⎩

ν1, for the reduced PPy layer

1, for the PVDF layer

ν2, for the oxidized PPy layer.

(26)

From (22), the above equation can be written as

dr

dx
= ν

αr
, (27)

implying that λr is a function of r , α, and ν. One can
integrate (27) and obtain the following equation for the reduced
PPy layer:

r(x) =
√

r 2
1 + 2

α

∫ x

−h2

ν1 dx, −h2 � x � −h1, (28)

Figure 4. Definition of the bending radii at different locations.

where r1 is defined as the radius at the inner surface of the
beam, as shown in figure 4. Since the swelling is assumed to
be uniform over the reduced PPy layer, one can simplify (28)
to be

r(x) =
√

r 2
1 + 2ν1(x + h2)

α
, −h2 � x � −h1. (29)

Similar equations can be obtained for the PVDF and the
oxidized PPy layers:

r(x) =
√

r 2
2 + 2(x + h1)

α
, −h1 � x � h1, (30)

r(x) =
√

r 2
3 + 2ν2(x − h1)

α
, h1 � x � h2, (31)

where r2 is defined as the radius of the boundary between the
reduced PPy layer and the PVDF layer, r3 as the radius of the
boundary between the PVDF layer and the oxidized PPy layer,
and r4 as the radius of the outer surface of the beam. The
expressions for r2, r3, and r4 are thus

r2 =
√

r 2
1 + 2ν1(h2 − h1)

α
, (32)

r3 =
√

r 2
2 + 4h1

α
, (33)

r4 =
√

r 2
3 + 2ν2(h2 − h1)

α
. (34)

3.3. Stresses

For an isotropic incompressible material, the Cauchy stress
tensor depends on the elastic energy density function Ŵ as
follows [31]:

σ = 2

ν

[
∂Ŵ

∂ I1
B + ∂Ŵ

∂ I2
(I1B − B2)

]
− pI, (35)

where I is the identity matrix. Here p has the interpretation of
unknown hydrostatic pressure. I1 and I2 are invariants, defined
as follows:

I1 = trace(B) = 1 + λ2
r + λ2

θ (36)
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I2 = 1
2 [(trace(B))2 − trace(B2)] = λ2

r + λ2
θ + λ2

r λ
2
θ . (37)

Since I1 and I2 are functions of λr and λθ , which are in turn
functions of r , α, and ν, it is possible to write

Ŵ (I1, I2, ν) = W̃ (λr , λθ , ν) = W (r, α, ν). (38)

In the development that follows, each of these is useful in
different places.

Combining (35)–(38), one can verify that the principal
Cauchy stresses are given by

σrr = λr

ν

∂W̃

∂λr
− p, (39)

σθθ = λθ

ν

∂W̃

∂λθ

− p. (40)

In the absence of body forces, the equilibrium configuration
gives

divσ = 0, (41)

which holds within each of the three layers. From (27)
and (39), σrr is a function of r only. Equation (41) in the er

direction then gives [24]

dσrr

dr
+ 1

r
(σrr − σθθ ) = 0. (42)

Subtracting (40) from (39) and utilizing (38), one has

σrr − σθθ = − r

ν

∂W

∂r
. (43)

We use PPy1 to denote the reduced PPy layer, and PPy2 to
denote the oxidized PPy layer. Considering the boundary
condition σ

PPy1
rr (r1, α, ν1) = 0 and combining (42) and (43),

one obtains the following expression for the principal Cauchy
radial stress in the reduced PPy layer:

σ PPy1
rr = 1

ν1
(W PPy1(r, α, ν1) − W PPy1(r1, α, ν1)). (44)

From (43) and (44), the principal Cauchy hoop stress in the
reduced PPy layer is

σ
PPy1
θθ = 1

ν1

(
W PPy1(r, α, ν1) − W PPy1(r1, α, ν1) + r

∂W PPy1

∂r

)
.

(45)
A similar analysis can be used to derive the stresses in the
PVDF and the oxidized PPy layer, which results in

σ PVDF
rr = W PVDF(r, α) − W PVDF(r2, α) + σ PVDF

rr (r2, α), (46)

σ PPy2
rr = 1

ν2
(W PPy2(r, α, ν2) − W PPy2(r3, α, ν2))

+ σ PPy2
rr (r3, α, ν2), (47)

where σ PVDF
rr (r2, α) and σ

PPy2
rr (r3, α, ν2) specify the interface

values. Note that we have used the assumption of no swelling
for the PVDF layer in (46). When there are no fractures or
delamination between different layers, σrr on the interfaces of
these layers is continuous, which gives

σ PVDF
rr |r=r2 = σ PPy1

rr |r=r2 =: σrr |r2 ,

σ PPy2
rr |r=r3 = σ PVDF

rr |r=r3 =: σrr |r3 .

It follows from (44) and (46) that

σrr |r2 = 1

ν1
(W PPy1(r2, α, ν1) − W PPy1(r1, α, ν1)),

σrr |r3 = W PVDF(r3, α) − W PVDF(r2, α)

+ 1

ν1
(W PPy1(r2, α, ν1) − W PPy1(r1, α, ν1)).

Similar to (45), one has the following equations for the hoop
stresses in the PVDF layer and the other PPy layer:

σ PVDF
θθ = σ PVDF

rr + r
∂W PVDF

∂r
, (48)

σ
PPy2
θθ = σ PPy2

rr + r

ν2

∂W PPy2

∂r
. (49)

3.4. Equilibrium

The force and bending moment at any cross section of the beam
are zero at equilibrium, which is similar to (5) and (6) but takes
different expressions in cylindrical coordinates:

∫ r2

r1

σ
PPy1
θθ dr +

∫ r3

r2

σ PVDF
θθ dr +

∫ r4

r3

σ
PPy2
θθ dr = 0, (50)

∫ r2

r1

σ
PPy1
θθ r dr +

∫ r3

r2

σ PVDF
θθ r dr +

∫ r4

r3

σ
PPy2
θθ r dr = 0. (51)

To capture the nonlinear strain–stress relationship of the PVDF
and PPy as the strain increases [22, 23, 29, 30], the energy
functions for PVDF and PPy layers are assumed to be of neo-
Hookean type [35], which means that they take the general
form

Ŵ = μ

2
(I1 − 3ν2/3), (52)

where μ is the shear modulus. It therefore follows
from (24), (27), (36), and (37) that

WPPy1(r, α, ν1) = 1
2μPPy

[( ν1

αr

)2 + (αr)2 + 1 − 3ν
2/3
1

]
,

(53)

WPVDF(r, α) = 1
2μPVDF

[(
1

αr

)2

+ (αr)2 − 2

]
, (54)

WPPy2(r, α, ν2) = 1
2μPPy

[( ν2

αr

)2 + (αr)2 + 1 − 3ν
2/3
2

]
.

(55)
The shear moduli μi are related to the small strain Young’s
moduli Ei by μi = Ei/3, since the constraint (25) implies a
Poisson ratio of 0.5. It is assumed that the energy functions for
the PVDF and PPy layers are of neo-Hookean type, because
the neo-Hookean model contains the quadratic terms of the
mechanical deformation gradient, and it has been adopted
to model the nonlinear strain–stress relationships of different
smart materials, such as PVDF [36, 37] and ionic polymer–
metal composite (IPMC) [38]. Substituting from (53), (54),
and (55) into (45), (48), and (49), one obtains

σ
PPy1
θθ = μPPy

2ν1

[
α2(3r 2 − r 2

1 ) − ν2
1

α2

(
1

r 2
+ 1

r 2
1

)]
, (56)
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σ PVDF
θθ = μPVDF

2

[
α2(3r 2 − r 2

2 ) − 1

α2

(
1

r 2
+ 1

r 2
2

)]
+ σrr |r2 ,

(57)

σ
PPy2
θθ = μPPy

2ν2

[
α2(3r 2 − r 2

3 ) − ν2
2

α2

(
1

r 2
+ 1

r 2
3

)]
+ σrr |r3 .

(58)
From (56)–(58), the left-hand side of (50) is expressed as∫ r2

r1

σ
PPy1
θθ dr +

∫ r3

r2

σ PVDF
θθ dr +

∫ r4

r3

σ
PPy2
θθ dr

= r4

ν2
(W PPy2(r4, α, ν2) − W PPy2(r3, α, ν2))

+ σrr |r3 · (r4 − r3)

+ r3(W PVDF(r3, α) − W PVDF(r2, α)) + σrr |r2 · (r3 − r2)

+ r2

ν1
(W PPy1(r2, α, ν1) − W PPy1(r1, α, ν1)). (59)

Substituting from (53), (54), and (55) into (59), one finds that
the force balance (50) becomes

μPPy

2ν2

[
ν2

2

α2

(
1

r 2
4

− 1

r 2
3

)

+ α2(r 2
4 − r 2

3 )

]
+ μPVDF

2

×
[

1

α2

(
1

r 2
3

− 1

r 2
2

)
+ α2(r 2

3 − r 2
2 )

]

+ μPPy

2ν1

[
ν2

1

α2

(
1

r 2
2

− 1

r 2
1

)
+ α2(r 2

2 − r 2
1 )

]
= 0. (60)

Note that (60) also ensures the boundary condition σ
PPy2
rr (r4,

α, ν2) = 0. From (56)–(58), one can find that the moment
balance (51) becomes

μPPy

ν1

{
3

4
α2(r 4

2 − r 4
1 ) +

(ν1

α

)2
ln

r1

r2

+ 1

2
(r 2

1 − r 2
2 )

[(
ν1

αr1

)2

+ (αr1)
2

]}

+ μPVDF

{
3

4
α2(r 4

3 − r 4
2 ) + 1

α2
ln

r2

r3

+ 1

2
(r 2

2 − r 2
3 )

[(
1

αr2

)2

+ (αr2)
2

]}

+ μPPy

ν2

{
3

4
α2(r 4

4 − r 4
3 ) +

(ν2

α

)2
ln

r3

r4

+ 1

2
(r 2

3 − r 2
4 )

[(
ν2

αr3

)2

+ (αr3)
2

]}
= 0. (61)

In summary, the problem is now formulated as solving
the nonlinear equations (60) and (61) simultaneously by
using (32)–(34) to obtain the two unknown variables r1 and
α. These two variables capture the deformed configuration for
given swellings ν1 and ν2. Note that in the linear elasticity
theory-based method, the force balance is automatically
satisfied for a symmetrical trilayer structure. However, (60)
is required in the nonlinear elasticity theory-based method.
Newton’s method is applied to numerically solve (60) and (61)
with the aid of (32)–(34). Thus a large bending strain model
is established for the trilayer conjugated polymer actuator with
actuation voltage as the input and bending radius as the output.

4. Experiment

4.1. Materials

The trilayer PPy actuator was fabricated by the Intelligent
Polymer Research Institute at the University of Wollongong,
Australia [39]. The PPy layers are 30 μm thick, and
the PVDF layer is 110 μm thick, which implies that
the values of the parameters h1 and h2 are 55 μm and
85 μm, respectively. The electrolyte used is 0.05 M
tetrabutylammonium hexafluorophosphate (TBA+PF−

6 ) in the
solvent propylene carbonate (PC). Two actuators of different
dimensions were cut from the fabricated sheet. The sizes of the
two samples are 12.8×5.0 mm2 (sample 1) and 31.2×6.0 mm2

(sample 2) respectively. Each actuator was stored in the
electrolyte before experiments for five hours to ensure that the
PVDF layer was sufficiently soaked with electrolyte.

4.2. Electrical measurement

A computer equipped with a DS1104 R&D Controller Board
(dSPACE Inc.) was used for data acquisition and processing.
A trilayer actuator was clamped on one end, where electrical
contacts were made using copper tapes. The applied actuation
voltage and the corresponding current were measured. Step
voltages ranging from 0.2 to 2 V were applied to sample 1,
while 0.2–1.4 V were applied to sample 2. The reason for
applying the lower maximum step voltage to sample 2 is that
the response of sample 2 to voltages higher than 1.4 V is out of
the measurement range of the laser sensor.

4.3. Bending measurement

In experiments the beam tip displacement was measured by a
laser distance sensor (OADM 20I6441/S14F, Baumer Electric)
with resolution of 5 μm, as illustrated in figure 5. One can
calculate the curvature κ via the measured displacement d0−d:

κ = 1

r
= 2(d0 − d)

(d0 − d)2 + l2
, (62)

where l is the distance between the clamped end and the laser
incident point when the beam is at rest.

5. Results and discussion

The relationships between the input voltages and the
transferred charges for the two different samples are shown
in figure 6. The constant k1 in (2) can be determined from
the experimental data; it is found to be 0.0936 C V−1 and
0.1801 C V−1, respectively, for samples 1 and 2. The value
of the swelling-to-charge ratio κ2 was finely tuned, based on
the reported value in [17], to be 1.12 × 10−10 m3 C−1 in order
to make the model prediction fit the experimental data. The
small strain Young’s moduli of PPy and PVDF were taken to
be 60 and 612 MPa [40].

The predictions of r1 and α on the basis of (60) and (61)
are shown in figures 7–10 for the two samples. The
experimental data for the bending radii are also compared with
the predictions of r1 in figures 7 and 8 for the two samples.
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Figure 5. Geometric relationship between the beam curvature and
the tip displacement.

Figure 6. The relationships between the input voltages and the
transferred charges for the two different samples.

The predictions by the linear model (10) are also shown in
the figures for comparison purposes. Note that the same
parameters are used in the linear model. It can be seen that
when the applied voltage is low (i.e., the volume changes of
the PPy layers are small), the predictions by the linear and
nonlinear models can both fit the experimental data. But
as the applied voltage increases, the prediction of the linear
model deviates significantly from the experimental data. On
the other hand, the nonlinear model still shows good fitting,
thus demonstrating the effectiveness of the nonlinear model
over a larger deformation range. Note that the bending radius
of the beam will decrease and approach zero as the voltage
applied on the conjugated polymer increases, which implies
that the curves of the experiments and model outputs will
approach each other asymptotically for high actuation voltages.
This accounts for the apparent decreased deviation of the
linear model from both the experimental measurement and the
nonlinear model at high voltages in figures 7 and 8.

Based on the obtained values of r1 and α, one can calculate
r2, r3, and r4 by using (32)–(34). Furthermore, the thickness of
PPy layers can be obtained by calculating r2 − r1 and r4 − r3

at different actuation voltages. Similarly, the thickness of

Figure 7. Quasi-static bending under different actuation voltages for
sample 1 (13 mm × 5 mm).

Figure 8. Quasi-static bending under different actuation voltages for
sample 2 (33 mm × 6 mm).

Figure 9. Computational results on the change of α versus the
applied voltage for sample 1 (13 mm × 5 mm).

the PVDF layer is obtained through r3 − r2. The results for
sample 1 are shown in figures 11 and 12. When the voltage
increases, the thickness of the reduced PPy layer will decrease
and that of the oxidized PPy layer will increase for the oxidized

8
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Figure 10. Computational results on the change of α versus the
applied voltage for sample 2 (33 mm × 6 mm).

Figure 11. Computational results on the changes of thickness of the
PPy layers with the applied voltage for sample 1.

PPy layer. The percentage change at 2 V is −0.83% for the
reduced PPy layer and 0.67% for the oxidized PPy layer. The
thickness of the PVDF layer is decreasing, but at a slower rate
when the input voltage is increasing. The percentage change
at 2 V is 0.21%. Note that these results provide an interesting
insight into the deformed configuration. Such information is
not available from linear models, since the latter assume fixed
thickness throughout the deformation.

6. Conclusions and future work

A nonlinear elasticity theory-based framework is proposed
to analyze the bending configuration of a trilayer conjugated
polymer beam under different actuation voltages. Neo-
Hookean type strain energy functions are used for the PPy and
PVDF layers of the trilayer beam to capture the nonlinearity
under large deformations. For a constant actuation voltage,
the swelling of each PPy layer is determined by the amount of
transferred ions. The bending configuration at the equilibrium
is obtained by solving the force and moment balance equations
simultaneously. Experimental results have validated the

Figure 12. Computational results on the changes of thickness of the
PVDF layer with the applied voltage for sample 1.

effectiveness of the proposed nonlinear model. The method
further provides insight into the deformation details, such as
the change of layer thickness.

A similar analysis can be used for some other EAPs that
involve a local volume change (swelling). This is important
for many applications involving large deformations, when the
elastic modulus of the material already becomes nonlinear and
linear elasticity analysis does not hold. For more complicated
actuator configurations, this would typically require a finite
element treatment.

In this paper the analysis was focused on quasi-static
actuation. This will be extended to accommodate dynamic
voltage inputs in future work. We will also investigate the
incorporation of nonlinear electrical dynamics [41] into the
current framework.
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