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ABSTRACT
CONTROL OF SYSTEMS WITH HYSTERESIS USING SERVOCOMPENSATORS
By

Alexander James Esbrook

The tracking problem in systems with hysteresis has beconmaportant topic of research in
the past two decades, due in large part to advances in smetiahactuators. In particular, appli-
cations like Scanning Probe Microscopy require high pentorce from hysteretic smart material
actuators. Servocompensators, or internal model coetsplhave been used successfully in many
varieties of tracking problems for both linear and nonlinrggstems; therefore, their application to
systems with hysteresis is considered in this dissertation

The use of Multi-Harmonic Servocompensator (MHSC) is firsipmsed to simultaneously
compensate for hysteresis and enable high-bandwidthitgak systems with hysteresis, such
as nanopositioners. With the model represented by linenardics preceded with a Prandtl-
Ishlinskii hysteresis operator, the stability and peridgli of the closed-loop system’s solutions
are established when hysteresis inversion is includedacdimtroller. Experiments on a commer-
cial nanopositioner show that, with the proposed meth@tking can be achieved for a 200 Hz
reference signal with 0.52% mean error and 1.5% peak erm@r avwravel range of 4am. Ad-
ditionally, the proposed method is shown at high frequentiebe superior to Iterative Learning
Control (ILC), a common technique in hanopositioning control

The theoretical and practical weaknesses of the propogedagh are then addressed. First,
the design of a novel adaptive servocompensator spedalsystems with hysteresis is pre-
sented, based on frequency estimation coupled with sloptatian, and the stability in cases with

one, two, orn unknown frequencies are established. Next, a conditiohenférm of a Linear



Matrix Inequality is presented proving the stability of fm@posed MHSC when hysteresis inver-
sion is not used. It is then experimentally demonstratedréraoving hysteresis inversion further
reduces the tracking error achievable by the MHSC. Finddl/properties of self-excited limit cy-
cles are studied for an integral-controlled system coirtgia play operator. A Newton-Raphson
algorithm is formulated to calculate the limit cycles, amear relationships between the amplitude

and period of these limit cycles and system parameters damell.
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Chapter 1

Introduction

1.1 Systems with Hysteresis

The phenomenon hysteresis is caused by the existence aplmpibssible internal states within a
system for a given input. This phenomenon was first obseryestientists in the fields of ferro-
magnetism [3] and plasticity [1] in the late 19th centurypwh in Fig. 1.1. Mathematical models
of hysteresis were first developed by Preisach [4] and Prgsldh the early 20th century. Most
research on hysteresis focused on modeling and charatienof physical hysteresis until the
1970's, when the mathematical theory of ordinary diffel@rgéquations coupled with hysteresis
operators was developed [6,7]. Recent advances in the fieldi&frials science have created a new
class of actuator/sensor hybrids cal®ahart Material48], whose behavior strongly exhibits hys-
teresis. A broad range of materials fall into this classluding piezoelectrics [9], shape memory
alloys [10], electro-active polymers [11], magnetosivies [12], magnetorheological fluids [13],
and conjugated polymers [14]. Piezoelectric materialsevilee first of these smart materials to be
developed, with the discovery of the piezoelectric coupkifect in the 1800'’s [9], and have been
successively employed in a variety of industries includmanufacturing, automotive, and medical
devices [15].

Of particular importance to our work is the technology of opositioning, which deals with
precision motion and manipulation on the nanometer sca@nopositioning plays a key role in

technologies like Scanning Probe Microscopy (SPM), usetienadvancement of fields such as

1



Diagram No. IV.——(Slow recovery with time).

tonsfin? 5/ Break ingrips.

e

8

Load in lons per square inch.

&4
154 3

2
Extensions - diminished as explained on page. j2.
Scale - tunit = ks of an inch. L4 %

Figure 1.1: Plasticity hysteresis curves observed in [1].

biology [16], materials science [17], lithography [18],daothers. The SPM process aims to gen-
erate a 3-dimensional mapping of a surface with nanomesatugon. One example of SPM is
atomic force microscopy (AFM), illustrated in Fig. 1.2. Ar-M probe rests on top of the sam-
ple to be mapped, suspended above the surface by atomis fokckser is directed down onto
the AFM probe, which reflects off the probe onto an opticakdtr. The sample is then moved
beneath the AFM probe, which causes the probe to move up ama. dbhis motion is detected
by the optical detector, and is used together with positranking of the sample to form the 3-
dimensional mapping. The primary performance metrics ilMAd&fe the imaging accuracy and
the imaging speed [2]. The technologies behind AFM probelsognical detectors are fairly ma-
ture, and therefore the limiting factor in both of these mestis the effective bandwidth of the
positioning system. The most effective actuators for suoblpms are piezoelectric nanoposition-

ers, which are capable of high speed and precision, but Hieuttito control due to the effect of
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Figure 1.2: lllustration of Atomic Force Microscopy from][2

hysteresis.

The promising applications of smart materials have magnafforts to better understand and
control their behavior, which has ignited further reseantt systems with hysteresis. When mod-
eling the behavior of smart materials, it is important taidguish between sensing and actuation
models. Modeling conducted for sensing applications glpidocuses on the internal dynamics
of the smart materials, and are often based on the physicshemdistry of the materials [19-21].
In modeling the actuation behavior of smart materials, aenpdrenomenological or “Black box”
approach can be taken. A common and faithful model for smateral actuators consists of a

linear system preceded by a hysteresis operator [11, 22—-26]

X(t) =Ax(t) + Bu(t)

u(t) =rv;Fol(t) (1.1)

wherev(t) is the system input, and is a hysteresis operator [7,27-29]. It is also worth noting

that there are significant uncertainties in both the hysier@nd dynamics of the system, as the
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Figure 1.3: Hysterons of several Presiach-like operatbim. interpretation of the references to
color in this and all other figures, the reader is referrethéoaiectronic version of this dissertation.

behavior of the system varies with environmental and lagadionditions [2]. We will refer to
this combination of a linear dynamic system and hystergsgsaior as aystem with hysteresis
Clearly, in order to control the actuation of smart materiais must investigate such systems with
hysteresis.

The first step in our investigation is to identify the systerodal (1.1) to be considered. As
there are a wealth of tools available for capturing linearadyics, most research into the modeling
of systems with hysteresis is focused on characterizahdndentification of the hysteresis opera-
tor. The oldest and most widely used is the Preisach modedig¥eloped in the 1930’s as a model
for magnetic hysteresis. Presiach models are formed thraugeighted superposition of relay
hysterongshown in Fig. 1.3a), unit hysteresis elements whose paemare varied to approxi-
mate a wide variety of physical hysteresis phenomena [8,128 Preisach model has also proven
to be an excellent model for smart material actuators [253 B0 As the effectiveness of the opera-
tor itself is fairly established, most recent works haveut®d on identification or implementation
of the Presiach operator [12, 23].

The success and maturity of the Preisach model has resultéé development of a number

of “Preisach-like” operators [22], which use hysterons ified from the original Preisach model.



The Preisach-Krasnosel'skii-Pokrovskii (PKP) operat®4,[29] is formed with PKP hysterons
(Fig. 1.3b), which are similar to the relay hysteron but mpooate finite slopes. In our work,
we will focus on the Prandtl-Ishlinskii (PI) operator [5]hweh uses play operators as hysterons
(Fig. 1.3c), in reference to the phenomenon of mechanieg thley emulate. We will also make
use of the modified PI operator [32], which consists of a Plrajpe cascaded with dead-zone
operators. As we will see in Chapter 2, the Pl operator andeteralization possesses several
practical advantages over other Preisach-like operdtatsmtake it well suited for online control

applications.

1.2 Control of Systems with Hysteresis: Existing work

Once we have arrived at a faithful model for a system with drestis, we can then address the
problem of controller design for such systems. A commonrobbjective for any actuator is to
force the trajectory of the system to track a desired refe¥emhis is also the case in nanoposition-
ing applications like SPM, where the positioner output temaed to track a predescribed path. A
multitude of control strategies have been proposed to sulek tracking problems in systems with
hysteresis [33—39]. As with modeling systems with hysisrale meritorious element of these
controllers is the manner in which they address the effedtysteresis within the system. For
most of these controller designs, we can differentiate betwtheir philosophies as being either
inversion-focused or rejection-focused. The differerzssveen these control techniques are often

closely tied to the system model considered by the authors.



1.2.1 Inversion-Focused Methods

One of the most natural and widespread approaches in cdhg&oty is the technique of model
inversion. The objective of model inversion is to design atadler to reduce the input-output map
of a system to a unity gain. Following the development of éyestis models, researchers began
to develop inverse hysteresis operators for use in conppli@tions. Inversion strategies for
the Preisach operator have been developed [23, 31, 40]Meopwibese result in only approximate
inversions. The PI operator on the other hand possessesatdiorm inversion [32], which turns
out to be another Pl operator. For both models, hysterasssion has proven to be a very effective
technique for reducing the impact of hysteresis, and it mmmonly used in the control of systems
with hysteresis [12, 22,23, 33, 34,40-42].

Inversion-focused control algorithms center around impr@ or optimizing a hysteresis in-
version, often through online adaptation of the weights Bf@isach-like operator. This approach
was first detailed in [33], where an adaptive inverse appré@ased on a generic hysteresis model
and model reference adaptive control (MRAC) was proposed. #stagle to this design is that
classical MRAC approaches, such as those described in gE],tb bilinear coupling of adapta-
tion terms. Such bilinear coupling impedes the design optedeon laws unless one of the coupled
terms is a scalar [43]. This was addressed in [33] through-paemeterization of the adapta-
tion variables. In [41], slow adaptation was utilized in alRIMC scheme to separate adaptation
of the hysteresis parameters from the controller paraseten adaptive sliding mode approach
coupled with adaptive hysteresis inversion was used infgt4jiscrete-time systems with hystere-
sis. In addition, neural networks have been used to investiehgsis and compensate for uncertain
dynamics [45].

A noteworthy disadvantage of these methods is that the higibers of hysterons required by



Presiach-like operators makes these adaptive approachgmitationally expensive. For example,
55 hysterons were used to describe the hysteresis behddanagnetostrictive material in [35],
which, if used in an inversion-focused control strategyuldlaequire implementation of 55 on-
line adaptation laws. In addition, implementation of theersion itself can be computationally
expensive, a fact that we will observe in Chapter 7. These atettipnal concerns have motivated
efforts to implement hysteresis inversions using an FPG) [dowever, this adds another level of

complexity to the design and analysis of the system.

1.2.2 Rejection-Focused Methods

An alternate way of thinking, as opposed to the inversiccus®d approach, is to consider the
undesirable effects of hysteresis as an uncertain distaeb# be rejected. The hysteresis effect
is broken into a known gain and an uncertain disturbance tladontroller is then designed to
be robust to the uncertainty. This technique is especialpufar in the nanopositioning literature,
where the high performance demands of SPM systems requiteotiers capable of tracking and
disturbance attenuatiohl,, control [37] and 2-degree of freedom control [47] have bdwws to
provide robustness to plant uncertainty and facilitatekirag in the presence of hysteresis. A sim-
ilar approach was used in [48], where a high gain and not@r filedback controller is combined
with a feedforward dynamic inversion. In the work of [49]ethysteresis effect was modeled by
a combination of a linear gain and unstructured exogenaisrtiance, which is attenuated by an
adaptive robust controller. Sliding mode control [39] amstwrbance observers [50, 51] have also
been used to compensate for the effect of hysteresis.

The stability proofs in these papers are carried out usiegutiiquitous Lyapunov criterion.
However, by assuming the hysteresis to be an unstructustaridance, these methods ignore the

operator behavior of the hysteresis, and therefore can pmye ultimate boundedness of the
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states. Indeed, later in this dissertation we will also shioat using such design methods can
cause the controller to send the system into a self-exan@t dycle. In addition, the theoretical
bounds on the tracking error can be very conservative, alathas motivated efforts to improve

the accuracy of the model bounds [52].

1.3 The Multi-Harmonic Servocompensator: Union of Design
Philosophies

As we have discussed, inversion-focused and rejectionstett methods are fundamentally op-
posed in the mindset behind their designs. Inversion-tedusethods use detailed modeling of
the hysteresis phenomenon in order to achieve robust peafare, but suffer from the resulting
controller complexity. Rejection-focused methods utilike might of control theory to attenu-
ate the effect of hysteresis, without explicitly utilizikgowledge of the phenomenon itself in the
controller design. In a union of these philosophies, we @ijplore the use adervocompensators
in systems with hysteresis. We will see that the design &f $ervocompensator makes specific
use of the effect of hysteresis in the closed-loop systenortmilate asimple, robustandhigh-
performancecontroller for systems with hysteresis.

Servocompensators, also referred to as internal-modélatiens, were originally designed in
the 1970’s by Davison [53, 54] and Francis [55, 56]. The defjrfeature of servocompensators
is their ability to completely cancel signals containedhivitthe design class of their internal
models. This property is also shown to be robust to pertimbsitfrom both exogenous inputs
and model uncertainties, as long as the system is not diestabiThis makes servocompensators
excellent choices for solving tracking problems. IsidardaByrnes [57] extended the internal

model approach to nonlinear systems; however, the classdihear systems considered does not
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Figure 1.4: Amplitude spectra of the output of an examplddregsis for a sinusoidal input. Pri-
mary harmonic (5 Hz) is larger than pictured.

consider the memory behavior observed in systems with rgste

An important aspect of hysteresis operators is that foopérinputs, the output of the operator
can be expressed as a Fourier series, as shown in Fig. 1.4&ilousoidal input. The addition of
hysteresis causes harmonics of the input to appear in tipaiputhich quickly diminish in size
with increasing frequency. In addition, hysteresis wi@ahlter the amplitude and phase of the
primary harmonic. We can utilize this knowledge to desigreevacompensator incorporating
internal models for the input signal along with additionafinonics to achieve precise and robust
tracking performance, by canceling the majority of the axestis effect. We will refer to such a

controller as anulti-harmonic servocompensat(MHSC).



1.4 Overview of Contributions

The principle contribution of this work lies in addressitg ttracking problem for systems with
hysteresis using servocompensators, which we approadvanad ways. We first discuss the de-
sign and analysis of a servocompensator for solving tragcgimblems in systems with hysteresis,
which we validate experimentally through implementatioraccommercial nanopositioning stage.
A crucial element of this analysis is that we utilize a modifid operator to model the hysteresis in
the system. This operator possesses an important cootrgtperty, which, coupled with an ap-
proximate hysteresis inversion, allows us to prove thetente of a unique, asymptotically stable,
periodic solution. We can then invoke the disturbance teje@roperties of the servocompensator
to prove the attenuation of hysteresis at steady statey@sguhat the internal model of the desired
reference trajectory is known. Our experimental resultsaenfirm the rejection properties of the
controller, where we show our proposed method can achiesehord of the mean tracking error
of a competitive technique in nanopositioning (Iterativesatning Control).

We then present results on a tool for computing the output lofsteresis operator are pre-
sented, based on Fourier series theory. This algorithmférstulates the output of individual
hysterons as a series of pulse signals in combination wéhrtput, which facilitate evaluation
of the Fourier integrals. Then, by assuming either a siaar sawtooth input signal, we will
show that the Fourier coefficients can be computed in a clfssedmanner. We then present sim-
ulation results on this method, and show that the algoritprasents a valuable design tool for
servocompensators in systems with hysteresis.

Next, we will extend the design of the MHSC to cases whererttegnal model of the reference
is not knowna priori. We first adapt a traditionally designed nonlinear adafgaocompensator,

and prove its stability in systems with hysteresis. Thisrapph combines high-gain stabilizing
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control with a canonical internal model controller thatubgct to adaptation. During our discus-
sion of the experimental results, we will discover that thesign cannot incorporate the principles
of the multi-harmonic servocompensator to reduce the edfidtysteresis. We will then discuss the
inclusion of a frequency estimator based on slow adaptatiorthe MHSC, a design which we re-
fer to as anndirect adaptive servocompensa{dhASC). In this discussion, the term frequency will
to the fundamental frequency of a periodic signal. For eXapgsinusoid, a triangular wave, or a
square wave will all be described as having one frequenbpadih the latter two clearly have har-
monic frequency components. However, these harmonicsrangrkmultiples of the fundamental
frequency; therefore knowledge of the fundamental frequanplies knowledge of the remaining
harmonic components. Through our stability analysis, wWeamalytically demonstrate some note-
worthy properties for systems with one, two, angnknown frequencies. In particular, for systems
with one unknown frequency, we will prove and verify a stapitondition related to the amplitude
of the reference signal as compared to disturbances, atldga@ase of two unknown frequencies,
prove the existence of a degenerate case for the system. N\them prove the stability of such
controllers in a system with hysteresis, and demonstrsigeitformance experimentally.

Next, we discuss the stability and tracking error convecgaf a system with hysteresis using a
general feedback controller with an integral action. Theotly of switched systems, in particular,
that of the common Lyapunov function [58], and a linear nxainequality (LMI) will be used
to prove that the tracking error and state vector expongnttanverge to zero for a constant
reference. The principal contribution of this work is to ggat sufficient conditions (in the form
of an LMI) for the regulation of the closed-loop system innterof the hysteresis parameters,
without requiring the hysteresis to be small. This addresskey weakness of our prior results,
namely the requirement that hysteresis inversion be imdud the controller design in order to

prove stability. As we will see, the presence of an integcéiba is crucial to the formulation of
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our LMI condition. This then allows us to show the stabilifysgstems with hysteresis controlled
by servocompensators without requiring hysteresis imversWe then show that the MHSC can
achieve even higher performance without hysteresis imethan when hysteresis inversion is
used; in particular, the mean tracking error achieved byMRESC is cut in half when hysteresis
inversion is removed.

Finally, inspired by discoveries made during the coursénefltMI work, we investigate self-
excited limit cycles occurring in a particular class of gyss with hysteresis. In particular, we will
focus on a linear plant controlled by an integral controNenere a play operator [32] is present
in the feedback loop. We focus our attention on odd symmeéinit cycles within the system. A
Newton-Raphson algorithm is formulated to calculate thé lbycles, and using the odd symmetry,
we are then able to prove that there exist linear relatigrsshetween several properties of the limit
cycles and the parameters of the system. These results rdfied/en simulation, where we also
demonstrate the effectiveness of the Newton-Raphson #igost predicting the solutions of the
system. We will also illustrate a crucial weakness of réggefocused designs, in that even for
constant references, the steady-state trajectory may éléexsited limit cycle.

The dissertation is organized as follows. Chapter 2 provimekground information on the
hysteresis models used in this work. We also derive somertiauoexpressions used in the anal-
ysis of the closed-loop systems with hysteresis in the fatlg Chapters. Chapter 3 presents the
design and analysis of our proposed MHSC in systems withehgsis, as well as experimental
comparisons to established control methods. Our Fourressalgorithm is contained in Chapter
4. We investigate the application of a traditional adapseevocompensator to nanopositioning
control in Chapter 5, which also motivates the design of owehadaptive servocompensator.
Chapter 6 discusses the design, analysis, and experimaiitition of the proposed IASC. The

LMI results proving stability of our controller without ugg hysteresis inversion are contained in
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Chapter 7. Our limit cycle investigation is contained in Clea@ Finally, we provide concluding

remarks and discuss potential future work in Chapter 9.
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Chapter 2

Overview of Hysteresis Models

2.1 Introduction

As we have discussed in Chapter 1, the primary challenge irelimgdof systems with hysteresis
is the formulation of the hysteresis operator. A completgere of hysteresis modeling is outside
the scope of this dissertation; we instead direct the retmdére monographs [7, 28, 29] for such
an overview. We will instead focus on the operators usedimithis thesis; the Prandtl-Ishlinskii
(PI) operator, modified Prandtl-Ishlinskii (modified Pl)evptor, and the Preisach-Krasnosel'skii-
Pokrovskii (PKP) operator. Each operator falls under thénatia of “Presiach-Like” operators
described in Section 1.2, in that each is formed by a weightgzerposition of unit hysteresis
elements called hysterons. We will begin the discussioraohdiysteresis operator by presenting
the details of its hysteron, followed by the formulation loé toperator itself. In addition, we will
also discuss inversion of the Pl and modified Pl operatord,ciraracterize the inversion error

when the inversion is inexact.

2.2 The Prandtl-Ishlinskii Operator

The PI operator has seen widespread use in modeling pienoeleysteresis [26, 32,44,59]. In
this dissertation, we will focus on the Pl operator becatp@ssesses a variety of of important

mathematical properties which are useful to control desiginFirst, the Pl operator possesses an
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exact, closed form inversion, which makes the operator aellent choice for control designers
interested in online implementation. Second, it possessestraction property which, as we will
see, can be utilized in the stability proofs of several dele®p systems considered in this thesis.
The hysteron of the Pl operator is the play operator, ilatstt in Fig. 2.1. The play operator
is characterized by a single parametgrwhich we refer to as the play radius. For a monotone

continuous input(t), we denote the output and state of a play operator with ragas
Ri[vi B [V(0)](t) = max{min{v(t) +ri, B;[V](0) }, v(t) —ri} (2.1)

By breaking any arbitrary input into monotone segments apidcangP;, [v](0) by B, [V|(ti), where

the monotonicity ol/(t) changes at(t;), the stateé?, [v|(t) can be defined for arbitrary inputs.

/
S 7'_; 7 v
A A
slope =1

Figure 2.1: lllustration of a Play Operataris the play radius.

Now define the vectors = [ro,r1,---,rp]” and 6y = [6ho, B, - - - , Bhp|’, Where’ denotes the

transpose. The PI operator, which we will denoté gss written as
p
MWL) = 5 8ify iR O)]() (2.2)
i=

where we let the vectdl (t) = [Wo(t), Wi (t), - ,Wp(t)]’ represent the states of the play operators
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(i.e.Wi(t) = B, [v; B, (0)](t)). We can also writé& ', in the inner product form
Ch[v; W(0)](t) = iW(t) (2.3)

For later use, we will also define the operatet, which captures the evolution ¥¥(t) under the
inputv(t);

W(t) = Z2[v; W(0)](t) (2.4)

Remark 1 The PI operator described in Eq&2.2)(2.4)is also referred to as a finite-element PI
operator. A more accurate description of hysteresis candmesed by using an infinite-element Pl
operator [32,44]. However, in the interest of practical ajgaltion, the finite-element Pl operator
is often used in controller design. Therefore, we focus orfithe-element Pl operator in this

thesis.

We now discuss the inversion of the Pl operdigr Specifically, we will discuss the formula-
tion of the left inverse of the Pl operatbp, which we will define afgl. This inverse operator is
also a PI operator, with different weights and initial cdrais. Letr and 6, denote the radius and
weights of the play operators of the inverse operator. Thewcan write the inverse operator, with
inputug(t), as

e W)l ) — i BB Ui P ()]0 5)

where we have denoted the state of the play operatd'rﬁjirwith the vector

The inverse parametersé, andw(0) can be calculated from the following equations, presented
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in [32]:

=S 6hj(rj—ri),i=0,1,--,p (2.6)
=
6ho = 1/6ho 2.7)
B — - - —1..p (2.8)
(Bro+5)-10) (o 3175 6y).
p
Z)th OhV\/J() i=01,---,p (2.9)
j: +1
Hysteresis Hysteresis
Inversion
u (1) vit) u(t)
—> > —>

P

Figure 2.2: The inversion process for hysteresis operatgyss the desired output, andis the
actual output.

The inversion process is illustrated in Fig. 2.2. The in@rsnputug(t) is the desired output
of the hysteresis operator, and is designed to accompliste $arger control objective, such as
tracking or stabilization via state feedback. As the hyster operator is modeled as part of the
plant itself,v(t) is the input to the hysteretic system. The sigm@) is the output of the modeled
hysteresis operator in the plant, and therefore is not nmabkuor available for use in the controller.
However, its definition is very useful in analysis of the syst

The inverse operatd'rg1 is an exact inversion, implying that the difference betweamduy
is identically zero. However, in practical circumstandes forward hysteresis operatiy is not

exactly known. Rather, only an estimdtg, with weightséh and radiir’ is available for control
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design. In our work, we will operate under the following asgtion.

Assumption 1 The uncertainty between the modegjsand fh is limited to the Weightéh and 6.

This implies thaf = r is known.

This assumption is commonly used by designers working via¢hRl model [32], as the radii are
chosen to span the available input range of the actuatorttendrder of the model is chosen
based on computational concerns. This approximate modeitsaparameters are used to create
the approximate inversiom:,h*, whose weights and radii a@ andf. We will now replace the
ideal inversionrg1 with this approximate inversion. With the input o§ and output ofv, the

approximate inversion obeys the equation

p

v(t) = ' Hug W(0)) (t) = >

P

P [Ugi P (0) (1) (2.10)

We will now characterize the inversion ernoft) — ug(t) when an approximate inversion is used.
u(t) is still described by (2.3). Since the Pl operator’s invamds exact, we can use (2.10) to write

ug(t) as

A

Ug(t) =Fn [ Hug; W(0);W(0)] (t)

= [V;W(0)](t) £ G/W(t) (2.11)

Using (2.3) and (2.11), we can then write

Ug(t) — u(t) = BIW(t) — BIW(t) £ GiW(t) (2.12)
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whereW(t) is defined by composite hysteresis operator

W(t) = # [ug; W(0)](t) £ 2ol Hug; W(0)](t) (2.13)

2.3 Modified Prandtl-Ishlinskii Operator

A disadvantage of the Pl operator is that it is odd symmaeuriich can be seen from the illustration
of the play operator in Fig. 2.1. This is a significant disadage, as the hysteresis loops exhibited
by smart material systems are often asymmetric. In [32], difieal Pl operator was proposed
to address this deficiency. This model combines the origthalperator with a superposition of
one-sided deadzone functions, illustrated in Fig 2.3. Ehladzone function is parameterized by

a single threshold parameter, writtenzas Fig. 2.3. The output a deadzone functidy) wherez

I
/ z

(a) Negative threshold. (b) Positive threshold.

is the threshold, can be expressed as

Figure 2.3: Deadzone functions with positive and negahvesholds. The slopes in linear regions
are unity.
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dz; (V(t)) = { (1), z=0 (2.14)

min(v(t) —z,0), z <0

Note that ifz = 0, the deadzone function becomes a unity gain. Now denotestiter of deadzone

thresholdz= [z |, -,z 1,20,21, -+ ,7]’, where
—00<Z 1< <Z21<p=0<z1< <7<

We will also denote the weight vectég = [64_,,---, 64 ,, 64y, B4y, , 64 ). We can now denote

the superposition of deadzone functionglwith inputv (t) as

|
D(va(t)) = 3 6uidz(va(t)) = gD (va(t)) (2.15)

where the vectoD,(Vv(t)) = [dz, (v(t)),---,dy (v(t))] denotes a stack of deadzone functions with
thresholdsz. Using (2.15) along with (2.3), we can define the modified Rdrapor, denoted as

Mha- With inputv(t), the operator can be written as
Cha[V; W(0)](t) = ®(Th[v; W(0)](t)) = B3D2(6W (1)) (2.16)

As the deadzone operator is simply a collection of functiarosed form inversion also exists
for the deadzone operator. This inversion is also a deadapeeator, with modified weights and

thresholds. For deadzone functions with positive thredd)dhe inversion parameteo% andzcan
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be computed as

2%
8o = 1/6u0 (2.18)
6ai = il =1 (2.19)

- (Qdo + Zij:1 9dj) <9do+ Zij_:ll 6dj>

and for negative thresholds,

0
2= 64j(zi—2),i=—I,,0 (2.20)
=1
B0 = 1/ 640 (2.21)
g — i .0 (2.22)

: <6d0+2j_:1i 9dj> (9d0+2j;1i+1 Gd,-) R

Using these definitions, we can form the inverse of the matifikoperator as
M [Ug; W(0)](t) = ', [65Dz(ua); W(0) () (2.23)

Note that the order of the Pl and deadzone operators areh&dito the inverse operator with
respect to the forward operator. We have already discussedhe hysteresis models are unknown
in practical applications. Therefore, we must considemaxact hysteresis inversion, based on an

approximation of ,4, which we denote aBpg.

Assumption 2 The uncertainty between the modélg and Fha are limited to the hysteresis
weightséh and 6,, and the deadzone weigh@a and 4. This implies that the vectors r and z

are known.
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This is a similar condition to that imposed for the Pl operatoAssumption 1, and it is made for

similar reasons. We will denote this estimate and its outiijtas
u(t) = Fra[v;W(0)](t) = S(n[v;W(0)](t)) = BiD-(BW(t)) (2.24)
We can then use the approximated model to derive an approximaersion,
Fod [UasWIO))(©) = 7, [ €D5(u): W(0)] (1) (2.25)

Our final discussion regarding the modified Pl operator @®sithe inversion error, where we
attempt to derive a similar expression for the inversiooresis that achieved for the Pl operator in
(2.12). Using the identityg(t) = Mhall 14 [Us; W(0)];W(0)] and (2.24), the inversion errart) —

Ug(t) can be expressed as
Ug(t) —u(t) = 8}DL(B'W(t)) — B5D,(8'W(t)) (2.26)
whereW(t) is defined by the composite hysteresis operator
W(t) = Zaug; W(0)](t) 2 P ol 1 [ug; W(0)](t) (2.27)

We will now derive a bound for this inversion related to thegmaeter errors, which we define as

B4 = 64— 64 and,, defined in (2.12). Adding and subtractiBgD,(6/W(t)) to (2.26) allows us
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to arrive at

Ug(t) — u(t) =6;Do(BIW(t)) — 6D (BW(t)) + BD-(BW(t)) — BiD(BW(t))

=(6)— 6)D2(6'W(1)) + 63D W (1)) — Do(BW(t))] (2.28)

It can be easily seen from (2.14) that the dead-zone opeshays the Lipschitz condition

|dz (a) — dz (b)| < [a—b| (2.29)

for any threshold;. Using this property together with the holder inequalityd &aking the absolute

value of (2.28), we have

|u—ual </ 8alllID2(BW(t)) | + | 6l [(2! + 1) BW (1))
<16l D2(BW ()| + | 6aleo[ (21 + 1) || B | [W (1) ]

<eql[|D2(GW(t))]| -+ (2! + 1) Ba= W (1) ] (2.30)

wheresg = max(|| 6|, ||64]|) and|| - || represents the infinity norm [60].

2.4 The Preisach-Krasnosel'skii-Pokrovskii Operator

The final hysteresis operator we will address is the Preigaabnosel’skii-Pokrovskii, or PKP
operator [24,29,61]. We will not be utilizing this model inygexperiments, and therefore we will
not be discussing the inversion of this operator. The PKRehngs is defined by three parameters,
labeled in Fig. 2.4 ag, 3, anda. This hysteron is very similar to the Preisach hysteron i(&heey

operator); however, the inclusion of the slope paramataiows for a continuous output with a
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Figure 2.4: lllustration of the PKP hysteron. This operasgparameterized by the thresholds
B, and slope.

finite number of hysterons. The selectiongxadnd allow the operator to model hysteresis curves
of complex shapes. For a monotone continuous infyt the output of the PKP hysteron can be
described by

min(max{v(0), —1+ w, -1},1) forv>0
u(t) = (2.31)

max(min{v(0), —1+ w, —1},—-1) forv<O0

As with the play operator, the output of a PKP hysteron foregahinputs can be formed by
breaking the input into a series of monotone signals. Novetetie ordered triplé = (ai, B, &),
and letQg denote the output of a PKP operator with paramefer§he PKP operator, which we

will call I"p, can then be formed as

p
rP[V7Q(O)] = _;epiQEi [V(t)7QEi (0)] (2.32)
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Chapter 3

Attenuation of Hysteresis through

Servocompensators

3.1 Introduction

In this Chapter, we will discuss the theory behind the impletaitton of servocompensators for use
in tracking problems in systems with hysteresis. We begth widiscussion of servocompensator
design for uncertain linear plants, where we will use a roBRiscati equation approach to ensure
robustness of the system. Next, we prove the existence gnapéstic stability of a unique peri-
odic solution when a robust servocompensator and hyssaresrsion are used in a system with
hysteresis, where the hysteresis is modeled by a Pl or madifieperator. Since the solutions of
the system are periodic, we can interpret the effect of Ingsie at steady state as a structured, pe-
riodic, exogenous disturbance, which can be compensatdtelservocompensator. In particular,
we will show that the tracking error can be made arbitrantya$i by increasing the order of the
servocompensator. We will then demonstrate the merit efdbintrol design through experiments
conducted on a commercial nhanopositioner, and show thenpeshce of the proposed controller
is superior to other commonly used methods in nanopositgpoontrol. We also demonstrate the

robustness of this technique to changing load conditions.
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3.2 Servocompensator Design for Uncertain Systems

Recalling Fig. 2.2, we recognize that the input to the inveyseratoryy is typically designed for
larger control objectives. Motivated by this, we will dasigur servocompensator to regulate the
output of an uncertain linear plant, and subsequently adgislesign to improve the controllers

performance in systems with hysteresis. Consider a linesaesy

X(t) = AX(t) + Bu(t) + Ew(t)

e(t) = yr(t) —Cx(t) — Du(t) (3.1)

wherex € R" is the plant stataj € R is the plant inputy = Cx+ Duis the plant outpute € R is the
tracking errorw(t) = Ho(t) € R™1 is considered an exogenous disturbance,yand Go € R
is the reference trajectory to be tracked. HerandG are real matrices which mapto R™ and
R respectively.E € R"™™ translates the disturbance from the exosystem to the pldr&.vector

o € RMis generated by a linear exosystem,

a(t) = So(t) (3.2)

whereSe R™M. Denote byeig(S) the set of distinct eigenvalues of the mat8xWe will later
useeig(S) as a design parameter in systems with hysteresis, sincésthiebdnceEw(t) will arise
from a hysteresis operator in systems with hysteresiserdtian an exosystem. It is assumed that
(A,B,C,D) is a minimal realization of a SISO plant transfer functiong @hus is controllable and

observable. The following assumptions are made on themysterequired in [54]:

Assumption 3 eig(S) C clos(C™) £ {A € C, RdA] > 0}.
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Assumption 4 The systenfA,B,C,D) has no zeros at e(&).

Remark 2 In order to simplify the presentation, we will assume for threaender of our work that
the matrix D= 0. This assumption is satisfied for many systems, in partidelaour piezoelectric

nanopositioner.

We will now present the design of our closed-loop controlMge shall integrate into the system

a servocompensator, with stajeand governed by the differential equations

n(t)=C'n(t)+B"e(t) (3.3)

where the matrixC* € R™M possesses the same eigenvalueS, andB* is chosen so that the

pair (C*,B*) is controllable. The control signalt) is chosen as a state feedback

u(t) = —Kgx(t) —Kan(t) (3.4)

We can now use (3.3) and (3.4) to close the control loop infferglant (3.1). This results in the
closed loop system,

' A—BK; —BK E
XU _ 1 2| | X(1) . w(t) (3.5)

n(t) -BC C* | |n(®) B (t)

By Theorem 1 of [53], if the gain vectdKy, Ky] can be chosen such that closed-loop matrix is
Hurwitz, thene(t) — 0 ast — . It is shown in [56] that a necessary and sufficient conditam

solvability of this problem is that there exist matriddss R"*P and” € R¥P which solve the
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linear matrix equations,

NS=AMN+Blr+E

Cn=0 (3.6)

Thus far, we have acted as if the system parameters are kndwlesirable property of ser-
vocompensators in closed-loop systems is that the errotaign property is guaranteed for any
uncertainty in the system that does not cause instabilitys 16 particularly important in systems
with hysteresis, as it is very common for the dynamics/hngsie model to be inexact, or change
with environmental or loading conditions [2, 19], a factttiage will observe in Section 3.4. We
will therefore consider a norm-bounded uncertainty [6Z2)eve the uncertainty in the plant (3.1)

can be represented by

X(t) = [A+ BA*C]x(t) + [B+ B;A*D;]u(t) (3.7)

where
A=A+B;A'C} (3.8)
B=B+B;A'D; (3.9)

The matricesB;,Cj,D; are known, and represent knowledge of the range of the wactes in

the matrix/transfer function parameters. The mai‘ixs unknown, and satisfies the bound,

A <1, 0N <
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Now, define the cost functional,

J= /Ooo [x(),n(t)]Qx(),n(t)]) +R#] dt, Q=Q >0,R>0 (3.10)

We define new matrices,

y A o| . |B B O
A: 7B: 7Bl: 9
~B*C C* 0 00

C; 0 D}
C].: ! 7Dl: !
0 0 0

where each O represents an appropriately defined zero métaxcan then present the following

lemma, adapted from Theorem 1 in [62].

Lemma 1 If forsomer =17 > 0, R=R" > 0, there exists a unique positive definite solutioa P*

to the Riccati equation

[A—B(1R+ D)D)~ DJCy]'P
+P[A—B(1R+D}D1) 'D}Cy]
+1PB.B|P—PB(1R+D}D;) B'P

+1/1Cy(I —D1(1R+D}D1) " ID})C1+Q=0 (3.11)

then for any fixed € (0,17) and any fixed R (0,R*), Eq.(3.11) has a unique positive definite
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stabilizing solution P, and the control law

t
u(t) = —(1R+DD1) *(1BiP+DiCy)[X (t).n'(1)]' & —[Ky, Ko] o (3.12)

n(t)
guarantees exponential stability of the closed-loop syg&5) when y(t) = w(t) = 0, and the

matrices A and B are given [{$.8) and (3.9) respectively.

3.3 Asymptotically Stable Periodic Solutions in Systems with
Hysteresis

We will now consider the behavior of the controller (3.3),1(3 when the inputi(t) is the output
of a hysteresis operator, as assumed in (1.1). The plantitiatpe controlled is now modeled as
a cascade of a modified Pl operator (2.16) and the dynamieray&.1). Furthermore, we will
assume that this plant is uncertain, with the dynamic uas#iés obeying (3.8) and (3.9), and the
hysteresis uncertainty obeying Assumption 2.

We will now introduce the hysteresis inversion (2.26) ifite tontrol structure.The input to the

inversion, denoted ag;(t) in (2.25), will be defined by the right-hand side of (3.12),

Ug(t) = —[Ky, K] [X' (1), n" (1)) (3.13)
Together with (2.25), the closed-loop system (3.5) can newvbtten as

KO | _ |A-BK —BKe| | X(t)| | GiD(BW(D)) — BiD:(BW() (3.14)

n(t) -B*C  C* | [n() B*yr (1)
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Controller System with Hysteresis

: Servo- Stabilizing Hysteresis: : ) ) :
ICompensator Controller Inversion ;1 Hysteresis Dynamics |
Ylt) 4 ) e  Y(t)
Q=1 C) {06 [ [F P18 T
b e e e e e e J

Figure 3.1: Closed-loop system with hysteresis, as defin€gl 113), (3.14), and (2.27).

whereW(t) is defined by (2.27). A block diagram of this closed-loop eysis illustrated in Fig.
3.1.

The addition of the hysteresis operator into the closeg-Bystem creates a series of problems
in the implementation of the servocompensator contrdilest, does the system remain stable with
the state feedback (3.12)? In addition, are the trajectai¢he closed-loop system periodic for
periodic reference trajectories? Such periodicity wolllshaus to argue that the servocompensator
can attenuate the effect of hysteresis on the closed-lostprsy

If W(t) was a bounded exogenous disturbance generated by (3.2psher to both questions
is clearly yes. It turns out that, if the effect of hysterdsisufficiently small, we can also prove
both of these properties closed-loop system with hyster&sased on the framework presented in
Theorem 2.1 of [63], we can prove, under suitable conditmmghe hysteresis operator, the exis-
tence of a unique, asymptotically stable, periodic sofutibhe most restrictive of these conditions
is the existence of a contraction property for the compdsysteresis operato#y. We will see
that this condition can be met forTa-periodic reference trajectony (t) if ug(t) andv(t) satisfy

the following assumption.

Assumption 5 0sGo 1[40 (Ugr)] > 2rp and oser o1)[vr] > 2rp where, for any continuous func-
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tion z,

0SQy, 1,)[Z = t1<f’3§’<t2 |2(1) —z(0)]

and rp andr, are the largest play radii fof pq and fgdl respectively.

Before proving the existence of an asymptotically stableppge solution, we must first show
the well-posedness of the closed-loop system.%xll!éfﬁL be the Banach space of absolutely contin-

uous functionss : [0,t] — 0. We also equip this space with the norm
t .
Iulypa = 0O+ [ Ja(s)lds (3.15)
Note that, forfq, fp € th’l the play operatoR; obeys the condition
Rilf1;a)(s) —Ri[f2;8l(s)] < [ f1(s) — f2(5) ]|

This property along with (2.29) allows us to prove that thenposite hysteresis operat#f is

Lipschitz continuous, i.e.
17a[f1;W(0)](s) — #a[ T2 W(O)] (1) | < L[| f1— fal|e

It is then clear that the right-hand side of (3.14) is Lipscieontinuous, and so the existence and
uniqueness of the solution can be established through theatycontraction mapping argument
[64]. Similar continuity properties can be proved for thepeedence of the system on initial
condition; therefore the system (2.27), (3.13), and (3i¢4#ell posed. We are now prepared to

prove the following theorem.

Theorem 1 Consider the closed-loop systé27) (3.13) and(3.14) Let Assumptions 2-5 hold,
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and let the reference trajectory () be periodic with period T. Then, there exists@asuch that
if &g < €, wheregg = max(||6,],||64]|), the solutions of the closed-loop syst&n®7)(3.13) and
(3.14) under any initial condition(x(0),n(0),W(0)), will converge asymptotically to a unique

periodic solution.

Proof. Consider an inpuf (t) with osgg 11[f(t)] > 2r. Let P be a play operator with radius

From (2.1) it can be seen that this play operator obeys thigamiion property

[Ri[f;a](t) — Ri[f;b](t)] =0, vt > T

for any two applicable initial conditiorsandb. From (2.13),# is a composite hysteresis opera-
tor, formed by the inverse PI operaﬂbﬁdl, whose largest play radius ig and the play operators

of g, Where the largest play radiusris. Assumption 5 therefore implies that, fior- 2T,

|7 [ud; Wa(0)] (t) — #[ug; Wo(0)] (1) = O (3.16)

for any two applicable initial conditiondk(0) andW,(0). We will also note that the modified Pl

operator (and thereforg’) satisfies the Volterra property

f1(s) = f2(s),0 < s<t = Tpq[f1; W(0)](t) = Mha[f2; W(O)](t), ¥t >0 (3.17)

and the semi-group property

Mhdlf2; Tha[f1;W(0)](t1)] (t2 —t1) = Tha[f1; W(0)] (L), if fo(t) = fo(t —t1) (3.18)

Finally, we know from the definition of the play operators ahd modified Pl operator that there
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Figure 3.2: Equivalent block diagram for the closed-loogtegn (2.13),(3.13), and (3.14) in steady
state analysis.

exist constantag andbg such that the growth condition
W] < aglua(t)[| +bg, ¥t (3.19)

is satisfied. From our discussions in Section 3.2, we knowithgy = 0, i.e. 6, = éd =0, the
closed-loop system possesses a globally exponentialiyestaperiodic solution(xr(t),nt(t)).
Therefore, the closed-loop system fits into the class ofesystconsidered in Theorem 2.1 of
[63], and for a sufficiently smalky there exists an asymptotically stableperiodic solution

(X(t),n(t),W(t)) for the closed-loop system (2.13),(3.13), and (3.14).
Remark 3 This Theorem can also be applied to a classical Pl operatpgdnsideringdy = O.

Having now established the existence, uniqueness, antitgtabthe periodic solutionx(t), n(t),W(t)),
we can now discuss the steady state performance of the dentfrom theT -periodicity ofW(t),

we can equivalently write the inversion error (2.26) as tbarter series
/! / A/ A/ > . 27-[kt
a(t) = 63Dz(6W(t)) — 6iDz(6W(t)) = co+ Z cksm(? + ) (3.20)
K=1

for some constantg;, ¢, --- andcy,cy,--- > 0. We have now shown that the effect of hysteresis

at steady state can be reduced to an equivalent exogendughdigea (t), as we illustrate in
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Fig. 3.2. We therefore separate the disturbam(e into two components. Let us assume that the
matrix C* in our servocompensator (3.3) has been chosen such thajetsvalues are located at

+jkw, k € p, wherep is a finite element vector of whole numbers, and then define

27kt
ac(t) =co+ ) Csin(—— + @) (3.21)
T
kep
.27kt
ag(t) = > cesin(— + @)
-
kép

From the properties of the servocompensator, we know thaetiect of the disturbance will
be eliminated from the system at steady state. Thereforé&rdloking error under the proposed
control scheme will be of the order aof;, which can be made arbitrarily small by accommodating

a sufficient number of harmonics in the servocompensataogules

3.3.1 Output Feedback Control of Systems with Servocompensators

It should be noted that there are many other ways of desighendesired stabilizing contraj(t),

as opposed to the riccati equation approach presentedli?) (3 variety of techniques including
LQG control,H control, or observer theory can be used to stabilize theedkdsop system. In the
interest of our experimental implementation, we will nowaliss the implementation of an output

feedback controller in our closed-loop system. We will ubgeanberger observer,

X(t) = AR(t) + Bug(t) + L(y(t) — CX(t)) (3.22)

which transforms (3.13) into

Ug(t) = —[Kq, K] (3.23)
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The gain vectoL is chosen so that — LC is a hurwitz matrix. The design of luenberger observers
requires the plant matricésandB to be known; therefore in the case of output feedback we requi
the uncertaintyd* to be identically zero to show stability. Under this assuomtwe can integrate

the observer into the control loop, which results in the etbiop system

_X(t)_ A —BK; —BK; _ _x(t)_ _ééDz(égW(t))—BC’,DZ(Gk’]W(t))_

n|=|-BCc c 0 n(t)| + By ()

[Xt)| | LC -Bke A-BKi—-LC| |X(t)]| | 0 |
(3.24)

where the system matrix is Hurwitz. As this system possems&xponentially stabl&€-periodic
solution whenreyg = 0, we can apply Theorem 2.1 of [63] and conclude stabilityhef¢losed-loop

system in an identical manner to the proof of Theorem 1.

3.4 Experimental Implementation of Proposed Controller

3.4.1 Nanopositioner Modeling

We now examine the performance of the proposed control sefema piezo-actuated nanopo-
sitioner, shown in Fig. 3.3. We have discussed the pradtigabrtance along with the need for
improved controllers for nanopositioning in Chapter 1. Tplaform therefore provides a valuable
and practically relevant test of our controller’'s perforroa in systems with hysteresis.

The first step in our experimental tests involves model ifieation for the piezo-actuated
nanopositioner. The hysteretic behavior was experimignthhracterized using a quasi-static in-

put, which sweeps the positioner output over its operati@rae. As seen in Fig. 3.4, the hystere-
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Figure 3.3: Nanopositioning stage used in experimentation, Nano-OP65 nanopositistaigg coupled
with a Nano-Drive controller from Mad City Labs Inc, with a primary resoeeof 3 kHz. Position feedback
is provided by a built-in capacitive sensor.

sis loop is not odd-symmetric; therefore we use a modifiecpBtator (2.24) with with 9 deadzone
elements and 8 play elements to model the asymmetric hgs&teta addition, a bias scheme was
used to center the hysteresis loop about the origin; thisasesmplished by subtracting 25.8n
from the plant output and 4V from the plant input in the modglprocedure. The radii and

thresholds were chosen based on the input and output range of the plant,

r =[0,0.33,0.66,1.00,1.33,1.66,2.00,2.33’

z=[-2.68,—1.97,~1.22 —0.42,0,0.32,1.02,1.76,2.57)'

We then identify the model Weighéﬁ andéd using quadratic optimization routine outlined in [32]:

6, =[0.719,0.183 0.035,0.055,0.034,0.033, 0.023,0.06 1)’

6y =[1.062 0.473 0.641,0.311,8.426, —0.636, —0.501, —0.614, —0.415/

The model weight$}, andy are then used to calculate the inverse operﬁﬁjr[ud,W(O)](t).

Since the modef 4 is generated by biasing the input and output, we are reqtiredbtract 25.9
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Figure 3.4: Measured hysteresis loops for the nanoposition

from the inversion input and add 4 to the inversion output sontain the inversion structure. A
comparison between the model and plant output is shown inF#® The discrepancy between
the model prediction and the actual measurement was arounddver a travel range of 46m.

We then model the plant dynamics, using frequency respatessification techniques with
small-amplitude sinusoidal inputs to reduce the impactysftéresis on the measurements. We
found that a fourth-order plant model matched the measuieggiéncy response reasonably well,
up to 3.5 kHz. We also set the DC gain of the dynamics to zemogghe DC gain is accounted for

in the hysteresis operator. This model has the transfetiimc

G — 8.8 x 10'°
S 4+16x10°3+6.6x 1082+ 5.3 x 1025+ 8.8 x 1016

(3.25)

Note that the combination of high resonant frequency andrdrds resulted in very large numbers

in (3.25). In order to improve computation accuracy, we usdxhlanced state-space realization
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Figure 3.6: Model prediction and experimental data for ae@sing sinusoid used to optimize the
hysteresis model.

39



[65] in our control design:

—0.014 1700 Q095 —0.050 27.8
—1.700 —0.241 —0.672 Q170 1113
X(t) =1.0x 10* X(t) + u(t)
0.095 Q672 -1.066 1617 1165
0.050 Q170 -1.617 —0.305 441
y(t)=1278 —1113 —1165 441|X(t) (3.26)

These matrices then define the nominal plant matr@éeé,C,O), as defined in 3.8 and 3.9.
We next designed our robust stabilizing control (3.12). Wenttested how the model parameters
varied by loading weight onto the nanopositioning stage fMiad that with a maximum load, the
parameters of (3.25) varied by arousit%. Therefore, we designed our controller to be robust
to changes of-10% in the parameters of (3.25). We then translated thist@nsinto balanced
coordinates via the same coordinate transformation usgelrterate (3.26). The resulting matrices
become thd,, C1, andD; matrices used in (3.11). Together with the balanced coatdigystem
matrices from (3.26), we can then calculate the stabilizimgtrol (3.12).

Finally, we implement a Luenberger observer to estimatestages, as explored in Section
3.3.1. Designed and implemented in the standard mannertk@thominal state space model of

the plant, the output feedback controller is given as

~ A

X(t) =AR(t) + Bug(t) + L(y(t) — CX(t)) (3.27)

Ug(t) = — K1, Ko (3.28)

wherelL is chosen so thak — LC is Hurwitz. In our work,L is chosen using an LQR method, and
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equalg0.3,-3.5,-1.7,—0.23].

3.4.2 Experimental Results

We now present the results of our controller implementati@ontrol and measurement were
facilitated by a dSPACE platform. For comparison, we implataed an iterative learning con-
trol (ILC) algorithm [38], and a custom-designed proporéibmtegral controller with hystere-

sis inversion (Pl+l). When discussing the proposed comtrolive will distinguish between a

single-harmonic servocompensator (SHSC), and a multi-baicnservocompensator (MHSC).
The SHSC is strictly second order, and compensates for theapr harmonic of the reference
only. The order of the MHSC will vary between experiments.

Our first set of experiments considers sinusoidal wavefdomthe reference trajectory,

yr (t) = (20sin(2mawt) + 30)um

with frequencies of 5, 25, 50, 100 and 200 Hz. Two metrics aegluo quantify the tracking error.
The mean tracking error (MTE) is computed by taking the ayeraf |e(t)| at steadty state, and
the peak tracking error (PTE) is the average of the maximacking error in each period of the
reference. Both metrics are computed at steady state.

Table 3.1: Tracking error results for various controlleddl.results are presented as a percentage
of the reference amplitude (Ron).

Referenceg MHSC (%) SHSC (%) ILC (%) Pl+I (%)
MTE PTE MTE PTE MTE PTE MTE PTE
Sine, 5 Hz 0.271 0.899 0.649 1.72/ 0.135 0.250 1.06 1.93
Sine, 25 Hz 0.268 0.881 0.707 1.85 0.163 0.565 540 8.96
Sine, 50 Hz 0.284 1.01 0.770 1.93 0.262 0.711 10.86 17.63
Sine, 100 Hz 0.352 1.03 0.815 2.38 0.528 1.42 21.21 33.65
Sine, 200 Hz 0.519 157 0.863 2.50 1.31 3.20 37.61 59.6
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Table 3.1 contains the results for each reference and dlentnohere the MHSC contains the
first, second, and third harmonics of the reference. The &troller performs very poorly at
high frequencies, a problem that has been well document&®]2The ILC algorithm performs
very well in general, but cannot match the MHSC at 200 Hz, asvahn Fig. 3.7. A detailed
comparison between the ILC and MHSC methods is shown in Fig. At low frequencies, the
ILC algorithm performs better than the MHSC. At 50 Hz, the esrare very close, with ILC still
slightly ahead. However, at 100 Hz and 200 Hz, the MHSC isiogmtly better, with only 40%

the mean tracking error of ILC at 200 Hz.

~ 50¢ —— SHSC |]
g_ 40+ y— - -ILC g
= 30l - P+l ]
2 | MHSC
5 20 D :
O ~
10 Il Il Il Il
19.99 19.992 19.994 19.996 19.998 20
Time (s)
2
€
=2
S
i
_2 L L L i L _
19.99 19.992 19.994 19.996 19.998 20
Time (s)

Figure 3.7: Experimental results at 200 Hz for the proposethods (SHSC and MHSC), ILC and
PI+.

We can also compare the performance of the multi-harmomosempensator (MHSC) with
that of the single-harmonic servocompensator (SHSC). Fromtheoretical results, we would
expect the MHSC to perform significantly and consistentlydye¢han the SHSC; this is confirmed

in Table 3.1, as the MHSC outperforms the SHSC by significaatgins at each frequency for
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Figure 3.8: Comparison between multi-harmonic servocorsgen (MHSC) and Iterative Learn-
ing Control (ILC).

both error metrics. However, the performance gap narrowtkeaseference frequency increases.
At 5 Hz, the MHSC has around 40% of the tracking error of the SH8hereas at 200 Hz the
MHSC has 60%. This can be attributed to the resonant peakeofititational dynamics of the
system. In particular, with increasing frequencies, therfmaics higher than the second and third
become more significant. Fig. 3.9 shows the spectra unde€C3stSeference signals at 5 and 200
Hz. In both cases, the second and third harmonics of thearatersignal are the most significant
in the error signal. However, the other harmonics of theesysdre significantly larger at 200 Hz
in comparison to the dominant second and third harmonias i@y are at 5 Hz. It is therefore
reasonable to expect that canceling the second and thintbimées in the 200 Hz case would result
in reduced benefit as compared to that in the 5 Hz case.

We also demonstrate the ability for the MHSC to track sawtaeterence signals. Sawtooth

signals are commonly used in SPM applications, and represeimallenge for our proposed con-
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Hz plot.
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troller since they do not have a finite-dimensional intermabel. However, by using the first few
harmonics of the signal, we can arrive at a reasonable appation. Fig. 3.10 and Table 3.2
show tracking error results for the three control methoaslys/here the MHSC incorporated the
first 6 odd harmonics of the reference. The ILC controller &lsuited to tracking signals like a
sawtooth, and this is shown in the tracking results. WhileRhd controller has reasonable per-
formance at 5 Hz, its performance falls off dramatically @tf. The MHSC does a significantly
better job than the P+l controller at tracking this signathvan average error that was only 20%
of what was achieved by the latter controller at 50 Hz. Whikettlacking error under the MHSC
is almost five times of that under ILC at 5 Hz, it becomes coraplarto that of ILC with smaller
maximum error at 50 Hz, indicating that the MHSC can fadiitaacking of such sawtooth signals.

Table 3.2: Tracking errors results for a Sawtooth signalkte&ults are presented as a percentage
of the reference amplitude (Ron).

5 Hz (%) 50 Hz (%)
MTE PTE MTE PTE
MHSC| 0562 4.15 1.08 4.26
ILC| 0114 0775  0.808 5.70
P+l 1.08  1.30 10.3 12.1

We also test the performance of the proposed controllerumdee complex inputs. Fig. 3.11

shows the experimental results for the MHSC and ILC with anezice signal of

Yr(t) = 5sin(2m5t — 11/2) + 5sin(2rml% + 11/2) + 10sin2m25 — 11/2)

Such an input excites more complex memory states for hyssetiegan a sinusoidal or sawtooth
input, and is a useful test of the proposed controller'sitghib compensate for hysteresis. For
this experiment, the MHSC is designed to compensate fordfezance signal alone, yielding a

6th order servocompensator. The resulting mean trackirggseare 62% for the MHSC and
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Figure 3.10: Experimental results at 50 Hz for sawtoothresfee signal. Two periods are shown.

0.66% for ILC. Even though the reference is fairly slow, the adage that ILC possesses at low
frequencies for the sinusoidal references has been reversieis test by the MHSC. This proves
the effectiveness of the proposed controller at compamgé&tr hysteresis in general systems.
Finally, we investigated the robustness of the system'®p®ance to loading conditions. To
prevent damage to the nanopositioner, we limited our erpanris to 40% (200 g) of the maximum
load recommended by the manufacturer. ILC and a MHSC (acaaatimg first three harmonics)
were used for this study. Table 3.3 shows the results fokimgca 50 Hz signal for the loaded
operation, as well as the percent-change from the nomisalteepresented in Table 3.1. The
performance of the MHSC is nearly unchanged from the unldadse, a point also readily visible
in Fig. 3.12. The ILC controller, however, has suffered abé drop in performance, with double-
digit percentage drops in accuracy in the loaded case. Hawewe to ILC’s better performance in

the unloaded case, both methods are very close in the rasrpemce. This result indicates that
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Figure 3.11: Experimental results for a reference trapgctof y, = 5sin(2m5t — 11/2) +
5sin(2mls + 11/2) + 10sin2m2s — 11/2)

47



0.3

No Load
0.25+ — — —200g Load |

I
0.15F ; Iy
|

o©
[En
T

e | |
0.05fY " | o | i ;
. \

Error (um)

—005F hl WP ! |
—01f N

-0.151

-0.2 ; : ;
19.98 19.985 19.99 19.995 20

Time (s)

Figure 3.12: Tracking errors for a 50 Hz reference signalldaded and unloaded nanopositioner.
An MHSC was used in both cases. Note the similarity in the tirajgctory of the tracking error.

the MHSC'’s performance is significantly less tied to modekeguracy than ILC’s, since the net
effect of a load is to deviate the plant from its nominal dyrm@nwhich proves the performance
robustness properties discussed in Section 3.3.

Table 3.3: Loading performance for MHSC and ILC. First twourohs are presented as a percent-
age of the reference amplitude {2®), second two columns are percent change from the unloaded
case.

MTE PTE|AMTE APTE
MHSC | 0.288 0.940 1.41 -6
ILC | 0.308 0.775 18.5 10.7

48



Chapter 4

Harmonic Analysis of Hysteresis Operators
with Application to Control Design for

Multi-Harmonic Servocompensators

4.1 Introduction

We now provide a design tool for the MHSC proposed in thisattsgion. Consider the expression
(3.21), which describes the effect of hysteresis on theeddsop system at steady state, and let
Gge denote the transfer function froa(t) to e(t) of the nominal closed-loop system (2.13), (3.13),
and (3.14) whereg = max(||84]|, ||84]|) = 0. If ag is known, the steady state function ft) can
be derived from the expressi@ft) = Gge(S)[aq(t)]. However, the trajectory afiy is dependent
on the hysteresis operator; specifically, the amplitugesnd phasegy are unknown functions of
the system parameters and hysteresis operator. Thedlyetics possible that these coefficients
are prohibitively large; however, we can see from our expenital results thaty is reasonably
small.

Recall from Chapter 3 that the order of the servocompensatobeaised directly as a design
aid to improve tracking performance. As a control enginiés,desirable to obtain the minimum

order and complexity for the controller to accomplish a giebjective. Existing design techniques
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for the MHSC consist of repeated iterations of differenttoolfer orders until the desired perfor-
mance is met, which is botid hocand time consuming. Therefore, it is of interest to evaltiage
harmonic components of a hysteresis operator in terms dfytsieresis parameters.

We now present our results on such an algorithm, which eteduthe Fourier coefficients
[66] of the output produced by a hysteresis operator in am-dpep system. This algorithm is
applicable to both Pl and PKP operators, and has two primamyponents. First, we form the
output of the hysterons using a series of pulse signals. Uilse gignals are defined through a set of
time instants at which the hysteresis behavior switcha$ilay are determined by a combination
of the input signal and operator parameters. Second, wéisdfetmulation to compute the Fourier
series of the output. For the example of a play operator stitgea sinusoidal or sawtooth signal,
we provide explicit expressions for the coefficients, whach functions of the input amplitude and
the hysteron parameters. We will also show that the reguéixpressions provide some valuable

control design tools for closed-loop systems such as th@hapter 3.

4.2 Open-Loop Computation of Hysteresis Operator Outputs

Recall that any periodic signal(t) with periodT £ 271/ w can be written as an infinite summation
in the form

o(t)=ap/2+ i an cog wnt) + by sin(wnt) (4.1)
=

where the coefficients, andb, are defined by the integrals

=T / t) coq wnt)dt (4.2)

7 / ) sin(cont)dt (4.3)
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For a Preisach-like operator, the Fourier series coeffisiehits output can be constructed from
those of its constituent hysterons. To see this, consigeexample of a Pl operator. Recall that
the output of any play operator is described by its statechvhie have defined a4 [v; W(0)](t).

Say that we have calculat®d, [v; W(0)](t) in the Fourier series form
W [;W(0)](t) = aio/2+ ) aincos(wnt) + bin sin(cnt) (4.4)
=1
Then the Fourier series coefficientsugt) = I'[v|(t) can be calculated from (2.3) as

m m m
ag= Y 6Bajo, an= Y BGan, bn=" 6b (4.5)
i; | i; 14N n i; 1Min

A similar expression can be quickly derived for the PKP ofmeras well. Therefore, we will focus
our attention on computing the Fourier series for the ougfwn individual hysteron. We will

begin with the play operator, defined in (2.1).

4.2.1 Harmonic Analysis of a Play Operator

In order to compute the Fourier series of a play operatortpudy we first need an analytical
expression for which a Fourier transform can be easily etatli We describe the output as a
function of the input as well as a series of pulse wave sighalB,, andPs, determined by a set of
time instantsT; = [ti,ti2,...] andTo = [to1, 102, - . .]. FOr a general input, we define the output of a
play operatou(t) as

u(t) = (v(t) + Pu(t))Pa(t) + Ps(t) (4.6)
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where

Py(t) = —r(sgn(v(t))) (4.7)
(
0, tE[tij,toj),VJZl,Z,...

Po(t) = (4.8)
1, tE[toj,ti(j+l)),Vj:1,2,...

\
(

v(tij) —r(sgn(v(t;))), te [tijtoj)
Ps(t) = (4.9)

0, otherwise(o.w.)

\

andv(t) is the input to the operator. We will assume that the timeadei has been shifted so
thatu(0) lies in the linear region of the play operator. The time in&d; andT, are determined
systematically based on the reference signal and the rafithe play operator. In particuldr; is

the first time satisfying the conditions

V(tij) = 0, tij > to(j_1), SGNV(L;)) # sgn(v(t;}))

This represents the time when the output of the play opeteositions from a linear region into
the flat “play” region. In contrasty; is the time period when the output moves out of the “play”

region, and is the first time satisfying either

’V(tij) _V<toj)‘ 2 2r7 tOj Z ti]a

or

sgrV(t}))V(toj) < sgV(L}))V(tij), toj > tij
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3r

Ty o1 i T

Figure 4.1: A sample curve showing how the time instafitand T, are calculated for a play
operator. The variableis the radius of the play operator, and it is assumed thatiet iat time
zerois 2.

Two cases exist for the definition tfj since there are two ways to exit the play region of the play
operator. The first case deals with the output leaving theneigion by entering the opposite linear
portion from the one it entered. Naturally then, the secaskdaeals with the output leaving the
play region by entering the same linear portion as the onaéred from.

Fig. 4.1 shows an example of how the time instah@®ndT, are calculated for one portion of
a periodic signal. The inflection point markgddefines the first element 4f. to1 is defined by
the graph returning to the level of 5since the curve did not fallrZrom its value atj;. tj; is the
next inflection point aftet,; and the third such point plotted on the graph. Findly,s defined
by the point where the graph has fallenf@om its value at;,.

As a further illustration, Fig. 4.2 demonstrates how they@perators output is reconstructed
from the input and pulse signals. The reference signal isnasd to be a sinusoid with amplitude
of two, and the play operator possesses a radius3oflhe vertical dashed lines indicate the time

instants for this particular reference and play opera®pft) controls the offset or lag generated
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Figure 4.2: Reconstruction of the output) of a play operator. The play radius= 0.3, and the

time axis is shared by each signal.
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by the play operator in the linear regior®(t) “switches” the output between the play and linear
regions of the operator, whilBs(t) “holds” the output when the play operator is in the “play”
region.

Having now expressed the output of the play operator in tha {@.6), we can compute the
Fourier series of the outputt). Using (4.6) along with (4.7)-(4.9), we can break up thegréés

in (4.2) and (4.3) as

{ / t01 )) coq wnt)dt

t) + Py(t)) cog wnt)dt

t)) coq wnt)dt + - - } (4.10)

[/ ) sin(wnt)dt

/ t) + Py(t)) sin(cont)dt
AL

t02

)sin(cnt)dt + - - } (4.11)

The complexity of calculating, andb, depends greatly on the formwaft) as well as how complex
the definitions for the time indiceg andT, are in order to describe the signal. However, we can

arrive at simple and analytical expressions for some comtyyes of input signals.

4.2.2 Example Calculations for a Sinusoidal Input

We will now present some sample calculations of the Fougges coefficients for the play oper-

ator. For a sinusoidal input, we can derive the final expoessiora, andb, of the harmonics as
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explicit functions of the amplitude and the play radius. Gdesa sinusoidal input

v(t) = Asin(wt) (4.12)

We assumeA > r, which ensures a contraction property like (3.16); thusdteady-state play
output is independent of the initial condition. Sinusoisiginals are easy to deal with utilizing the
proposed algorithm because they possess only two infleptarts per period, which gives the
pulse signal$(t), Px(t), andPs(t) very simple forms. The first step in the computation of (4.10)

is to obtain the time instanfs andT,,

T (j—1T
tij:Z-l-(J 2) (4.13)
T sinta-2r/A) (j—-1T
] STA2/A) (-3 4.14)
We can then write (4.10) as
2 to1
an == / (A—r)codq wnt)dt
T Jw
ti
+A 2(sin(a)t)+r)cos(a>nt)dt
to1
to2
+/ —(A—r)codq wnt)dt
ti2
T+t
+A (sin(wt) — r) coq cwnt)dt (4.15)

to2
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This results in two types of integrals to evaluate, whosatgmis forn > 1 are given by

/ cog wnt)dt = sini)ar)]nt)
/ sinwt cog wnt)dt = Cojcf)rg;_l)lc)LK) - co;((f)rg::)l?)t) (4.16)

Using these integrations combined with (4.13)-(4.15), area&rrive at a closed-form expression for

each individuak,. The expressions fds, can be derived in a similar way. Furthermore, because

of the form for the limits of integration, we can simplify ghexpression fon > 1. In particular,
because of the appearance of Simlong with half and quarter periods, simplified expressitars

be found devoid of any trigopnometric functions. For exampleenn = 3,

Ar (8r3 — 16Ar2 4- 9A%r — A3)

ag = — A (4.17)
and
16r(2r2 —3Ar+a2)/r(A—r)
b = — " (4.18)
Furthermore, we can computg= /a3 + b3, which simplifies to
4r(A—r)
= 7 4.19
C3 AT (4.19)
while forn=15,
_ 7 2
C5:4r(A r)v/32r2 — 32Ar + 9A (4.20)

15A21T
Fig. 4.3 and 4.4 show the calculated valuespas functions of the amplitud& and the play

radiusr respectively. The even harmonics are always zero due todtiesgmmetry of the play

operator. Fig. 4.3 shows the relative size of harmonic aoeffts trending towards zero with
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increasingA. Such a behavior is anticipated, because the hysteregpsdo@ fixed play radius
appears narrower and narrower as the amplitude of the ispotieased. From Fig. 4.4, we can
see that the relative amplitude of the harmonics variestigredth the play radius. In particular,
for a play radiug = A/2, c3 is five times as large as;, yetcs andc; are almost identical in size.
But forr = A/4, cs is over three times the value of. However, from both Fig. 4.3 and 4.4, we
see that higher harmonics are always less significant thetrlbarmonics. Such graphs can serve
as a valuable design tool for systems such as that consiatej@d], as we will be able to estimate

the relative sizes of the harmonics within the systepriori.

0.12
3rd
. —— 5th
01 - |
T — — 9th
. *  11th
0.08 . 13th |1
< .
~c 0.061 . i
13 .
0.04} e :
oo2f [ T el
/ ~ - - _
o i *xx%\%Wﬂﬁ&x‘lxlxixix{xx%x%x ****
0 2 4 6 8 10 12

Amplitude (A)

Figure 4.3: Plot ot for increasing amplitud@. The play radius is held constantrat 0.5.

4.2.3 Example Calculations for a Raster/Sawtooth Input

We also investigate the application of the algorithm to &erasr sawtooth input signal in combi-

nation with a play operator. As we have seen, such inputsateplarly relevant in atomic force
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Play Radius (r)

Figure 4.4: Plot ok, for increasing play radius. Values ofc, andr are normalized by the input
amplitudeA.

microscope applications [23]. We can write the inp{i) with amplitudeA and periodl as

Nt-Tn), fte[—5+Tng+Tn
v(t) = (4.21)

~Bt-Tn-T/2), ifte[fT+Tn3L+Tn

forn=1212---. Similar to sinusoidal inputs, raster signals have only taftection points per

period, allowing us to easily calculateandT, as

T (j-1T
WZZ+QEL'

Tr+A)  (j-1T
LiTTa T
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Using this, we can write (4.28) as

s |

T /tt01(A— r)cog wnt)dt

+/tti2(—4A/T(t —T/2)+r)coq wnt)dt
o
+[ —(A—r)coqwnt)dt

T+ti1
T /t (4A/T (t—T) —r) cog wnt)ctt (4.22)

02

We can again compute closed-form expressions for bgndb,. In this case, we can derive a
simple formula for evergy;

4A,/2(cog ") +1)

o nis odd

Cnh

(4.23)
0 nis even

4.2.4 Harmonic Analysis of a PKP Hysteron

We finally address the application of the proposed algortihnthe PKP hysteron. We will use the
same basic setup for reconstructing the output; howevewileaeed to alter the construction of
u(t) due to the form of the PKP operator. In particular, we write

2(v(t) + P (1))

u(t) = (~1+ ==

)P2(t) + Pa(t) (4.24)
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wherePy (1), P>(t), andPs(t) are defined by

\
,

\
,

\

—a sgrv(t)) >0
B sgn(t)) <0
Pui(t™) sgn(v(t)) =0
0, teltijtof),Vj=12,...

1 te [toj,ti(j+1)),Vj =12 ...

14 Z(V(tija)—a) sgn(V(t;;)) > O andt € [tij,to;)

14 2Mp))

. sgr(¥(t;)) < O andt € [t to])

0, 0.W.

(4.25)

(4.26)

(4.27)

The definitions above are slightly different from thoseddstn (4.7)-(4.9). The other major differ-

ence between the cases of the PKP hysteron and the play aperat the definitions of the time

instantsT; andT,. In particular, there are some extra conditions for defigaght; andt,. As with

the play operator, for the PKP hysterdéincan be defined by an inflection point in the input signal

v(t). However, we will also usg to define times when the input saturates the PKP operatgr, i.e

tjj is the first time satisfying the condition

V(tij) = 0, tij > to(j—1), SGNV(L})) # sgrv(t))),

or

V(tij) < B, tij > to(j-1)5
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or

V(tij) > a+a, >to(j—1)-

Since we have added conditions to the definitiofy o must also add conditions to the definitions

of to related to exiting the saturation regions. Thereftyas the first time satisfying the condition

\V(tij) —V(toj)| > a — B, toj > tjj,

or
sgnV(t))V(toj) < sgrV(t)))V(tij), toj > tij,
or
V(toj) > a, V(tij) =, toj >tij
or

V(toj) < B+a, V(tij) = a +a, toj > tij.

where the saturation within the PKP hysteron has added thétiwo conditions. The first two
conditions listed serve the same roles they did with the plagrator; namely exiting the center
“play” region from the opposite or the same side as the signédred. Once the time indic&s

andT, are defined, the Fourier coefficients can be calculated isdh®e manner as they were in
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Section 4.2.1, by evaluating the integrals

tiz w) cog wnt)dt

to2

+/ (Pg(t))cos(wnt)dt+~l (4.28)

by =2 Ut“(pg(t))sin(wnt)dt

tiy
to 2v() +P()) ) sin(wnt)ct
a

+ t02(P\g(t))sin(a)nt)dt+---] (4.29)

ti2

4.3 lllustration in Controller Design

We will now explore the use of the proposed analysis in theégdesf controllers like those pro-

posed in Chapter 3. We consider a closed-loop system

xt)| | A0 [xv) . B(Ug + BW [ug; W(0)](t))
n(t) —B*c C*| |n(t) B*yr(t)
t
) =Kk |
n(t)
yr (t) =asin(2mt) (4.30)

whereA= —B = —20rm,c=1,x € [0, and@ = 0.1. This system represents a simplified version of
the system considered in Chapter 3. The variahiefers to the state and output of our example

plant, whilen is the state vector of the servocompensastor. The vB¢tand matrixC* are chosen

63



as a controllable pair where the eigenvalue€bfare predetermined harmonics of the reference
frequency 2r. As discussed in Chapter 3, an important step in the desigumcbfa controller is the
selection of which harmonics will be compensated by the@wmmpensator. For this simulation,
we will consider controllers compensating the (a) the fiestntonic, (b) the first and third, and
(c) the first, third and fifth harmonics, implying € 02, n € 0% andn € O° respectively. The
control gaingKj, Ky] are selected using the well known LQR technique [60], wii@re set to an
appropriately sized identity matrix, aift= 1. The value o= 0.931 is chosen as the amplitude of
Ug necessary for an open-loop sinusoidal input to output aagfrunit amplitude when = .5. We

will use two different play radiir = A/2 andr = A/4, and investigate the differences in tracking
error for the three controllers discussed above.

For such a system, it is desirable to meet a required trackirg target with a minimum-
order servocompensator, as increasing the order of theg@npensator increases the computa-
tion power needed to accomplish the control task. Howeteretare no existing guidelines for
selecting the order of the compensator, and thus the ordéreofompensator is the result of a
guess-and-check process. Now, based on Fig. 4.4, we ard¢cablake some educated design
decisions concerning the order of the servocompensator.n\Whea/2, we would expect com-
pensating for the third harmonic to have a much greater imghan whenr = a/4. Likewise,
compensating for the fifth harmonic should be more effeatilenr = a/4 as compared to when
r=a/2.

Fig. 4.5 confirms these expectations. When only the first haitrie compensated, we notice
that the error is significantly higher when= a/2, where the mean tracking error istd x 103,
as compared with = a/4, where the error is.26 x 1073, A larger play radius can be interpreted
as a larger hysteresis effect, which explains this initifecence. Once the third harmonic is

compensated, the tracking error in the a/2 case becomes lower than the a/4 case, with the
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tracking errors being.97 x 1023 against 115 x 10~3. Finally, the situation reverses again when
the fifth harmonic is compensated, with the- a/4 case leading = a/2 case, where the errors
are 043x 102 and 061 x 103 respectively. These results give us some general guidain¢he
selection of the controller order, which can be based onhwvigights of the Pl operator possesses

the largest amplitude.

x10°

4.5

1.5}

Mean Tracking Error

0.5}

Highest Harmonic Compensated

Figure 4.5: Mean tracking errors for various controllersl gy radii. Note that the controller
gains and structure is unchanged by altering the play radius

Furthermore, we can use the equations (4.19) and (4.20htevecan estimation for precisely
how much effect the compensation of each harmonic will havke closed-loop system. Consider
a system (4.30) witl®W; [ug; W(0)](t) replaced by a fictitious external disturbarxé). Let ¢(s)
be the transfer function frora (t) to the tracking erroe(t) =y, — Cx, which can be calculated
from the state space form of (4.30) [60]. We can then estirteteeffect ofOW, [ug; W(0)](t) on
the tracking error through the formu;|@(j2i)|, which gives the amplitude of théh harmonic

within e(t) for a given controller defining(s). This formula would be exact, if the play operator
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was driven by an open loop sinusoid of amplituleinstead ofug(t). However, since the play
operator is within the loop, we can expect some error in thienason.

It is important to note that the weigltt used in these tests is fairly small, with a value of
0.1. Recall that the expressions (4.19) and (4.20) for the Eowoefficients used in the above
simulations were derived under the assumption that thetitgpthe play operator was a pure
sinusoidal signal. By having a smdl| the resulting harmonics added to the system by the play
operator are fairly small, and thug is fairly close to an ideal pure sinusoid.

Table 4.1: Proposed algorithm’s estimations of harmoniplaode compared with actual values
from closed-loop system (4.30). Setup column gives valu@ly radius used and the harmonic
being estimated.

Setup Predicted Actual | % Error
3rd,r =A/2 | 0Oc3|@(j6m)| =6.77x10°| 7.00x 103 -33
3rd,r =A/4 | 0Oc3|p(j6rm)| =5.08x102 | 501x 103 1.4
5th,r = A/2 | Bcs|@(j10m)| =1.68x1073 | 1.79x 103 | —6.5
5th,r = A/4 | Bcs|@(j10m)| =1.29x 1073 | 1.35x 103 | 4.7

Table 4.1 compares the estimated harmonic values with thala@lues, which are calculated
from the simulation tracking error using the Fast FourianBform (FFT) function of MATLAB.
Four calculations are presented, in which the harmonicgoestimated is varied between the 3rd
and 5th harmonics and the play radius changed betweea/2 tor = a/4. The controller is also
changed, compensating the first harmonic when the third dvaioms estimated, and compensating
the first and third when the fifth harmonic is estimated. Theget error is calculated using the
standard formulafPredicted-Actual) /Predicted. The proposed algorithm is capable of generating
a fairly accurate estimation of the amplitude of the harragnwith the highest error being only
6.5%. This is made more impressive by the fact that there aretimer aiseful tools for such a

design problem.
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Chapter 5

A Nonlinear Adaptive Servocompensator

5.1 Introduction

In Chapter 3, we demonstrated the effectiveness of servoeesapors for solving tracking prob-
lems in systems with hysteresis. The design procedure fenasompensator requires precise
knowledge of the reference frequency’s internal model t&rm@vn a priori. However, such de-
tailed knowledge of the reference is not available in adedoc many applications. In addition,
the controller parameters of the servocompensator mushdreged each time the internal model
of the reference changes.

Motivated by this, we investigate the use of an adaptivesmmpensator, presented in [68], to
solve the nanopositioning tracking problem when the fregyes unknown. We will make use of
hysteresis inversion to improve the compensator’s peidioa. A high gain stabilizing controller
provides robustness to varying loading conditions andratheertainties in the plant dynamics.
We use parameter projection to robustify the method of [§@lrast a bounded input disturbance.
Then, we use similar arguments to that in Chapter 3 to showhtit a well-designed hysteresis
inversion, the remaining effect of hysteresis in the stestdye can be treated as a periodic ex-
ogenous disturbance. This, coupled with the robustnessiodadaptive law, permits us to argue
that the tracking error is bounded, and its steady stateevaltelated to the size of the exogenous
disturbance left over after inversion. We also extend th@robmethod of [68] to accept cases of

partially known exosystems.
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We confirm our theoretical analysis by experimentation oromroercial hanopositioning
stage. The performance of the proposed controller is comptr an iterative learning control
algorithm [38]. Average tracking error is undeB% at 200 Hz for an actuation range of 60% of
the stage limit. Tracking results for sawtooth signals dse presented. Since transient behavior
is important in practical applications, adaptation cogeece speeds are also tested. Adaptation
parameters settle within 2 s in response to changes in theerafe signal from 75 to 50 to 100
Hz. The controller is shown to be robust to loading condgifnom 0— 20% of maximum load.
However, we will also observe that this controller cannokenase of the principles of the MHSC,

which motivates us to consider a novel solution for this pgob

5.2 Robust Adaptive Servocompensator Design

5.2.1 System Equations and Error System

Following [68], we consider systems transformable intorthemal form,

X (t) = fr(z(t),xq(t), -, % (t),w(t)) + bu(t)

y(t) =xa(t) (5.1)

wherex € 0" andz € OP. The functionsfy and f, are unknown but smooth, witfy(0,0,0) =

0, (0,0,---,0,0) = 0. The constari is assumed to be positive and bounded. The vaetoi]¥
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is generated by a neutrally stable, linear time-invariaxosgstem,

W(t) = S(o)w(t) (52)

The matrixS(o) is in general unknown, depending on the unknown parametey§1Z.

Assumption 6 The parameteu is confined to a known compact s&t, which subsequently con-

fines $0) to a known compact s&ty.

The tracking error is given by

e(t) = xu(t) —q(w(t)) (5.3)

whereq(w) is the reference signal to be tracked. The objective of ontrobdesign is to minimize
the tracking erroe. It should be noted that it is common for the exosystem to Ioegtist known.
For example, many reference trajectories will contain astammt bias term. The differences be-
tween the partially known case and the fully unknown casélelpointed out at the end of our
analysis. Following [57], we make the following assumptio®nsure that the tracking problem is

well-posed.

Assumption 7 For every S Ky, there exists a globally defined solutigg(w) to the equation

0{s(W)
ow

Sw= fo({o(W),q(w),w) (5.4)

This assumption and the triangular structure of (5.1) ensloe existence of a unique, globally

defined solutior{z,x, u) = ({s(W),9¢(W),Cq(W)) to the system (5.1), given by
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q(w(t))

LS(U)Wq (W(t ))

LG 2, aw()

CoW(t)) = £[LE 0 A0WD) — Fr (Lo (WD), S (W(E)) W)

whereL! g( ) represents thih Lie derivative [64] ofg(-) with respect t.

Assumption 8 There exists a ¢ N, j > W and a vector of real numbefag(0),a1(0),---,aj_1(0)]

such that the identity

LL g uCo (1)) =20(7)Co (W(t)) +21(0) Lo W)

+ -+ 1(0)LL ), Co(W(t))

holds for all (w,0) € O%*2,

Assumption 8 is required to ensure that the necessary ¢antfer) can be generated by our

internal model controller. Specifically, this implies thlaére exists a mapping

Co (W(t))

Lg/omCo (W(t))
)= | 7

LL 5o (W(1))
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which satisfies

Lo To(W(t)) =P(0)To(W(1))

Co(W(t)) =ITg(W(t)) (5.5)

Hered(o) € 0¥ € O™ and(dg,T4) is an observable canonical form whose characteristic
equation is solved by the vectfk, —a;_1(0),---,—a1(0),—ap(0)]. Furthermore, the spectrum
of ®(o) contains all the distinct eigenvalues of the exosysten),(&r&l those of any harmonics of
the exosystem generated by the system (5.1). Because oféhigill refer to the paif®(o),I") as

the extended exosystem. The above functi@ggw), 35(W), cs (W), T5(W)) represent the states of
the plant, control signal, and extended exosystem on a zespreanifold. Using these functions
we will now form the error system, which will be used in our Bsé and controller design. The

global change of coordinates

2(t) = 2(t) - Lo (W(t))., K(t) = x— Sa(W(t)) (5.6)

e(t) = Xy (t) (5.7)
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Assumption 9 The zero dynamics of the systési/),

Z(t) = flo(Z(t),O, W(t)v G)

are exponentially stable, with Lyapunov function=vZ P,Z, where Ris positive definite.

As a final preliminary, we will make another change of cooati&s

O(t) = % (t) + K'bo%y (t) + K ~toya(t) + - - - + Kby 2% _1(t) (5.8)

wherek > 0 is a constant design constant, and the polynoial + by _oA" "2+ .. +biA +bg is
Hurwitz. 6 represents a modified tracking error we will use in our cdrdesign. This allows us

to place the system in the form,

a(t) =Fa(Za(t), W(t), 0,k) + GaB (1) (5.9)

O(t) =p(Z(t), B(t),w(t), 0, k) +b[u—co(w(t))] (5.10)

where
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and

(P(fa(t)7 6(t),W<t), g, k) :ﬂ(z(t)v)’zl(t)v T 7)?} (t),W(t), U)

+K'boRa(t) + K HoyRa(t) + -+ + Kby 2% (t)

with % replaced byd — k'bg%y — k' tby%o — - - — kb _o%: 1.

5.2.2 Controller Design

Our control signalu(t) is composed of two components. First, we use a stabilizingrotber,
ust = —K@8, K > 0, which will make an invariant manifold of the system gldpattractive. Then
we will use an internal model controller to ensure that onitlrariant manifold the tracking error
is zero (in the absence of disturbances). In preparatioadaptation, we design our internal model

in the canonical form [69]

E(t) = (F+Gyo)&(t) (5.11)

where& e OJ and the pair(F,G) is controllable, withF Hurwitz. (j; € 01 defines a state
feedback that sends the eigenvaluegfof- Gy;) to the eigenvalues of the extended exosystem

(5.5). The work of [69] ensures that the Sylvester equation,

Mo®(0) — FMgy = G (5.12)

has a unique, nontrivial solutiom,. We can now define the vectay, from the expression

Me®(0)Mzt = F 4 G, implying ¢o = TM5L. The implemented internal model controller
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is driven by the error terrg,

E(t) = (F+Gyio) & (1) + NO(1)

Uim(t) = Yo & (1)

where the vectoN will be defined momentarily. The composite contud) is then

u(t) = Ust(t) 4 Uim (t) = —KB(t) + Wsé (1)

(5.13)

(5.14)

We now can see that the extended exosystem (5.5) is immarsethe internal model con-

troller (5.11), with an immersion map defined as
ITO'(W) — MO'TO'(W)

satisfying the relations,

The vectoN will be designed to render a kind of error coordinate,

£ X(1) = £() — To(w(V) — £ GO

(5.15)

independent of the stabilizing gai. As discussed in [68], the terdi— T, represents the error
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between the current states of the internal model contraher desired states of the controller on
the zero error manifold. Including the term%@ simplifies the resulting equation fgr, which is

1

X)) =Fx(t) +(}FG+N+GK)9(t) 5

5 Go(Za(t),0(t),w(t), o,k) (5.16)

We can now simplify our analysis by rendering this equatitiependent oK by settingN =

—KG. This allows us to represent the closed loop system as (8¢é&oj6details),

X(0) =FX(0) + L [FGO) ~ Go(Za(t) 6(t),wit), 0.K) 517)
52(t) =Fa(Za(t), W(), 0.K) + Gab[) (518)
B(t) =@(Za(t), (1), w(t), 0.K) +buioX (t) + (WG —bK)B(t) (5.19)

5.2.3 Robust Adaptive Law

We now consider the case where the internal model of the sxasy(5.2) is unknown. An adaptive
law is proposed for the vectap,, which we will robustify to matched disturbances via partene
projection and show that the tracking error will be bound&eplacingys by (i and setting

Y = (s — Yo ), equations (5.17) - (5.19) become

X () =Fx(t) +1/b[FGO(t) — Ge(Z(t), B(t),wW(t), 0,K)] (5.20)
Za(t) =Fa(Za(t),w(t), 0,k) + Ga0(t) (5.21)
B(t) =p(Za(t), B(t),W(t), 0, k) + by X (t) + (Yo G — bK)B(t)

+bPé(t) (5.22)
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The adaptive law takes the form

P(t) =p(&(t),6(1)) (5.23)

where we will use a Lyapunov argument to defip&f,8). The system (5.20)-(5.23) will be
referred to as our nominal system. We will now seek a Lyapumnoetion for the closed-loop
system. First, consider the case wheugis known, and no adaptation is needed. Next, define
P from the Lyapunov equatioRF + F'P = —I, wherel denotes an appropriately dimensioned
identity matrix. It can now be shown, assuming a high enougjh § and high enougk, the
derivative of the function

W(x. 2, 6) = X' (PX (1) + KZ4(OReZ(t) + 5600 (5.24)

satisfies the expressioN < —A||(x,Z, 0)||%, whereA is positive. Throughout the papelf;||
denotes the Euclidean norm. This implies tfatZ,, 6) = (0,0,0) is exponentially stable.

Now, consider the closed loop system (5.20)-(5.23). We fgdlito be

L . b, 4
W(X. 2%, 0,9) =W(X, %, 0) + 5 ¢ )y P(t), y>0 (5.25)

Taking the time derivative AV yields

W <~ A[(X. 2, 0)| + BEO[OWE ) +y " (£(1), (1), B(t)) (5.26)
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We now can define the adaptive law by letting

$(&.6,0) =—yB(1)E(1) (5.27)

wherey > 0 is the adaptation gain. This implies that the veagliozonverges to somg*, and that

the tracking erroge(t) — 0 ast — .

Remark 4 If the vectoré can be shown to satisfy a persistent excitation conditiot, [#3addition

to the error convergence, it can be shown tfiat+ 0 as t— .

Now, we will allow a matched disturbanae to be added to the system. This changes the

closed-loop system into

X(t) =F x(t) + 1/bIFGB(t) — Ge(Za(t), B(t),(t), 0. k)] — Gar(t) (5.28)
5a(t) =Fa(Zalt), W), 0.K) + GaB() (5.29)
B(t) =p(Za(t). B(t). W(t), 0.K) + bio X (t) + (oG — bK)B(1)

+bPE (t) + ba(t) (5.30)

B(t) = — yo(t)E(t) (5.31)

To robustify the adaptive law, we will use parameter pragectto constrain the estimatg, to a
convex, compact set. This will allow us to deal with the exémens resulting from the disturbance

o that will appear in (5.26). Our analysis here is adapted ftlmenwvork in [70].

Assumption 10 The initial conditions of(5.20)(5.23), given as(x(0),Z(0),6(0)), belong to a

known compact sgtXo, Zo, ©g}

Because we have assum8d kg, there exists some s€l such thatyy; € Q. We can then
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constrain our estimatiofi; to a convex, compact s€s > Q. Letc; = maxW(x,Z, 0)), where

(X,Za,0) € {Xo0,Z0,00}, and

. 1‘ . T,~1 -
02—%6375}2(6062(4’0 Yo)'y ~(Po — Wo) (5.32)

Let c3 > 1 + Cp, Which we use to define the SBt= {(x,Za,0) : W(X,Za, 0) < c3}. We now aim
to show that trajectories starting in the &etstay in this set/t > 0. Letd = max||a(t)||. The

derivative ofW can be written as
W < — Al|(X.2a, 0) [+ bO(t)d + X (t)d (5.33)
Finally, we define the constant

ki 2 bc 5.34
1= max (b6 +X) (5.34)

We can now show that there exists a constaatich that
W < — VW + kyd + G, (5.35)

We can now see that there existdasuch that for anyl < d* £ v(—c; + c3) /Ky, W < 0 on
{W=c3: s € Qs}. Thus the se{fW < c3: Iy € Qs} is positively invariant for alld < d*.
This implies that the trajectories are trapped inside th&seQ 5, which implies that all states are

bounded. Also, from (5.35) we can see that the tracking é&ron the ordeO(d +1/(y)).

Remark 5 If yis replaced by a matrix Y, the above theory also holds, witbkirag error on the

order O(d+ 1/|Amin(Y)|), whereAmin(-) denotes the minimum eigenvalue.
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5.2.4 Partially Known Exosystem

We will briefly consider the case where the exosystem isggrtknown. To handle this, we will
split (5.13) into two subsystems, related to the known arkhawn portions of the exosystem.
The subsystems form the internal model controller

G 0
éo(t) _ Fo+ Golo &o(t) . No o(t) (5.36)

&1(t) 0 Fi+Gyn| |&(t) Ny

Uim(t) = Woéo(t) + Pré1(t) (5.37)

The eigenvalues d¥ + Goy)p consist of the known portion of the exosystem (5.2). Theterise
of (Yo, Y1) can be shown by partitioning the mattb( o) into known and unknown portions, and
then applying the results of [69] to each portion. To sinypditir notation, we define

. Fo O o2 Go O - No O

0 kA 0 G 0 N

We now determine the vectolg andN; using equation (5.16), which becomes

Xo(t)
Xa(t)

1 1 -
=F*x(t)+ (BF*G* +N*"+G'K)O(t) — BG*(p(za(t% B(t),w(t),o,k) (5.38)
In order to make the above equation independeit,affe can seNyg = Go8, N; = G16. We then
design the adaptive law in the same way Witk (), (1), and use the same Lyapunov functions
to show stability and parameter convergence. However, a@nas that the value afp is known
in advance. Thus, (5.26) will be independent/gfand xo, and the adaptation law will only need

to effecty;. For the remainder of our analysis, we will assume that tlesystem is completely
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unknown.

5.3 Analysis of Closed-Loop System including Hysteresis

Having established robustness to disturbances outside tienerated by the exosystem (5.2), we
will now consider the scenario where the input to the systér)(is the output of a hysteresis
operator. We now include the hysteresis operator (2.3) antodescription of the closed-loop
system. After using (2.3) and (2.12) together with (5.2Q6t@3) and (5.27), the complete closed-

loop system becomes

X(t) =Fx(t) +1/b.[FGO(t) — Go(Z(t),0(t),w(t), 0, K)]
~G&W(1) (5.39)
5a(t) —Fa(Za(t), W(1), 0,K) + GaB(1) (5.40)

0(t) =@(Za(t), O(t),w(t), 0,K) +bWo X (t) + (PG — bcK) O (1)

+hed(t)Z (1) + b6y W(t) (5.41)
gty =—rome () (5.42)
W(t) =7 [ug; W(0)](t) £ 2 o ~L{ug; W(0)](t) (5.43)

Note that the above system without hysteresis is identidhle system discussed in [68]. Since
that system was shown to admit an asymptotically stablegersolution, the above system fits
into the class of systems discussed in [63]. We can now useabik to show that there is an
asymptoticly stable periodic solution to the system (5:3®.43), and that this solution is close
to the original solution assuming that the inversion efigw/ is small. This argument follows

identically to that presented in Chapter 3, and allows usdggthe existence of an asymptotically
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stable periodic solution.

5.4 Expermiental Results

We will now test the performance of our method via experirmgah on our commercial nanopo-
sitioning stage shown in Fig. 3.3. Due to the increased cexilyl of this controller, we were
required to reduce the order of the system model consideredgecond order linear system,

placed in the normal form,

_ 0 1 0
X(t) = X(t) + u(t)
—1.795x 10° —569688 1.063x 10°

y(t) =[1,0x(t)

Even doing this, the sampling rate of the system was redurd® tkkHz, as opposed to the
20 kHz rate used in Chapter 3. Since the positioner can bdutjtimodeled without zero dynam-
ics, the error system stateis defined in the usual way &s = xo — Y (t), X2 = X2 — Y (t), where
yr (t) is the reference trajectory. The modified error term (5.8jissen a® = %3 + X». This makes
7o = %1 and@(Zy, 6, w, p,k) = —1.795x 108%; — 569688(0 — X1 ) + 6 — X;. Since all reference tra-
jectories included a bias term, an integral type contrailas included into the design scheme in

accordance with the results of Section 5.3. The contrelide’sign parameters were chosen as

Fo = —200, Go = 200, o = 1
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—500 500 0
Fr= ,G1=

0 500 10

K=0.01y=-10

The vectory = (¢(1), Y (2)) will be our adaptation state, and it is constrained to thevepset

Qs = {—200< (i) <200 i = 1,2}

Note that the above design implies that the servocompangat@mmodates a single harmonic
only. To facilitate the state feedback design of the abowverotier, a high gain observer was used
to estimate the error states, and ti8us'his observer is linear, and its implementation is degctib
in [68].

There are three features of our control method that we wstl wéth our experiments. First,
we will investigate the raw tracking performance for sindseind sawtooth reference signals, and
compare our results to the iterative control algorithm &][3The two relative error metrics we
use for comparison are the mean tracking error, computedligg the mean ofe(t)| over one

period of the reference, and peak tracking error,

i@, once the system has reached steady
state. Errors are presented as percentages of the refemeptieude, except in the figures where
the actual error irum is shown. Second, we examine the adaptation performamnahémging
reference signals. Finally, we show robustness of the ndetin@hanging loading conditions by
adding a weight to the stage.

Table 5.1 shows the tracking performance for both the agagtrvocompensator (ASC) and
iterative learning control (ILC), which was implementedngsthe model above. For this study,

all reference signals had an amplitude of 2 and bias of 25um. Two samples of the error
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Time (s)

Figure 5.1: Tracking error for a 50 Hz reference signal, with periods shown. Tracking range
is+ 20 um.

0.6 1

0.4 1

0.2 J

Tracking Error (um)
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_1 1 1 1
19.98 19.985 19.99 19.995 20
Time (s)

Figure 5.2: Tracking error for a 200 Hz reference signal vigtlr periods shown. Tracking range
is+ 20 um.
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signals from the ASC are shown in Figures 5.1 and 5.2. Fossids, the performance of the two
controllers is comparable. However, the ASC design hasrgkwgther practical advantages over
ILC. ILC algorithms typicaly require very accurate plant retglto ensure convergence, whereas
the ASC requires only limited plant knowledge to select ttabiizing gainK. The reference
signal can be changed online for the ASC, and after only a stamsient the error converges to its
steady state value in Table 5.1. Changing the control sigriald even slightly requires rerunning
the entire learning algorithm. Also, ILC algorithms aréfidiflt to implement on standard control
hardware. ILC is well suited to tracking a large bandwidtinsil like a sawtooth, so its lead in this

test is expected.

Table 5.1: Tracking error in percent of reference ampliticteadaptive servocompensator (ASC)
and iterative learning (ILC) controllers

ASC ILC
Mean Error| Peak Error| Mean Error| Peak Error
Sine, 5 Hz 0.051% 0.31% 0.25% 1.725%

Sine, 25 Hz| 0.3405% 0.925% 0.314% 2.091%
Sine, 50 Hz|  0.6555% 1.599%| 0.7735% 3.95%

Sine, 100 Hz 1.242% 2.96% .902% 2.45%
Sine, 200 Hz 1.713% 3.75% 2.05% 6%
Sawtooth, 5hz  0.3285% 2.423% 0.1% 0.818%

Next, we test the convergence speed of the adaptive law.résgu3 and 5.4 show the con-
vergence of the tracking error and the parametél). The parameteg(2) had the same value
for each reference signal due to the structure of the ({faiB), so its plot was omitted from the
presentation. Note, however, that this parameter wasssiilject to adaptation, and was not as-
sumed to be known. Also, due to some extra data recordingmaisiineeded in this experiment,
the sampling frequency was lowered from 10 kHz to 9 kHz. Thissed the tracking error for the
100 Hz case to increase as compared to the values in TablAts  1s, the controller is turned

on and tracks a reference signal of 20 smi{3 t)+25um. Att = 15s, the reference switches to 10
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sin(2r50 t)+30um. Finally, att = 35s, the reference switches to 20 sim{P0 t)+25um.

For each reference signal, the parameter efra@ettled to near zero in under two seconds.
Tracking error convergence was slightly longer; howevés Was primarily due to the integral
controller portion not responding quickly. Also note thie tinitial condition ofy/(1) was not
close to the final value, confirming the global convergenahefadaptive algorithm. One feature
we noted in our experiments is that the adaptive law's cayarere speed is dependent on the
frequency of the reference. For a slower signal, conveepeeds go down, and the adaptive
law takes longer to converge. There are many possible redeothis, but the most probable is
that the integral controller is able to reduce the trackimgreat low frequencies to a very small
signal. Since the adaptation is driven by the modified traglarror8, this would result in slower
convergence.

Finally, we examine the robustness of our controller to iogdonditions. We loaded our
actuator with 20 g, 40 g, and 100 g, then ran the system witfeaengce of 20 sin(#10t)+25um.
The results are presented in Table 5.2. The tracking errerngar identical for each load, even
in the 100 g case. Note that this corresponds to a change ®61o @20% of the maximum load

allowed for the nanopositioner.

Table 5.2: Tracking error under varying loading conditions

Loading Condition| Mean Error| Peak Error
No Load 0.0817% 0.34%

20g Load| 0.0818% 0.34%

40g Load| 0.0819% 0.35%

100g Load| 0.0821% 0.35%
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Figure 5.3: Tracking error under a changing reference signa
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Figure 5.4: Trajectory ofy(1) under a changing reference signal.
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5.5 Shortcomings of the Nonlinear Adaptive Servocompensator

in Nanopositioning Problems

The results presented in the previous section clearly atdithat the proposed nonlinear adaptive
servocompensator can perform satisfactorily in nanojpositg applications. However, there are
some clear drawbacks to the proposed method. In partidghkaiconcept of the multi-harmonic
servocompensator could not be applied to this adaptiv@sempensator design. As we discussed
in the experimental results of Section 5.4, the internal@hodntroller (5.13) was limited to second
order. Following the theoretical results of Section 5.3,attempted to increase the order of this
controller in order to compensate for the harmonics geedray hysteresis.

Fig. 5.5 presents the experimental results of this extansitie adaptation variables quickly
entered a neighborhood of values that allowed the contrtdleompensate for the reference tra-
jectory. After this transient, the adaptation variablegdreto slowly drift. After a lengthy period
of slow drift, a series of peaking events, shown in Fig. 5é&uored in the adaptation variables.
The peaking events in the adaptation variables resultedarge undesirable transient in the be-
havior of the system associated with a loud screeching reststted by the nanopositioner, and
the experiment was immediately terminated. In additioa,afaptation variables were not able to
reach a point where any harmonics of the hysteresis couldip@ensated.

Following this failure, we conducted additional simulatiests on a system without hysteresis,
using a small-amplitude sinusoidal matched disturbanseggsing a different frequency than that
of the reference. A similar phenomenon was observed in tiest¢® Therefore, we conclude that
the peaking events observed in Fig. 5.5 were caused by thi&i¢he harmonics induced by hys-
teresis are relatively small. Indeed, the authors of [/l¢stigated a similar problem theoretically,

and discovered that the signals to be compensated by thévedsgrvocompensator were required
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Time (s)

-100 ‘ ‘
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Time (s)
Figure 5.5: Experimental results for adaptive servocoreatar implemented with four adaptation
variables. /(1) and (3) are shown in the top plot. Notice the peaking events in th@tatian

variables near 30 and 42 s. The lower plot shows the trackirgy during the second peaking
event.

to be sufficiently large for the adaptation to succeed. Glgtirére is room for improvement in the

design of adaptive servocompensators in systems with iegsse
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Chapter 6

A Frequency Estimation-Based Indirect

Adaptive Servocompensator

6.1 Introduction

In Chapter 5, we observed that because the harmonics cregbggdteresis nonlinearities are fairly
small when compared to the size of the reference trajedi@gitional nonlinear adaptive servo-
compensators are not ideal in systems with hysteresis. Whesasdal or sawtooth waves (a.k.a.
raster or triangular waves) are passed through a hystexgsrator, the output signal possesses a
spectrum with frequency components at multiples of theregiee frequency, a property which we
discussed in detail in Chapter 4. If we can estimate the fueddahfrequency of the reference sig-
nal, we can then use multiples of the estimated frequencgnigpensate for hysteresis according
to the principles discussed in Chapter 3.

We therefore propose a frequency-estimation-based slaptation law to create an adaptive
servocompensator, which we refer to in this dissertaticamasdirect adaptive servocompensator
which is well suited to tracking problems like those foundystems with hysteresis. In this Chap-
ter, we will refer to the fundamental frequency of a signasimsply the frequency of the signal.
For example, when we refer to an unknown sawtooth signal gisidnane unknown frequency,
we imply that the fundamental frequency of the signal is wwkm The design of this controller

is based on a linear system, but we will show that the sam@muiesin be used in systems with
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hysteresis as well. We will see that the stability proof o$ foroposed controller requires novel
nonlinear analysis, based on a union of phase portrait igebs and linearization. We will also
demonstrate that the proposed method can be extended t@er@eal regulation problems, where
there are more than one unknown frequencies present in stensy

Several related problems have been addressed in thediterdn particular, both Brown and
Zhang [72] and Bodson and Douglas [73] utilize estimation mfuaknown frequency and an
internal model controller to reject an unknown disturbante@ and Brown extended the work
of [72] to the case where the disturbance is an exponentialigped sinusoid [74]. Wang} al
dealt with this problem in a noisy discrete-time setting.ewhan additional adaptive controller
was included to combat the noise and minimize the outpuékasd [75]. However, each of these
works focuses on the case where there is only one unknowndrey, and furthermore, do not
analytically explore cases whenarmonicinputs or disturbances are present.

We will investigate the performance and stability of theitadt adaptive servocompensator in
a variety of situations. We will first address the case whieeee is one unknown frequency, and
present a condition on the amplitude of the reference t@jgdhat will guarantee exponential
stability and zero tracking error when harmonic disturlesnare present. We will also prove
exponential stability when there are two unknown frequesaind show local exponential stability
in ann-frequency case. In our stability proof for two unknown fueqcies, we will first show that
the average system states enter a small region around tinecdeguilibrium points, and then use
local stability of the equilibrium point to draw conclus®@about the system behavior. We will
then address the performance of the proposed controlleeipriesence of hysteresis. Finally, we
will present our experimental results, which confirm theetfiveness of the proposed controller in
nanopositioning applications. In particular, the progbsethod outperformed Iterative Learning

Control (ILC) [38] for sinusoidal signals at 5, 25, 50, 100 af Hz, and was competitive with
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ILC for a sawtooth signal of 5 Hz.

6.2 Problem Forumlation and Controller Design

We will consider systems comprised of a linear pl@g(s), represented in state-space as

X(t) =AX(t) + B(u(t) + a(t))

y(t) =Cx(t) (6.1)

whereu(t) is the control signal, and (t) is a matched disturbance. The control objective is to
regulate the tracking erra(t) = y;(t) — y(t) to zero, wherey, (t) denotes the reference signal to
be tracked. We will deal with a variety of reference and disamce signals in this paper, and the

general form we consider is

Ye(t) = > Rucsin({ont + Pay) (6.2)
F=s

a(t) = Zl > riksin({xat + @) (6.3)
==

where the frequencies), phasesby and @k, and the amplitudeRy; andrj are unknown. The
constant vectof = [{1, -+ ,{m|" is assumed to be knovanpriori and is used in the control design.
We assume that eadfy is a natural number, and thdt = 1. Note that this class of reference
signals also cover$ = 271/ w;-periodic waveforms approximated by a finite Fourier seride
will then focus on two special cases of (6.2) and (6.3). Fiwstconsider a sinusoidal reference and

a harmonic disturbance, which follows from the generalgéylettingn = 1, Ry = 0, VK # 1,
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and®q; =0:

yr (t) =Rp1sin(et) (6.4)
a(t) = rijsin(eoxt + @u) (6.5)
K=1

This particular choice of reference and disturbance isvat#d by applications such as nanoposi-
tioning [76], where at the steady state an input nonlingdetg., hysteresis) introduces a matched
disturbance with harmonics at multiples of the frequencg einusoidal reference [77]. The sec-
ond special case of (6.2) and (6.3) we consider consists mius@dal reference and sinusoidal

disturbance with unknown and unrelated frequenciesmes,1,n =2, 17 =0, andry1 = 0:

¥r (t) =Ruzsin(awt) (6.6)

a(t) =raisin(wpt + @1) (6.7)

This choice of reference and disturbance is indicative gfséesn perturbed by an external source,
which is often considered in tracking problems [78]. Thédwing assumption is typical in the

servocompensator literature [53, 55,57, 68, 69, 79].
Assumption 11 The plant G(s) has no zero atgxw,i=1,---,n,k=1,--- ,m.

Fig. 6.1 illustrates the design of the controller. Firstséxd on the internal model princi-
ple [53, 55], we design a servocompensator for the aforeomesd system. We define the servo-

compensato€ (s), with staten' = [n},ns,...,n5. " € R?™ inpute(t), and outpuy’ € R, as

n'(t) =C*(ai)n'(t) +B"e(t) (6.8)



Servo- Stabilizing
Compensator ~ Controller Plant

\ 4

Dy(s)

Adaptation Law

Figure 6.1: Block Diagram of the closed-loop system.

where ) ) ) )
(1C* (g) - 0 K1B*
C'(0) = B =
I 0 ZmC*(ai)_ _KmB*_
0 o 0
-0 O 1

ai is the estimate of the frequenay, andk = [k1, k2, -+, Km]’ € R™, k; > 0Vi, k%(oi) € R1x2m
andDL(oi) € R are design parameters used to stabilize the system. lcyartiwe will select the
design parametelg, (a;), D;(0;), andk such that eacl’(s) behaves like a notch filter, similar to
what was done in [80]. For examplent=m=1, then

+24c{1015+ ({101)?
1 _
C (S) - 32+(Z101)2

where{; << 1 is the notch parameter. This reduces the effect the corapmrizas on the overall
phase margin of the system, which will allow us to stabilize $ystem over all possible frequency
estimates. We have also I€itin the above equations despite our assumption that it id égj@iain

order to make the effect dfj more clear whem,m## 1. We then utilizen such servocompensators
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connected in parallel to realize the compens@i®) shown in Fig. 6.1. Theé superscript is used
to denote which frequency estimai¥s) uses. Note that if there is only one unknown frequency,
C(s) = Cl(s). To clarify the notation, we denote the combined state ofrtiparallel servocom-
pensator<(s) asn. We also denote the vectors of unknown frequencies and éiséimates as
w=[w, - ,w ando = [a1,- -, 0n), respectively.

We will also require a stabilizing controll®p(s), given in the state-space as

£(t) =Aa (t) + By (i%(t)) (6.9)

(t) =Coé (t) + Dy (ém) (6.10)

The output of the stabilizing controlldd,(s) is u(t), the control signal to the plant (6.1). We
will also define the state vectgr= [x, 11, &] for later use. Since the frequencies are unknown, the
vectoro € 0" will be updated by an adaptation law, the goal of which is teelthe parameter
erroré = 0 — w to zero. The estimation of théh frequencyo; will be governed by the adaptation

law,

G = —yai(t)et)ni(t) (6.11)

where 1>> y > 0 is the adaptation gain, amq represents the first component of the state vector
n' of the servocompensat@ (s). The smallness of is required to facilitate two-time-scale
averaging analysis on the system, which will be discussefeition 6.3. Furthermore, we will
select the initial condition obr to be positive and bounded away from zero. The form of the
adaptation law was originally derived from a formal gradiepproach, then modified into that in
(6.11) to guarantee stability. A very similar adaptatiow Mas proposed by Brown and Zhang

in [72].
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6.3 Analysis of the Closed-Loop System

We shall analyze the closed-loop system using two-timéesaegeraging theory [81, 82]. Two-
time-scale averaging allows us to separate the analysigeaflbsed-loop system into the analysis
of two separate subsystems, a fast or boundary-layer syateha slow or average system. We first
establish the stability of the boundary-layer system inseghon 6.3.1. In the following subsec-
tions, we investigate the stability for the average sys&m, subsequently for the full closed-loop
system, for different cases of the reference and distusbgnpuit. Specifically, in Subsection 6.3.2
we prove local exponential stability for the genendirequency case. In Subsections 6.3.3 and
6.3.4, we establish stronger, global exponential stgliisults for more specialized cases of one

frequency (6.4)-(6.5), and two frequencies (6.6)-(6.@3pectively.

6.3.1 Stability of the Boundary-Layer System

First define the matrices

C*(0) =diag(C*(01),C*(02), -+ ,C*(0n))
kn(0) =[ky(01)' k5 (02)', - ki (0n)'T’

De(0) =éo‘c<oﬁ>

and B* as ann-high stack of vector8*. We now define the boundary-layer system for the
general closed-loop system (6.1)-(6.3), (6.8)-(6.11)séitingy, =0,Vi =1,2,--- ,nin (6.11).

This freezes the value @ at o). Denoting the state variables of the boundary-layer system
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Xol = X1, 5+ &Ly)'» we write the closed-loop boundary-layer system as

Xol (t) = o1 (Xol, Obl, 1)

(A—BDgDc(0p)C) BDgky(0pi) BCy

—

= —-B*C C*(0h)) 0 | Xbl

—BgDc(0p)C Bakn(ob)  Ad

BDgDc(ahi)yr (t) +Ba(t)

+ B*y; (t) (6.12)

BaDc(Tb1)¥r (1)

Using frequency-domain techniques, we can use the stalgilcontroller (6.9)-(6.10) to establish
input-to-state stability (ISS) of the boundary-layer syst Recall that we have selected the output
matrices ofC(s) to guarantee that it behaves like a notch filter. Therefoeecan desigiDy(s) to

stabilize the transfer function
(S) — DP(S)GD(S)
P 14 Dp(s)Gp(9)

(6.13)

Using this controller structure, it can be shown that theesyswill be ISS-stable for a small
enoughdc, provided the gain crossover frequen@y: of Hy(s) is sufficiently far away fronoy,.
Note that since the boundary-layer system is linear, ISSi@shat the closed-loop system states
will converge to the steady-state trajectories exponbyfest for any periodic referencg(t) and

disturbancex (t). In addition, note that iby,) = w, the tracking erroe(t) will converge to zero.
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6.3.2 Averaging Analysis for the Case oh Unknown Frequencies: Local
Exponential Stability

We now shift our attention to the slow or average system. &haysis is based on the two-time-
scale averaging framework presented in [82], and we wilizatithis framework to analyze the
closed-loop system for different reference trajectorreSubsections 6.3.2-6.3.4. We begin by
considering the case where there arenknown frequencies, shown in (6.2) and (6.3). We first

define6 as the average @, as well as the vectd = [0y, - - - 6,). The dynamics o6 obey

él :FaV<Xb|<67t>7 9I7t)

——iim Y [ aet)ni() o (6.14)

T— T Jo

wheree(t) andn (t) represent the steady-state trajectoriesafidn resulting from the boundary-
layer system (6.12) witlo, = 6. We will make the following assumption to simplify the forrh o

the equation for the average dynamﬁ:s

Assumption 12 The combinationgs w are unique, i.e.{sw # {gax foralli,k=1,---.n;, f,g=

1,---,m,unless =gandi=k.

This assumption implies that no two unknown frequenciessshaarmonic of order below még),
and is primarily made to keep the following equations manbtge DefineGp(s) = Gn(s)/Gqd(s),

and let

o n m o 5
Ci(s) k_ﬂ#iﬂ( +(4160)°)

: |1<s2+<z|9.)2) (6.15)
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We also define

F(g, ) =%82k1|Ci (i ax)|?/2 (6.16)
D(jdiax) =Gd(j{ w)Ca(jdiax)

+Gn(141@)Cn(j{ wx)Dp(j G o) (6.17)

whereC(s) = Cy(s)/Cq4(s). We also will require following definition,

Hi (1) = | R IGa(jaa) 2+ 15 |Gl o) 2
— 2Ryir11|Ga(jox)[|Gn(j )|

-€0S(£Gp(j ) + Py +(P1|)] (6.18)

Note thatH, > (Ry — |G|C,|r1|)2 > 0. Using Assumption 12 and the above definitions, we can

calculate the form o8, (derivation details omitted in the interest of brevity):

—Fi(g, w)H (jon) (6% — {Pw?)

=] ID(jdian)?
D0 —Fi(4, @) |Gl @) 2R (87 — ZPap)
+kzzlzl ID(j¢iwd)l? (6.19)

Note that, for every,k=1,--- .nandl = 1,--- ,mthere exists a combinatiof and {;w, such
that5i(jZ| wx) is zero if 6 = wx, except for the case where- k andl = 1. This fact can be seen
by looking at the final product grouping in (6.13)",[(s*+ ({16)?)]. In addition, notice that
|5i(jZ| wx)| always appears squared. Therefore, using the product fddferentiation, we can
see that any partial derivative of the right-hand side dfgpwith respect t@, vl =1,--- ,nand

evaluated at the equilibrium poit = w will be zero, except the partial derivative with respect
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to 6. In addition, this guarantees that when this partial dé¥ieas evaluated af = w, only the
portion of the derivative taken with respect to the téii — {?w?) will be non-zero. This can be

calculated as

a6 :g—H(Zl,ah)Hi(jwl)Qm)
06 =0 I=1 ’D(JGO‘}.L)‘Z
N0 —R(d, w)|Gn(jdiaw) Prd (2a)
+kZZIZl ID(j )2 (620

which is always negative over the adaptation variable rafiterefore, the resulting Jacobian of
the average system is comprised of negative terms in thewiggand zeros everywhere else;
thus the average system is exponentially stable for sufigismall initial conditiong 6(0) — w).
We also note that iB = w, the closed-loop system (6.1)-(6.3), (6.8)-(6.11) transkd into error
coordinates possesses an equilibrium wheére= 0. Let x denote the steady-state solution of the
aforementioned closed-loop system wla) = w. Then by Theorem 4.4.3 of [82], the origin of

the closed-loop system with coordinatggt) — x(t), o(t) — w) is locally exponentially stable.

6.3.3 Averaging Analysis for the Case of One Unknown Frequency: Expo-
nential Stability

In this subsection, we will focus on the case where there ésumknown frequency, and present a
sufficient condition for the exponential stability of th@séd-loop system. We will assume tlyat

anda obey (6.4)- (6.5).

Assumption 13 The plant G(s) has no poles at s jw.

Theorem 2 Consider the closed-loop systéénl), (6.4)(6.5), and(6.8) (6.11) Let Assumptions

11 and 13 hold. Lek denote the steady-state solution of the aforementionestddnop system
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wheno(t) = wr. Then, for all bounded initial conditiong( (0), o(0)) wherec(0) > 0, there exist
constants R> 0 (dependent ofiry }|" ;) ande, > O, such that, if R1 > R, andy < ¢, all states of
the closed-loop system are bounded. In addition, the onfjithe closed-loop system expressed in
the error coordinategx (t) — x(t),o(t) — w) is exponentially stable, and the tracking errdte

converges to zero exponentially fast.

Proof. To prove Theorem 2, we will require exponential stabilityboth the boundary layer
system, established through the controller design in teeipus subsection, and exponential sta-
bility of the average system. Note that we will be removingiteuper and subscripts from signals

in this subsection, since there is only one frequency toned&. Now let

3

C(s) =[(s*+ (&b)?) (6.21)

k=

(6.22)

We will focus on the derivation o the case of one unknown frequency outlined in Subsection
6.3.3; the 2 and frequency derivations follow the same lines with additiatetails. The controller

transfer function is defined by

Cn(s) [ $2+20cl;6s+ ({;6)?

R TE | S E T 623
The sensitivity functior§(s) is then
59 = Gy(s)Cu(s) (6.24)
d

(S)Cd(s) +Cn(s)Gn(s)Dp(s)
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We also comput€;, (s), defined as the transfer function betwesgt) andn; (t) as

6
Cyu(s) = —SzKi - (6.25)

Using the stability properties of the boundary-layer syst&e can see that

e(t) = S(s)lyr (H)] — () Gp(s)[a ()] (6.26)

and, using the structure @f*(0), that

N1(t) = Cyy ()S(S)[yr (1)] — Cny (5)Gp(s)S(s) [ (V)] (6.27)

where the notatiofr (s)[g(t)] denotes the filtering af(t) by the transfer functiofr (s). Plugging

(6.26) and (6.27) into (6.14), we can expand the integrarf@.it¥) into four terms, resulting in

6=~ lim X ["6(Selyt1Cr (959 (1)
— S(9) [y (1)]Coy (Gp()S(Sar ()]
— S(8)Gp(8)[a(t)]Cr,y (915 [y (1)

+(8)Gp(8)[a (1)]Cny (5)Gp(s)S(s) [ (t)]> dt (6.28)
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Note that each signal comprising (6.28) is periodic withig = 271w, ; therefore we can drop

the limit and set = T. In this calculation, we will encounter a series of integrafl the form

]
|| 1A Zau) sin(Gacrt + gu)

1B Zawr)|sin(Zacort + @) ok (6.29)

whereA(s) = |A(s)|Z@n andB(s) = |B(s)|Z¢@s are transfer functions which are formed by terms
in the integrand of (6.28). We will see how to compute the ffioain of 6 by focusing on the
termS(s)[yr (t)]Cp, (S)S(S) [y (1)]. For this termA(s) = §(s), B(s) = Cy,(s)S(s), and{a = {g = 1.
Evaluating (6.29) with these values results in

|A(jor)|[B(jown)| co gn — @)
2

However, sinces(s) is included in bottA(s) andB(s), only the phase o, (s) appears; thus it can

be shown that,

cos g — ¢is) = sgr(6)

We can arrive at similar expressions to those above for timairgng integrand terms in (6.28).

Using (6.21) and (6.16) together with our above discussi@¢an now computé by evaluating
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each integral formed in (6.28), and arrive at the expression

5 —F(Lw)R|Ga(jw1)2(62— cf)
D(iw]?

+2F (1, @1)Ruar11|Ga(jen)||Gn(je)|
(6% —wf)cos(£G(jwr) + gu1)
ID(jen)|?

M —F (g, )r3|Gn(jwn) (6% — ({wn)?)
T2 D(jGw)P

The termg 62 — w?) and (62 — ({;w)?) have appeared due to the effect of the(gas- @) terms
combined withCy(s). The denominator of (6.25) also cancels one eleme@{ (). The remaining

terms ofCqy(s) are contained ifC(s). We can group together the terms with the common factor

(62 — w?) to arrive at

CFLagH(@)
o (6 )
M —F(g,w)rf|Gn(jm) 267 — ({wn)?)
T2, DG

(6.30)

whereF andH are defined by suppressing the subscripts in (6.16) and)(6e$Bectively. Note
thatH(jcy) is guaranteed to be non-negative, and is positive (due tarAgsons 11 and 13) if
R11 > r11|Gp(jwr)|, which we will assume for the remainder of our analysis. Iditon, notice
that 8 is positive forw; > 6 > 0, and negative foB > {mwy; therefore the initial condition of

0 defines an invariant sét in which 6 resides for all time. We now use Lyapunov analysis to

show exponential stability of the average system. We stdint tve Lyapunov function candidate
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V= 52/2, whered = 6 — w. Using (6.30) and the definition &f(jcwz), we can evaluat¥ as

F(1,c)H(jor) (6 + ) 52
ID(jo)[?

M _F(Z),0)r2 |Gn(jwn)|2(62— ({an)?) «
"2 DG 0 (6.31)

V=—

It can be easily seen from (6.31) that{f =0, VI > 1, there will exist a constatt> 0 such that
V < —kV. This proves exponential stability of the systenitt) = 0.

We now focus on the case wherg = 0. It is important to note thalC(j¢ )|, and thus
F({, ), possesses a term of the fot&e — ¢ wi| = ¢|6|. Also note tha{62 — ({jwy)?) and@
possess the same sign whgr: wy or 8 > {mws. This implies that there exists a constant> 0
such thatV < —c;V when® ¢ [0,{mw1 — wy]. We can therefore focus our attention on the set

6 < [0, {mwy — wy]. We notice that within this setd| = 8. Therefore, whei # 1, we can find a

constant; > 0 to boundF ({j, w,) in the setd € [0, {mey — ] as

F(, ) <cb

Finally, from (6.30) and the conditidR;; > r11|G(jwy)|, H is strictly increasing with the reference
amplitudeRy1, while F(+) is independent oR;1. This allows us to write, for positive constarks

andko,

V < —R2 k162 + crk, 6 (6.32)

where the existence &f andk, are guaranteed by the boundednes8 wifithin the set of interest.

Therefore, for a sufficiently large; 1, there exists a constact > 0 such that whe# € [0, {men —

wi),
V < —cpV (6.33)
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Since botlt; andc, are greater than zero, we can use the minimum of these tweectgso bound
V for all 8, and conclude the exponential stability of the averagesgysSince we have now shown
exponential stability of both the average and boundaryrl&ygectories, we can apply Theorem
4.4.3 of [82], and conclude exponential stability of thgecaory (x,w:) for a sufficiently small
adaptation gairy, which also implies the boundedness of the state trajeetodythe convergence

of the tracking error to zerd.]

Remark 6 Assumption 13 is not typically found in the adaptive coniterature; however, it is
required in our proof since Theorem 2 shows both the trackimgre and adaptation error®
converge to zero. If this assumption is not satisfied, stalihn still be shown for sufficiently
large ry1 by using K1 in the same mannerjRwas used in the above proof. This is because if

Gq(jwr) =0, from(6.18) H(jwr) becomes;|Gn(jwr)|?.

Remark 7 The required size of R > R, is determined by the sizes of the constantaukd k
in (6.32) These constants vary with the frequenray plant transfer function G(s), stabilizing

controller Dy(s), and the size of the disturbance.

6.3.4 Averaging Analysis for the Case of Two Unknown Frequencies: Expo-
nential Stability

We now present results on the stability of the closed-loagiesy in the case of two unknown
frequencies, (6.6) -(6.7). Without loss of generality, wit assume for our analysis thah < wp.
We will also sety; = y» = y, which will create a very useful symmetry in the dynamics o t
average system. As there are now multiple frequency estsnate will reintroduce thesubscript

in order to differentiate between the first and second freguestimates and frequencies. Using

the symmetry of the system, we can compute the dynamics @ubimge system (using the same
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procedure as that outlined in Subsection 6.3.3) as

61 =1 (61, 62)

6, =f(6,,61) (6.34)

where

| F(ab, )Ry Gl ) (e — i)

f(a.b) = D(a,b, )P

_F(aa b7 (*)Z)r§1|Gn(J a)Z)‘z(az _ &)22)
D(a b, )P

(6.35)

F(a.b,w) =ya’ky (b? — &?)?/2 (6.36)
D(a,b, ) =Gq(jw)(a* — o) (b* — &f)
+[Gn(jw)Dp(jw) (8% — «f +2{ waj)

- (0”— o + 20 wb)j)] (6.37)

where due to the symmetry of the system, we notelii{atb, cn) = D(b,a, w ). We will analyze
the system (6.34) using a phase portrait approach. Baseederths(a® — w?) and (a2 — w?) in
(6.35), we know that the system possesses equilibrium pairt = (wy, ap) and8 = (wy, wy).
Because of the symmetric structure of the controller, eittiénese equilibrium points is desirable
from a tracking perspective, as the boundary layer systeaitla¢r point possess zero tracking
error. A second consequence of the tefars— w?) and(a® — w?) is that, from any positive initial
condition 8y, the stated enters the invariant s, 6,) € [wy, wp] x [wr, wp] = Q. This follows

from the inequalitied(a,b,w) > 0, Va< wy, i = 1,2 andF(a,b,w) <0, Va> ap, i = 1,2.
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Within Q, we have the following result.

Lemma 2 Let Assumptions 11 and 13 hold. For af\y Q, the inner product

éz 1
is positive if6, > 01, negative if6, < 61, and zero if6, = 61, except for the case®= (wy, wp) or

8 = (wp, w1), where the inner product is zero.

Proof. The inner product can be directly calculated as

92 1
=f(61,62) — (62, 61)

_ YK1REy[Ga(jan)[*(6F — f) (63 — wf)
2|D(61, 62, )|

- [67(65 — i) — 05(67 — w?)]
YK1r2,|Gn(jop)[2(67 — w3)(62 — w?)
2|D(64, 62, wp)|?

- [6£(67 — wh) — 65(67 — w3)) (6.38)

The bracketed terms can be simplified[ta (62 — 62)] and [w(62 — 62)] respectively, which
together with Assumptions 11 and 13 completes the pifdof.

There are several consequences of this lemma. The firstaquosisee is that there are no equi-
librium points within the interior of2, except for on the lind; = 6,. However, any equilibrium
points on the line must be unstable, since the vector fieldydvpoints away from thé, = 6,

line insideQ. Second, there are no possible limit cycles witflnas the existence of a limit
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cycle would require the above inner product to be zero ontimes other than thé, = 6, line.
These facts, together with the forward invarianc&€Xfimply that from any initial conditiorfy,
the trajectoryd(t) converges to eitheiw;, aw,) or (ap, wy). Furthermore, it can be shown that the
points(wy, wp) or (wy, w) are locally exponentially stable. We start from the Lyapufumction
candidate

(B1—w)?  (B—w)? , 7 62

V(9>: 5 + > :?—f—?

Consider the set

A21{0:16] < &,|0| < &} (6.39)

We will now show exponential stability of the poifito, ap) within A. Exponential stability of
the point(wy, w;) can be shown by redefinin@l =6, —wp and B = 6, — wy, and altering the
following equations accordingly. We seek to find &rsuch thaV is negative definite withir.
Assuming that the system is currently within theAgtve substituté;, = w; + 6; and6, = w, + 65

whereb, 8 € [—&c, &]. Using these substitutions together with (6.34), we can teinadVv by

- —62R2, Kk _
V < 578, 8 cop Kol ) o120+ e
¥ I5(r, 00, a2 222 1Cn 1)~ 1112002 + ] (6.40)

Using Assumptions 11 and 13, we can see that for a sufficientigll &, there exists &g > 0
such thal < —coV. Combining the asymptotic stability and local exponentiabdity, we imply
from Theorem 4.4.3 of [82] that the origin of the closed-lystem with coordinategy (t) —

X(),0(t) — w), wherew = (wy, wp) or w= (wp, wy), is exponentially stable. We have thus proved

the following theorem.

Theorem 3 Consider the closed-loop systéfnl), (6.6) (6.11) Let Assumptions 11 and 13 hold.
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Let x denote the steady state solution of the aforementioneédimop system when(t) = w,
where w = (wy, wp) or w = (wp,w1). Then, there exists a sufficiently smgllsuch that, for
all bounded initial conditiong x(0),0(0)) whereo(0) > 0 and 01(0) # 02(0), all states of the
closed-loop system are bounded. In addition, the origimefdlosed-loop system with coordinates

(x(t) — x(t),o(t) — w) is exponentially stable. Furthermore, the tracking errgr)econverges to

Zero.

Remark 8 If the initial conditions and controller parameters of ea€f{s) and ¢; are chosen to
be equal, the system will behave as if it is a single contralligh a single adaptation law, as there
will then be identical compensators connected in parallehwdentical states. We refer to this as

a degenerative state for the controller. This can be preseily choosing1(0) # 02(0).

Remark 9 For systems with non-equal adaptation gains, it can be quiskbwn that all possible
equilibria in Q, other than(cw, wp) and (wy, w;), must reside on thé; = 6, line, and the set of
these equilibria is the same as that for the case of identidalptation gains. In addition, it can
be shown that the stability properties of those equilibria #te same given different choices of
adaptation gains. In other words, no stable equilibria ekis® except the desired pointsu, w,)
and (ap, w1). However, the existence of limit cycles in this system cab@@ixcluded as readily

as in the identical gain case, and this will be addressed infature work.

Fig. 6.2 shows an example phase portrait of the averagensy6t84). In addition to the phase
portrait, we have plotted the level curves of thgand 6, equations. For this particular set of
system parameters, there are three unstable equilibriaecth t= 6, axis (two saddle points and
one unstable node). For this special case of equal adaptias, the regions of attraction for the
stable points can be explicitly calculated and are dividgthle 6, = 6, line. For cases where the

adaptation gains are not equal, the form of the regions &aibn are more complicated.
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Figure 6.2: Phase portrait of average system for a sampiéauta controller. The zero level curves
of 61 (primarily vertical) andf; (primarily horizontal) together with the neutral aXds = 6, are
also plotted.

6.4 Analysis of the Closed-Loop System in the Presence of Hys-

teresis

With the results of Section 5.3 in hand, we are now pweparddtass the stability of the proposed
IASC in systems with hysteresis. Let the linear plant (54 pkeceded by a Prandtl-Ishlinskii (PI)

operatorl },, as illustrated in Fig. 6.3. Since we have usgkfr the definition of the average of the

Hysteresis Dynamics

Input -;.. > G p ( S) Output E

Figure 6.3: lllustration of linear plant preceded by hyssts operator, commonly used to model
piezoelectric-actuated nanopositioners.
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adaptation, we will letd, represent the weights of the hysteresis operator in thisosec.e.

Ca[v;W(0)](t) = SpW(1)

We will also include an approximate hysteresis inversﬁgﬁ in our control structure, based on an

estimated of the weightsd. We can then write the inversion error as

ug(t) —u(t) = 3'W(t) (6.41)

whered = § — 9. For a sinusoidal reference, we can then describe the irggiosed-loop
system via equations (6.1), (6.4), (6.8)- (6.11), and (6.#here we setiy(t) equal tou(t) in
(6.10). Such a system can, under suitable conditions, herstiopossess a unique, asymptotically
stableT -periodic solution as we proved in Chapter 3.

Once we have established that the solutions of closed-Igsier®s are periodic at the steady
state, we can use the properties of the servocompensatoiatgza its disturbance attenuation
properties. Since all signals in the closed-loop systenT goeriodic, we can rewrité’W(t) using
Fourier series expansion as two signals;which has the form of the disturbance (6.5), angd

which has the form

ag(t) = z rysinflant+@)
II¢d

Here { € R™ will be considered as a design parameter to determine howy marmonics of

the reference are compensated by the servocompensatoefdiee we can treat the closed-loop
system with hysteresis as the closed-loop system conslidei®ubsection 6.3.3 perturbed by the
additional matched disturbaneg,. Note that because of the presence of the adaptation in the

servocompensator, further analysis is required to a boartletracking error.
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DefineX = [(x — X),0 — w|" as the state vector of the nominal closed-loop system (6.1),
(6.4), (6.8)-(6.11), transformed into error coordinatéf&e have already shown that this system is

exponentially stable; therefore, from the converse Lyapuheorem [64], we have that

e[ X[ <V(X) < el X]|?

V < _C3HXH27

oV
— || < cal|X
'9XH _C4H H

for a positive definite functioW and positive constants, --- ,c4. Now consider the closed-loop
system with the disturbanazy. Taking a time derivative o¥ (X) and using the form 0B, we

arrive at

V < —csl|X|?

ceal XIS 1Cou(9S(81Gp(S)IS8)Gp(9 I, (6.42)

kk¢d

s=jkwy

The RHS of (6.42) is negative definite for

Ca 3 rec [Cni (S)S(9)Gp(9)]|S(S)Gp(9) [
C3

X >

s=jkwy

Sinceryy, Yk ¢  is proportional td|$'||, for a sufficiently small| 3’| andy, there exists a constant
ks such that|X|| < ks. By varying the analysis above slightly, we can arrive at dlaimbound for

the system without hysteresis (i.e(t) = 0), but the reference signal is an infinite summation of
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sinusoids, such as a raster or triangle wave. In such a case,

V < —cs|X|?

FealXI| S (Cay(9)S(9)1S(9) R

for some positive constantg andcg, andRyk represents the amplitude of tkitn harmonic com-

ponent in the reference.

6.5 Simulation and Experimental Results

In this Section, we present simulation and experimentallie¢hat illustrate and support the ana-
lytical results in Sections 6.3 and 6.4. Specifically, in Sadiion 6.5.1, we show simulation results
that demonstrate the influence of reference amplitude ondheergence for the case of one un-
known frequency. Subsections 6.5.2 and 6.5.3 contain ewpatal results that deal with the cases
of one and two unknown frequencies, respectively. Theserargntal results also provide direct
support for the analysis in Section 6.4, because of the pcesef hysteresis compensation error in

the experimental system.

6.5.1 Simulation Results for the Case of One Unknown Frequency

We begin by verifying the analysis presented in SectiorB6r8&amely the restriction on the size of
Ri11. Recall that in order to prove stability of the closed-loogpteyn (6.1), (6.4)-(6.5), and (6.8)-
(6.11), we required the reference amplituglg to be sufficiently large relative to the size of the
harmonic disturbances present in the system. In order ity\vais, we present Fig. 6.4, which

shows the results of a pair of simulations conducted on theational model of our piezoelectric
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nanopositioner (3.26), with

yr (t) =Rq1sin(et)

a(t) =5sin2wt)

where w; = 21100, andRy1 will be used as a variable. The servocompensator was dekigne
accordingly with{ = [1,2]. The stabilizing controlleD(s) was designed using frequency-domain

techniques based on the frequency response of the planyandhosen as

. 1.3(3.5x 10%)2
P8 = 23 16@5x 1075+ (35 % 15)2

(6.43)

This controller was verified to stabilize the boundary laggstem (6.12) over the working range
of our adaptation variable. When the reference amplitué; = 11, we notice that the frequency
estimate converges to the desired valueopf However, when the reference amplitugg = 10,
the frequency estimate settles slightly below,2 This also results in a very large difference in
tracking error, with essentially zero tracking ert@(10-1°)) whenRy; = 11, but a mean error of
2.45 whenRy1 = 10; thus our results from Section 6.3.3 are confirmed, wighwviddue ofR; lying

somewhere between 10 and 11.

6.5.2 Experimental Results for the Case of One Unknown Frequency

We will now experimentally demonstrate the effectivendsh® proposed controller on a commer-
cial piezo-actuated nanopositioner (Nano OP-65, from Mayl IGibs), whose vibration dynamics
are given by (3.26). The hysteresis nonlinearity of the fplaas identified using a quasi-static

waveform of decreasing amplitude. A least-squares opétiaa routine was used to identify opti-
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Figure 6.4: Simulation results on the model of the piezddkeplant. Two simulations are pre-
sented, withR;1 = 10 andR;1 = 11.
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Figure 6.5: Output spectrum for nanopositioner used in exm@ntal studies. Input to power
supply is 3sii2m5) +4V. Primary harmonic is not shown, but has an amplitude a2 26n.
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mal weights for a modified PI operator with 9 deadzone eleshandl 8 play operators, which was
then used to calculate an approximate hysteresis inversion

We tested the regulation performance of the proposed metirodgh tracking experiments,
using sinusoidal references from 5 to 200 Hz, along with a 5skl&tooth signal. In order to
understand the effectiveness of the proposed controlleryvill compare the tracking results with
an established method in nanopositioning tracking prob)dtarative Learning Control [38]. Our
performance metrics will be the mean tracking error, defexethe mean of(t)| at steady state,
and the peak tracking error, defined by computing fegX| over one period of the reference, then
taking an average of this value over many periods.

For the sinusoidal references, we will employ two versioh®wur proposed controller; an
indirect adaptive servocompensator (ASC) with the desighov€ = [1], and a multi-harmonic
indirect adaptive servocompensator (MHASC) wjtk- [1,2, 3]. Both controllers are based on the
analysis of Section 6.3.3. The adaptation gains used wer®.003 for the 5 and 25 Hz cases,
y = 0.001 for 50 Hz, and/ = 0.0005 for the 100 and 200 Hz experiments, where we have adjuste
the adaptation gains to get similar settling times for eash t

The tracking results are presented in Table 6.1. We notatelle MHASC enjoys a consistent
advantage over both the ILC controller and ASC controlles.tide frequency of the reference tra-
jectory increases, the ASC begins to overtake the ILC cleatiio performance, but is significantly
behind at low frequency, indicating that the proposed atheirs tracking performance is less sen-
sitive to model uncertainties than ILC. At 200 Hz, we noticatttihe ASC has better mean-error
performance than the MHASC, which is highly counter-inugti However, this can be explained
by the design of the stabilizing controller. With a frequgié 200 Hz, the successive harmonics
used in the MHASC mean that the servocompensator has a diectan the stability margin of

the system. For the ASC, witth = 211200, the closed-loop system possesses a phase margin of
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around 70. However, the phase margin of the MHASC at this frequencybis Zhis causes the

other harmonics of the hysteresis being amplified, andtesuthe higher tracking error.

Table 6.1: Tracking error results for proposed control@$lASC, ASC) and ILC. Results are
presented as a percentage of the reference amplifdem).

MHASC (%) | ASC (%)| ILC (%)
Mean Peak Mean Peak Mean Peak
5Hz 0.12 0.64| 0.31 0.92] 0.17 0.78
25 Hz 0.14 0.71| 0.37 1.01] 0.19 0.58
50 Hz 0.21 0.93| 0.46 1.14] 053 1.01
100 Hz 0.39 1.61] 056 1.76/ 0.53 1.25

200 Hz 0.94 3.12| 0.79 3.33] 1.36 3.49

Figures 6.6 and 6.7 offer a closer look at the performancdefdifferent methods at high
and low frequencies. As the system approaches the gainosersBequency near the resonant
frequency of the plant, the effect of the hysteresis harosare amplified, resulting in the effect
of the hysteresis becoming more pronounced. We can clelaslsroe the more prominent presence
of higher harmonics in the 100 Hz signal as compared to the Sigiml.

The second reference we test is a 5 Hz sawtooth signal, wathetbults shown in Fig. 6.8.
We set the design parameigr= [1,3,5,7,9,11] in order to approximate for the sawtooth signal,
as well as compensate hysteresis. The frequency of the alwi@ve was limited to 5 Hz, due
to concerns with the stabilizing controller. The ILC cotigds wide bandwidth nature makes it
much better suited to compensating a sawtooth signal thaproposed method, and this results
in an mean tracking error of. 07% for ILC versus ®28% for our proposed controller. However,

the proposed method is still able to effectively compensaesawtooth signal.

6.5.3 Experimental Results for the Case of Two Unknown Frequencies

We now present our experimental results on the performahtieeq@roposed controller when

anda obey (6.6)-(6.7), as considered in Section 6.3.4. In ordesimulate disturbances of the
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Figure 6.8: Experimental Results for a 5 Hz sawtooth signal.

form in (6.7), we inject a disturbance of 106m75t + 717/2) into our Simulink block diagram
just before the hysteresis inversion. The reference t@jgdcs 10sir{2r125). For the purposes of
control design, it is assumed that both frequencies areawmknand in particular are not treated
as known multiples of each other. The adaptation gains usedyv= y» = 0.001.

Fig. 6.9 shows the phase portrait of the adaptation vasdblea number of initial conditions.
Notice that the neutral line1 = 0» is not crossed in any of the experiments. The trajectori¢iseof
adaptation variables seem to indicate the presence of tim&able equilibria on the neutral line;
two saddles points near the top right and lower left of thergand an unstable node in the center
of the figure. The trajectories of the system tend to initiathnverge to a manifold on which one
variable is close to a desired frequency, seen in Fig. 6.8ebarizontal and vertical lines. The
system then evolves along this manifold to the stable dayiali The time evolution of the tracking

error and adaptation variables for one set of initial caodg is shown in Fig. 6.10. After the
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Figure 6.9: Phase portrait of andos for various initial conditions. Desired equilibria are rked
by the stars (red, in the lower right and top left), and ihiti@nditions are marked by squares.
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Figure 6.10: Plot of tracking error and adaptation variahie time. Adaptation is enabled at 2 s.
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Figure 6.11: Phase portrait for experiments with(0) = 02(0) = 2150 and 01(0) # 02(0)
(01(0) = 271150, 02(0) = 2.017150.)

adaptation is enabled at 2 s, the adaptation variables mebortly after 7 s, which correlates
with a rapid decrease in the tracking error. These expetsrsow the robustness of the proposed
method to the error in hysteresis compensation.

We also confirm the existence of the degenerate case disdndRemark 8 for equal adaptation
gains. Fig. 6.11 shows the phase portrait of the adaptatolahes under two different initial
conditions. First, we set the initial conditions ¢q(0) = 02(0) = 2150, which corresponds to
the degenerate state of the system. We notice that the spstawes along ther;, = o> line, and
then the system converges to an undesirable equilibriusnltneg in a high tracking error. In the
second experimengy (0) is unchanged, buli(0) = 2.017150. In this case, the system converges

to the desired equilibrium point.
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Chapter 7

Stability of Systems with Hysteresis without

Hysteresis Inversion: an LMI Approach

7.1 Introduction

In this dissertation, our results have focused on contr@lBystems with hysteresis in tracking
problems. In particular, we have proved that the statesefytstem remain bounded when hys-
teresis is present in the system. Other results in the fiterasuch as sliding-mode control [39],
adaptive control [33], two-degree-of-freedom control][4dhd many more [38, 49] have proved
similar results. In addition, our results so far have reegiithe implementation of hysteresis in-
version to prove stability of our system with hysteresisstéyesis inversion, while normally very
effective, can be computationally intensive, and can haveesadverse effects on the performance
of servocompensator-controlled systems, which we willexglater in this Chapter.

A new wave of research over the past five years has focusedeaxt dnalysis of systems with
hysteresis, based on the mathematical formulations ofyk&efesis operators. These works have
provided some analytical results showing the stabilityystems with hysteresis and convergence
of the tracking error to zero, and importantly, can do so authhysteresis inversion or requiring
the hysteresis effect to be small. Such a result was provg83j where an LMI framework
is utilized to provide sufficient conditions for the statyiland tracking error convergence for a

PID-controlled second-order system preceded by a modifienp@rator. In [84], stability and
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tracking error convergence of a non-dynamic plant modeled Presiach operator was proved
using monotonic properties of the operator. The author8%)f proved closed-loop stability for a
system involving a PID-controlled second-order systencguled by a general hysteresis operator,
and provided guidelines on the selection of controller gain

One weakness of these results is that many are proved fondgisgstems of second order or
lower. Similar results fonth-order systems have typically relied on passivity caodg. One of
the most well known results in this area is reported in [8@)eve a Presiach operator is shown
to be dissipative. This is then combined with traditionadgety results to show the finite-gain
stability of the system. Dissipative properties have alserbshown for the PI operator [28] and
the Duhem operator [87]. A shortcoming of these resultsasttiey are able to only show bound-
edness, even for constant reference trajectories. Iniaddihe conditions required for passivity
are not satisfied by many plants and controllers. Outsidass$igity focused results, an interest-
ing contribution is from [88], where tight input-output btlity bounds are shown for systems with
play operators without explicit passivity assumptionsiafy, in [89], stability of am-dimensional
system is proved under an LMI condition; however, this redial not consider any controller, and
furthermore, did not show that tracking error could be ratpd.

In this Chapter, we discuss the stability and tracking eramvergence of a system with hys-
teresis using a general feedback controller containinghgegral action. It is assumed that the
hysteresis is modeled by a Pl operator. The theory of switaystems, in particular, that of the
common Lyapunov function [58], and a linear matrix ineqya{LMI) condition will be used to
prove that the tracking error and state vector convergerexqitally to zero for a constant refer-
ence. The principal contribution of this work is to preseutffisient conditions (in the form of an
LMI) for the regulation of the closed-loop system in termshaf hysteresis parameters, without re-

quiring the hysteresis to be small. As we will see, the presefan integral action is crucial to the
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formulation of our LMI condition. Comparing our LMI results those achieved in [89] and [83],
our framework can handle minimum-phase systems of arpitrater, along with a wide class of
controllers. In particular, we will show the stability ofrsecompensator-controlled systems with
hysteresis without using hysteresis inversion.

We then connect our LMI result to the aforementioned paysiésults, by demonstrating
that if the system obeys a certain positive real conditiogplation to the LMI problem can be
found analytically. In addition, we apply our LMI results show that servocompensator-based
controllers can stabilize systems with hysteresis, witlhequiring inversion of the hysteresis. Our
simulation results then confirm the effectiveness of the Lddhdition at predicting the global
convergence of the tracking error.

We then verify our results through experiments conducte@ @ommercial hanopositioner.
These experiments focused on comparing the performan@\ai®mpensator-based controllers
with and without hysteresis inversion. We first verify the L&bndition presented in the paper,
in order to prove stability of the system. Our experimengalits indicate that servocompensator-
based controllers without hysteresis inversion can aehielf the mean tracking error as that
achieved by the same control method with inversion, whée &leing less computationally inten-

sive.
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7.2 Sufficient Conditions for Stability in Systems with Hystere-
SIS
Consider am-dimensional linear system with transfer function,

S"+ by 18"+ -+ bys+ bo) m<n

k(
Gp(s) = y M=
p(S) S+ap 11+ +ais+ag

(7.1)

with input u(t) and outputy(t). We will assume that this transfer function is minimum phase
Our control objective is to regulate the output of the cascemhnection of a Pl operator (2.3)
andGp(s), illustrated in Fig. 6.3. In particular, we will design theputv(t) to the hysteresis to
stabilize the resulting feedback connection, and alsegrte a constant referengg. Recall that
itis conventional to include thiey = 0 term in the definition of the hysteresis operator, evenghou
this term results in simply a linear gain. For our work, welw@éparate this term from the nonzero

radii play operators, thus

u(t) = Bov(t) + 6 Wh(t) (7.2)

We will consider a normal-form state-space representdtiothe transfer functiorzp(s) [64],

2(t) =Fz(t) + Gxq(t) (7.3)
X(t) =Aox(t) + B(u(t) - Ax(t) + gz(t)) (7.4)
y(t) =Cx=x1(t) (7.5)
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whereu(t) obeys (7.2). The matricdsc 0™M G e O™, Ag € OP*P andB € 0P are given by

0 1 0 -
0
0 T 0
F— L G=|:],
0 1
1
—bp —by —bm-1 o
0O 1 0 -
0
0 .0
AOZ 7B:
o - 1
k
0 0 O o7

andA € 0P, g € O™ are row vectors.

Remark 10 For simplicity but without loss of generality, we will assuméhie following equations
that 6o = 1. This is because the gain of the hysteresis operator canltermto the DC gain of
the linear dynamics. In order to transform a system whtgre- 1 into the form considered here,

we multiply k in B bygp, and divide the elements 68f, A, andy by the same value.

We will consider a general linear controller to control (7 (Z.3)-(7.5). The controller includes

a dynamic compensator represented in the state-space form,

n(t) =C'n(t) +B"(x1—yr) (7.6)

with C* € 099 andB* € (09. Here we use the tracking ermey — y; as an input to the controller;

however, our analysis could be adjusted to accommodateiiff inputs. We will also require our
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linear controller to contain an integral action,

ot) =x1—Vr (7.7)
Using (7.6) and (7.7), we can define our control signal to thatfhysteresis operator;
V(t) = — Kaz(t) — Kox(t) — Kan (t) — Kao(t) (7.8)

whereK; € O™ K, e 0P, K3 € 01¥9, andK4 € O are constant gains. Applying (7.2) and

(7.6)-(7.8) to (7.3)-(7.5) yields,

-'Z(t)- - F GC 0 0 -
X(t) B —BKi—y¢) A—B(Ka—A) —BKs —BKj
n(t) 0 B*C c 0
_G(t)_ ] 0 C 0 0 |
-Z(t)- - 0 -
T .
X(t) N B6, Wh[v; Wh(0)](t) 7.9)
n(t) —B*yr
_O(t)_ i —Yr |

As the PI operator is continuous, the system (7.2), (7.8}(8 well-posed, and possesses a con-

tinuous and unique solution, which was proved in [41]. Ndefjne the coordinate transforms

3(t) =2(t) — [1, ofb—loyr (7.10)

K(t) =x(t) —Cly; (7.11)

127



whereQ is anm— 1 dimensional row vector of zeros. With these transforms, EG9) then

becomes

-'Z(t)- _ F GC 0 0 _

X(t)| |-B(Ki—y) Ao—B(Kz—A) —BKs —BKq

n(t) 0 B*C o4 0

o) | O C 0 0 |
-Z(t)- _ 0 _
X BOWh[v; Wh (0 Baoyr
X(t) N h Wh([V;Wh(0)](t) + Beoy, (7.12)
nt) 0
o(t) 0

wherecy is a constant that depends on the system matrices and cgaitngl, which appears due

to the coordinate transform. We will now define
a(t) = —Kao(t) + 6 Wa[v; Wh(0)] (t) + Coyr (7.13)

This definition is made in order to use Lyapunov analysis tmsthat all states converge to the
origin, since the state of the integrator will not necesga@ to zero in a system with hysteresis,

even ify, = 0. This transform will also remove the effect @jy, from (7.12), asy, is constant.

The derivative ofx (t) is given by

a(t) = —KaCK(t) + 67 Wh[v; Wh(0)] (1) (7.14)
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where
Wh[V;Wh(0)](t) = [y [V, WA(0)] (1), - - - , Brs[V: Vn(0)] (1)] (7.15)

The derivative of a play operator is in general discontirgjsince the switching between play and
linear regions can cause jumps in the valud@gf; W(0)](t). Let N(t) denote the set of all play
operators?, [v; W(0)](t) that lie in a linear region at time and letl° denote its complement. We

therefore have a piecewise expressiorﬁgrgiven by

_ v, ifi en)
PV, WH(0)](t) = (7.16)

0, ifi enc(t)

where

V(t) = — K [FZ(t) + GCX(t)] — Ka[-B(Ky — ¢)Z(t)
+ (Ao —B(K2 = A))X(t) — BKan (t) + Ba(t)]

— K3[C* 1 (t) + B*CK(t)] — Ka[CK(1)] (7.17)

Let ©y be the set of all numbers that can be reached by adding togaltreents off,. Next,

definee_h(t) € Oy, as the summation of weights for play operators in the linegion, i.e.
Bn(t) = [z Bhi @i € I'I(t)] (7.18)
|

Define the state vector



Note thatv can be expressed as a constant vector multiplying the statenvof the system, i.e.

v = Kyy. Using this definition with (7.13) and (7.14), we transformil@) into

F GC 0O O

—B(Ki—¢) Ac—B(K2—A) —BKs B

0 B*C c 0
0 —K4C 0 0
0
0
. (7.19)
0
6Ky (D) |

Alternatively, we write (7.19) in a compact form,

V(t) 2(Zo+ 6n(t)BKy)y(t) (7.20)

where

B=0,1]"

where 0 here is am+ p-+ g dimensional row vector of zeros. As the stayesan be expressed as
simple functions of the states of (7.9) and the hystereaied,(t), we know that the solution to
the above system is well-posed, and thas continuous. Note also thﬁ](t) € O, and thuss,
takes values in a set of finite cardinality; therefore, we icéerpret (7.20) as a switched system,

where the switching is governed by the states of the playatpesin (7.2). The stability of such a
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system can be guaranteed through an LMI condition [58],

(Z0+ 6BKy) TP+ P(Zo + 6hBKy) < 0, V6, € O

whereP > 0. Such a condition would imply th&t(y) = y" Py is a common Lyapunov function for
(7.20), whereV/ < 0, Vy # 0. However, since the only element that actually chang@s,ifrom

the results of [90] a sufficient condition for the existen€swuch aP is that

(Z0+min(©h)BK,) TP+ P(Zg 4 min(Gp)BKy) < 0,

(7.21)
(S0 -+ max©p)BK,) TP+ P(Zy+max©p,)BK,) < 0
Similarly, if a P can be found such that
(S04 min(©)BK,) TP+ P(Zo + min(©y)BK,) + 2AP < 0,
(7.22)

(Zo+max(©p)BK,) TP+ P(Zo+max©p)BKy) + 2AP < 0

whereA € O > 0 thenV < —2AV, which implies that (7.20) is exponentially stable, and the

tracking error converges to zero with decay rate of at 18490].

Remark 11 One extension of this work would be to consider a modified Plaipe¢2.16)for the
hysteresis model. This operator can be fit into our existagéwork by extending the definition
of 6, multiplying the result of the current definition with the suation of the weights of the active

deadzone operators.
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7.2.1 Specialization to Positive-Real Systems

By imposing a positive real assumption on the system, we qareat a stronger stability result.

Consider the closed-loop system (7.3)-(7.5), (7.7), with

v(t) = — Kqz(t) — Kox(t) —Kao(t) (7.23)
Let the system
Z Z
=3 + Bu*
X %
F GC Z 0
= + (7.24)

~B(K1—y) A-B(K—A)| %] [Bu

y=(=C (7.25)

be positive real [64], where a&nd X are defined as in (7.10)-(7.11), and € OO0 will be defined

momentarily. Then, there exists a symmetric positive diefimatrixP* such that

P*B =CT

whereQ is symmetric and positive definite. This system represdr@siyynamics portion of our
model which has been rendered positive-real by state fe&dbEhis condition is similar to the
assumption on the dynamics in [86], where the dynamics ofsaazked controller and a smart

material actuator are assumed to be passive. Indeed, f@yisiéms, the notions of passivity and
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positive realness are interchangeable [91]. Note thatah&aller is not included in this positive
real condition. We will now show that under this positivelreandition, and with only integral
control, the LMI (7.22) must have a solution.

Let u* be defined as

U*(t) = a(t) = — Kao (t) + By Wh[Vv; Wh(0)] () + Coyr

where the integrator outpuat is governed by

Using this definition together with (7.23) and (7.24), weio®that we can recover the closed-loop
system defined in (7.19) (excluding the terms related o Let ¥ = [z",X"|T and consider the

Lyapunov function candidate

V(X,a) =BXT (P*X(t)+1/2a%(t) (7.26)

- (7.27)
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whereaq is defined as in (7.13). The derivative\wfcan be written as (using (7.24)),

V(X a) =BX" ()P [Z*X(t) +Ba(t)] + B[Z*X () + Ba(t)] " P*X(t)
— a(H)K4CX (1) + ar (t) 6 Wh[v; Wh (0) ] (1)
=—BXT(OQX () +a(t)XT ()[B2P'B — K4CT]

T+ a)B(t) (K ZR(t) — K'Ba(t) - KeCR (1)) (7.28)

whereK* = [K1,K5]. Let B be defined as

B =Ka/2 (7.29)

and letF = —K** — K4C. We can then rewrit¥ in the matrix form

T

¥ (t Oh()FT | | %(t
V(R.a) =1/ X(t) _K4Q Gh_() X(t) (7.30)
at)| |GOF 26.K*B| |a(t)
Define = [X¥",a]", and
| KaQ On(t)FT
Bn(t)F 26,K*B
Let Sequal the Schur compliment &f, i.e.
S=26,(t)K*B — 6n(t)°F [K4Q] 1F T (7.31)

It is well known thatX is positive definite if and only if botk,Q andS € [1 are positive definite.
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Assuming thagh > 0, we can lower boun8with the expression

* 1 T o
S> |2K B_mHehHlF F 1 6h(t) (7.32)

Note that this equation is independent of the solution td_tleg@unov equatioi?*; therefore, ifK*
is such thaK*B > 0, we can always find @ (and therefore #*) such thatSis positive definite
for all 6, > 0. This implies thaX is positive definite, and therefore there must exist a sefiitty
smallA such thaiX > AP, and therefore tha andA satisfy the LMI condition (7.22).

We can now compare our results here with the passivity ieachieved in [86] and in similar
references such as [87]. In [86], dissipativity (a geneedion of passivity) of the presiach operator
is shown between the input and derivative of the output obflexator. In both our results here and
the results achieved in [86], by assuming the dynamics asdiy®real or passive, the properties
of the hysteresis operator under consideration allow usdegpstability of the system without any
further restrictions on the hysteresis. The principaleéhce is that because dissipativity can only
be shown from the input to the derivative of the output of aténesis operator, passivity-based
results cannot prove that the tracking error convergesrm, Byen for constant reference signals.
However, our results require thtB > 0 andK, > 0, which may not be satisfied for all positive

real systems.

7.3 Stability of Servocompensators in Systems with Hysteresis

without Hysteresis Inversion

With our LMI condition in hand, we can now prove the stabibfithe servocompensator controlled

closed-loop system with hysteresis, without includingtégesis inversion. The servocompensator
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fits into the controller framework described in (7.6), wh€Fds neutrally stable, with eigenvalues
located on the imaginary axiB* is chosen to ensure that the pgd*, B*) is controllable. We now

assume that the reference signal is generated by a newsiate exosystem,

W(t) =Sw(t) (7.33)

yr(t) =Ew(t) (7.34)

Let us assume that is periodic with periodl'. We next set up the error coordinate transform,

() =z(t) — Z(t) (7.35)
% (t) =xa(t) —yr (1)
Za(t) =xn(t) =y V(1) (7.36)

wherez*(t) is the steady state solution of

7 (t) =FZ*(t) + Gy (1) (7.37)
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and the notatiorf () (t) denotes théth derivative with respect to time. This transform chandpes t

y dynamics into

F GC 0O O

—B(Ki—¢) Ac—B(K2—A) —BKs B

0 BC c 0
o —K4C 0 o
_ o _
"
+ B (7.38)
0
| nBKY(t) + oy (1)

Let us assume that we have identifie® auch that (7.22) is satisfied for a givén We can then

useV (y) = y' Py as a Lyapunov function candidate, the derivative of whictysb

V(y) = —2AV(y) +2y P[0, —BTy{" (t),0, coys™ (t)]T (7.39)
< — 2Mmin(P)[1yI12

+ 2Amax(P) Y110, BTy (1), 0, coyt™ (1)] (7.40)

where|| - || denotes the Eucledian norm. We can see from this equatidritbee must exist a
sufficiently largey such thatv < 0; thereforey enters a bounded positively invariant set and
remains bounded for al However, the disturbance rejection properties of theammpensator
will allow us to draw some further conclusions regarding fleeformance of the system if we

impose a periodicity assumption.
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Assumption 14 The steady-state trajectory gft) is T -periodic.

Remark 12 Though theoretical results are lacking, many experimergsililts reported in the lit-
erature have shown that systems with hysteresis seem to gogsagdic solutions when driven
by T-periodic references, regardless of whether inverssonsed or not [39, 47]. Therefore, we
are presented with a tradeoff in our theoretical results befwguaranteeing periodicity of the
solutions when inversion is used, and ineffectiveness adghecompensator when inversion is

not used.

Utilizing Assumption 14, we can now investigate the steadyestracking erronTt). Letting

T = 21/ w, we can writexy(t) in a series form as
X1(t) = ZlRi sin(iwt +q) (7.41)
i=

Let us assume that the mati@X in our servocompensator (7.6) has been chosen such that its
eigenvalues are located #tjkw, k € p, wherep is a finite-element vector of whole numbers.
Becausex (t) is the input to (7.6), the servocompensator’s error reguigbroperties will force

all components ok;{t) whose internal models are containeddhto have zero amplitude at the

steady state. Therefor®, = 0,Vi € p in (7.41).

7.4 Simulation Example: Verification of the LMI condition

We now demonstrate the feasibility and effectiveness ofLdir condition with a simulation ex-

ample. Let us consider a linear system,

o2
©o® = ot ast o2

(7.42)
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Output
o

Input

Figure 7.1: Hysteresis loops for play operators with eqealirelative gains, wherneis equal to
0.7, andu = 3.

where{ = 0.5 andw, = 1. Gp(s) is preceded by a Pl operator with= [0, r,2r, 3r], wherer will
be considered as a variable. The weightsf the operator will be considered a functionrofin

particular, for the play operat®t;, 1 <i < 3, 6 will obey

2
22U —2r

6i(ri) (7.43)

where we introduce: as a design parameter. This choicefois chosen to make sure the relative
gains of the play operators remain constant. By this, we niegtrfar anyr; < y, if the inputv to
R.[v; W (0)](t) is cycled periodically fromvpin = — U t0 Vmax = U, then B R, [Vmax W (0)](t) = 1.

We have illustrated this idea in Fig. 7.1 far= 3. The exception to this rule will béy, which we
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will fix at one. This cascade of a Pl operator &&gls) will be controlled by an integral controller,

a(t) =yt) —yr (7.44)

v(t) =—0.250(t) (7.45)

wherey(t) is the output ofGp(s), andy, is a constant reference signal. Since our LMI results prove
global stability, we will se; to be 100. The system described above can be easily fit inidvihe

framework (7.22), with

20+ min(®x(r))B Ky = —w? —2lan 1|

S0+ max©n(r))B'Ky = — 0P —27an 1

0251+ O 0

where|| - ||1 denotes the 1-norm.

To test the viability of our proposed method, we will now betp increase the value ofuntil
our LMI condition either becomes infeasible, or producesslt that cannot guarantee stability.
Increasing the value afmakes the hysteresis loops wider, meaning that the cordgimrbes less
and less effective at compensating the system. WheQ.74, both LMIs (7.21) and (7.22) return
results that cannot guarantee stability. We then simulatesystem, increasingeach simulation
until the tracking error no longer converges to zero. We tthemnote this value of asrmax. For
our setup described hemg,;ax = 0.8, with the system entering a limit cycle rather than conveyg

to zero. Our LMI framework is therefore fairly effective, tss able to guarantee stability up to
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92.5% of rmax-

One behavior worth noting is that the valuergf,x observed in simulation can vary with the
value ofy,. For example, if;, = 3, r can be increased to&D before instability occurs. This would
indicate that there is a region of attraction for this systeside which the tracking error converges
to zero. This indicates that the conservatism of our LMI ¢ood is dependent on the value of the

reference inpuy;.

7.5 Applications to Nanopositioning Control

We now confirm our theoretical results with experiments. \WEqgrmed a series of tracking ex-
periments on a commercial nanopositioner (shown in Fiyj.Z8d compared the results under
different control schemes. Online control implementatol data collection was provided by a
dSPACE platform (DS1104). The nanopositioner was modeledjulse same techniques as those
presented in Section 3.4.1, as a cascade of dynamics andifeti® operator. The radii of the
modified Pl opwearot were not changed from those in Sectlob3however the weights were

re-identified as

A

6, =[0.694,0.196,0.041, 0.050,0.040,

0.050,0.023 0.054

for the play operator, and the weights of the deadzones were

A

6y =[1.056,0.650,0.327,0.432,9.130,

—1.138 —0.154,—0.787,—0.296
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Our vibrational dynamics were modeled by a 4th-order trmfsinction,

Go(s) = 4.7-10"
P 41161003+ 6.6- 1082+ 5.0- 10125+ 8.3- 1016

(7.46)

In order to improve computation accuracy we used a balanege-space realization [65] of the

system (7.46). This results in the model

—0.024 1614 -0.126 Q061

—~1.614 —0.266 Q721 -—0.161
x(t) =1.0x 10 X(t)

—-0.126 -0.721 —-1.060 1677

—-0.061 -0.161 —-1.677 —0.221

76.47
2404

2427

83.37

y(t) =|76.47 —2404 2427 —83.37|X(t) (7.47)

Note that, while this nominal dynamics model will be useddontroller design, the actual dynam-
ics model of the nanopositioner would have unity gain at DAsTéa consequence of the way
the hysteresis is modeled; the DC gain of the system is efédgtincorporated into the hysteresis
model. This was discussed in Remark 10. Indeed, the dynanddsisiused in previous chapters
were scaled to unity gain for this reason. After identifyowg modified P1 operator, the minimum

gain of the hysteresis operator was found to E94with a maximum of 136, while the gain of
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the plant (7.47) is %2. Let the equation

Xu(t) =Auxu(t) + Buu(t) (7.48)

Yu(t) =Cuxu(t) (7.49)

denote the canonical form of the dynamics (7.47) with unéingi.e. y(t) = 5.62y,(t). We can
then fit our nanopositioning system into the form considene(v.3)-(7.5) by lettingm= 0 and

p =4, where

Ag+BA =A,, B=B,, C=C, (7.50)

Based on the definitions of (7.50) and Remark@lfor the modified PI operator considered takes
values in the intervald.69/5.62 13.36/5.62] = [0.83,2.38. The boundaries of this interval form
the values of mifg,) and maxé;).

Our experiments focused on tracking sinusoidal signalkefdrm

Yr (t) = 20sin27eot) + 30um (7.51)

where w = 5,25,50,100,200. We utilized MHSC and SHSC designed for use both with and
without hysteresis inversion. A Luenberger observer, thase the model in (7.47), was im-
plemented to emulate state feedback. Becauseis unavailable, the control signa(t) was
used in this observer. The controller gains are chosen ukmgobust Riccati equation method
(3.11), based on the nominal dynamics model (7.47), a metlnoch was also used in [76]. Let
v(t) = [K2,Ks,K4]y(t) denote the control synthesized by this method. We can therthesLMI

toolbox of MATLAB to solve for the matridP in (7.22), yielding/\ = 4.44. We also utilize Iterative
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Figure 7.2: Mean tracking error for controllers used in expental trials. SHSC refers to com-
pensation of only the reference harmonic, and MHSC refec®topensation of the first, second,
and third harmonics of the reference.

Learning Control [38] for comparison purposes in our tests.

Fig. 7.2 shows the resulting tracking error of the MHSC and&SHvith and without inver-
sion, together with the Iterative Learning Control (ILC) rigsuOne trend observed in all of the
servocompensator-based controllers is that their pednom is substantially more robust to in-
creasing frequency than ILC. This is particularly true foe 8ervocompensators that do not use
inversion, which see very little variation in their perfaance until the reference reaches 200 Hz.
We immediately note that the SHSC without inversion is thestvperforming controller; this
is contrasted by the performance of the MHSC without inggrsiwvhich is the best-performing
controller.

This seeming contradiction can be explained by looking theofrequency spectra of the error

signals, provided in Fig. 7.3. We can see from this graph thatfrequency components of
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Figure 7.3: Frequency spectrum of the tracking error witlsSHhvith and without inversion. Bump
near 3 kHz is caused by the resonance peak of the nanopesition

the tracking error above 600 Hz are larger when inversiorsexllas compared to when it is left
out. The modified Pl operator attempts to approximate théehgsis with non-smooth play and
deadzone operators. Therefore, we expect more high fregu@mponents to be introduced into
the system using inversion than when inversion is left odte performance difference between
the controllers is explained by the amplitude of the secardithird harmonics, which are much
larger without inversion than with inversion. However, erthe MHSC is used, these harmonics
are compensated and removed from the system, meaning ¢havehall tracking error is greatly
reduced, especially when inversion is not used. In addittmremoval of the hysteresis inversion
greatly reduces the computational requirements of theralbeit For example, the MHSC without
hysteresis inversion averaged a computation time gi2®er sampling period, while the MHSC
with inversion required 4%s of computation time. This is a significant savings, esplgcsance

the controller possesses half the mean tracking error wieemversion is removed.
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Chapter 8

Properties of Self-Excited Limit Cycles in a

System with Hysteresis

8.1 Introduction

For systems with hysteresis, most existing work aims toigeogufficient conditions under which
a given controller structure guarantees stability of treteay in question. A natural question there-
fore is to consider the behavior of the system when theseittonsiare not satisfied; alternatively,
what effects do hysteresis nonlinearities have on the gtstade solutions of the system? For ex-
ample, consider our LMI result presented in Chapter 7. A resrgscondition for the existence
of a matrixP solving either (7.21) or (7.22) is that each subsystem isnitay since (7.21) and
(7.22) are in the form of Lyapunov equations. However, whauld happen if one or more of
these subsystems were unstable?

Several authors have remarked that hysteresis can leadvented oscillations, perhaps most
notably in the work of [33]. Further investigations into sieeoscillations are limited. One result is
in [92], where conditions are presented under which the atetdi harmonic balance predicts the
existence of periodic solutions in systems with relay hestis. The authors of [93] utilized the
describing function method to predict the existence of dtloycle in a Terfenol-D-based actuator,
and demonstrated its existence in experiments. These Wamksed fundamentally on the question

of existence, and did not investigate any properties ofithi €ycles in detail. There is also some
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additional work on limit cycles in systems with relay hyst®s [94], which was driven primarily
by researchers in the field of electronic circuits in the 60’s

In this Chapter, we offer an in-depth exploration into thepgemies of self-excited limit cycles
occurring in a particular class of systems with hysteregie first observe that using rejection-
focused design techniques can lead to steady-state s#é@Xmit cycles in the system. We then
investigate the properties of these limit cycles, focuging linear plant controlled by an integral
controller, where a play operator [32] is present in the Ibee#t loop. We focus our attention
on odd symmetric limit cycles within the system. A Newton-Rsgn algorithm is formulated to
calculate the limit cycles, and using the odd symmetry ofdperator, we are then able to prove
that linear relationships exist between several propedighe limit cycles and the parameters of
the system. These results are verified in simulation, wher@algo demonstrate the effectiveness

of the Newton-Raphson algorithm at predicting the solutmithe system.

8.2 Motivating Example: Issues with Rejection-focused meth-

ods

Let us consider a scalar system preceded by a play operadoa amity gain controlled using
integral control and feedback. This represents a basiadaseof a Prandtl-Ishlinskii hysteresis

operator with dynamics. The system is written as,

X(t) =ax(t) +V(t) + BV [v; 0] (t)
o(t) =x(t)

V(t) = —kix(t) — koo (1) (8.1)
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wherer is the play radius ané, is a weighting term. For our simulations, we will t= [ky, ko] =
[1,1], and seta = 1.5 with 6, = 1. One technique used in rejection-focused control metistis
consider the hysteresis as a linear gain coupled with a yrigthe-varying uncertainty, as was
done in [49]. For (8.1), this linear gain is equal to the ca#ffit of v added with the weigh®.
Based on this idea, we reformulate the closed-loop system as

K| |a-2 ~Ze| [x0)| SO (82)

whereS [v;0|(t) is a stop nonlinearity [28] which takes values in the boundggon [—r,r]. In

particular, for monotone inpw

S[v;0](t) = min{r,max{—r,v(t) — v(0) + S[v; 0](0)

We can compute the eigenvalues of this system through the obthe equation

det(sl — A) =% — (a— 2ky)s+ 2ko (8.3)
where
a—2ky —2ko
A=
1 0

These eigenvalues have negative real partkfar a/2 andky > 0, both of which are satisfied
for our choice ofK. Therefore the trajectories of the system remain boundade £8.2) is an

exponentially stable linear system driven by a boundedtingawever, when the play operator in
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(8.1) is in the play region, theequation becomes

X(t) = (a—ka)x(t) — keo(t) + ki

wherek; is a constant value determined by the current state of theq@arator. Using this, the

eigenvalues of the closed-loop system obey

det(sl—A) =* — (a—ky)s+kz (8.4)

where

a— kl —k2

Sincea— k; = 0.5, the system dynamics are unstable when the operator lig= iplay region.
Fig. 8.1 shows the behavior of (8.1) for varying play radiie dlearly see that the system enters
a limit cycle for each value of the play radius. This occurséuese the controller gairns are not
chosen to account for the nonlinear behavior of the hysteresrthermore, these limit cycles are
self-excited, in that there is no external input driving flystem. Clearly, such oscillations in the
system are not ideal, even though the system state doesrbmaided. However, the properties

of these limit cycles are interesting in their own right.

8.3 Self-Excited Limit Cycles in a System with Hysteresis

We now investigate the properties of the limit cycles obediwn Fig. 8.1. Consider a linear system

preceded by a play operator and a unity gain controlled usitegral control and state feedback
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Figure 8.1: Hysteresis state for systems that are unstdida the hysteresis is in the play region,
with varying play radii.

G, (s)

+
%1.‘7

Figure 8.2: Closed-loop system described in (8.5).
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as illustrated in Fig. 8.2;

X(t) =AX(t) + B(v(t) +W[v; 0] (t))
o(t) =Cx(t)

V(t) = — Kix(t) — Koo(t) (8.5)

wherexe 0", o e 0, Ac O™" Be 0", Ce O™ Ky e 0N andK, € 0. Notice from Fig.
2.1 and (2.1) that there are two basic modes in which the sfaelay operator can reside. The
first is the linear region, in which(t) = v(t) £r. The second mode of operation is the play region,
whereu(t) is constant, represented in (2.1) by the terf@). We will make use of the linear and
play region terminology throughout this Chapter. Furthaenave will also refer to the leftmost
linear branch in Fig. 2.1 as the descending region, and gihemiost linear branch as the ascending
region.

The well-posedness of (8.5) follows from the arguments itj.[¥Ve now begin our analysis of
(8.5) by providing a coordinate transform in order to ple&®) into a switched system form, as in

Chapter . Let us define

a(t) = —Koo(t) + W [v; 0](t) (8.6)

The derivative ofa requires us to define the derivative of a play operator, wiscim general
discontinuous. Lefl denote the set of all closed intervalstof O in which W [v; 0|(t) lies in

a linear region, and Ieffl® denote its complement. We therefore have a piecewise cantm
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definition forW, given by

_ v, ifter
Wik [v;0](t) =

0, iftene

where

U(t) = — Ka[(A— BKy)X(t) + Ba(t)] — Ko[CX(1)]

=[—K1(A—BKy) — KoCx(t) — KqBar (t) (8.7)

Note that this derivative is continuous everywhere excepewthe play operator exits the play

region. Using (8.6)-(8.7), we can derive a switched systamffor (8.5):

y(t) =Apy(t), =12 (8.8)
A—BK; B A—BK; B
A= A=
CKp O _2CK; — Ki(A—BKy) —KqB

wherey = [x",a]", andr is the play radius. The matri&; characterizes the systems behavior
in the play region of the hysteresis, whi#e does so for the linear region of the hysteresis. To

describe the switching behavior igf), we will define the operator

i(t) = QW [v; O] (1)](1) (8.9)

whereQ[W; [v; 0](t)] = 1 whenW is in the play region, an@[W [v;0|(t)] = 2 whenW; is in the

linear region. From simulations of (8.8), we observe th#té& control gains are chosen such that
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Figure 8.3: lllustration of the state of the play oper&oduring a sine-like limit cycle. The stars
indicate times when the system dynamics switch.

A1 is unstable and\, is Hurwitz, the trajectories of (8.8) converge to a limit ®/.cFurthermore,
the limit cycle we observe is sine-like, in that it is both esigmmetric and changes the sign of
its derivative twice a period. Based on these observatioeswil develop a Newton-Raphson

algorithm to calculate the sine-like solutions of the licytle.

8.3.1 Computation of the Limit Cycles

Our search for the solution of the limit cycles begins frontedies atty such that the play operator

is in the ascending linear section. ligtdenote the time when the play operator enters the play
region from the linear region; this will be denoted as the fgitching time. Similarly, we define
to,t3, andts as the second, third and fourth switching times. Since tiséesy starts in the linear
region,i(0) = 2,i(t]) = 1,i(ty) = 2, and so on. Furthermore, based on our assumption of iee-li
limit cycles, y(t4) = y(0); thereforet, —tg is the period of the limit cycle. From the description of

the play operator, for any sine-like limit cycle, the cohtv@) at these switching times obeys the
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equations,

V(t1) =0 (8.10)
v(ty) — V() = 2r (8.11)
v(t3) =0 (8.12)
v(ts) — v(ta) = —2r (8.13)

Furthermore, symmetry allows us to only consider the caomukt (8.10) and (8.11). We will let
t; = t; —to andt, = t, —t1; these values will be referred to as the switchimgrvals We can then
translate these equations into functiong®fFrom (8.10) and the definitions gfandA,, we can

quickly arrive at

Hi(yo,t1) 2 KMy =0 (8.14)

whereK = [—K1(A—BK1) — KoC, —BK;j]. SinceW; is constant in the play region, from (8.11) and

(8.6) we can derive

Ha(yo,t1,1) 2 [—Ky, 1] [| — &Mty = 2r (8.15)

wherel is an appropriately dimensioned identity matrix. Finatlgcause we are seeking sine-like

limit cycles, we also have the constraint equation

ST (yo,t1,12) 2 (I + eMl2gl) g =0 (8.16)
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which is derived from the forward-time solution of the swaiédl system from =tg tot =to. We

now present the following lemma, which addresses the symyroéthe dynamics of the system.

Lemma 3 Let yp be the state 0{8.8) when the system enters the ascending branch from the play
region, and lety(t;) denote the state df8.8) when it enters the descending linear region. Assume
that the system switches once between stataad y(t;). Then, if the system lies aty att = tg

in the descending region, the state of the system when thensgstters the ascending region is

—y(t2).

Proof. Based on equations (8.10) and (8.11), we know thandy(t;) must obey

y(t) =€y, y(tz) = eM2y(h)
0 =Ky, (8.17)

2r =[—Ky, 1[I — M2 y(ty) (8.18)

wheret; andt; are the switching intervals. Now consider the behaviottisigufrom —y(0). Then,

V({§) = — My, y(§) = My(E)
0= Kelliyp (8.19)

—2r =[—Ky, 11 —eM2)y(§) (8.20)

wheret; andt; are the switching times artg andt; are the switching intervals for the system
when it is initialized at—yp. Note the minus sign on the 2erm in (8.20). This is because we
are entering the opposite region of the play operator froenahginal case, and therefore this

switching condition would be derived from (8.13) instead&fL1). Comparing (8.17) with (8.19),
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we notice that the sole difference is the presence of thetivegagn, which cannot affect whether

v=0. Thereforet; is equal tat1, implying y(t;) = —y(t1). Using this in (8.20) yields

(K, [ —eM2)y(t]) = —2r

[—Ke, [ —eM2]y(ty) = 2r

Since we have recovered (8.18), we know #at to, which completes the proofl

Remark 13 This lemma shows that as long agrecan be found such thag = —y(t,), the system
possesses a sine-like limit cycle. However, this resultoggnt under the assumption that the sign
of v does not change in the intervt],to], which implies there is only one switching betwégn

andt. Proving that this does indeed occur is part of our ongoirtge work.

Equations (8.14)-(8.16) yield+ 3 equations witm+ 3 unknowns,yp = [xg, ao)", t1, andty.
We will refer to solving this set of simultaneous equatioagreelimit cycle problem Due to the
nonlinearity of these equations, we will utilize the wetidewvn Newton-Raphson method to find a

solution to the limit cycle problem. Denote our unknownshes [yg,tl,tZ]T. We can then define

P () = [ZT(P), Hy (P), Ho(P)] (8.21)

We can now apply the Newton-Raphson method to obtain a soltdithe above equation using

the iterative formula

ot =o'+ I 2 (D) (8.22)
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where

9z 0% 0%
A% oty oty

ID) = |or aHy oy (8.23)
%) oty oty

OHy JdHp JHp
Ldvw du  dtp

These partial derivatives can be readily calculated inede®rm based on (8.14)-(8.16). Note that
the only dependence gg within these equations is the linear term. We can then tagegdntial

derivatives one element at a time. For exampleydetienote theth element ofyy. Then,

;_VZO' = (1 + efutzgllny[ot(i-D) 1 otx(n+i-Dy (8.24)
|

wherei can range from 1 ta+ 1. Therefore,

g_l;; = Kot (-1) 1, g (M) — g (8.25)

I

g_l;; = [~Ky, 1[I — ga)efelaolx (D) 1 gbx (1D — o (8.26)
|

To compute the partial derivatives with respect to the dwiiig timest; andt,, we make use of the

formula,

det = A = MA
dt
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The remaining partial derivatives ihcan then be calculated as

F)a
o
o3
ot

OH;

oty

OHy

=

OH,

oy

OH,

oty

=(1+ Mgy )y

=(1 + Azt

=K Ay,

0

—[—Ky, 1[I — M)Az,

—=[—Ky, 1[I — Ajefi2]efly,

The limit cycle is then characterized by the solution of thaation,

P(D*) =0 (8.27)

Note thatd®* completely characterizes the behavior of the limit cycissonce the switching times
and initial conditions are known, the closed-form solutidthe limit cycle can be computed from

successive solutions of the two (switching) linear systems

8.3.2 Properties of the Limit Cycles

While the solution of the limit cycle proble®* must be calculated numerically, we can utilize the
equations (8.14)-(8.16) to prove some properties of thé tiytles corresponding to the solution

@*. First, we will see how the solutio®* varies with the play radius

Proposition 1 Let the solution of the limit cycle problem witk=r* be denoted b, = | OT,t{,ték]T.

Then, if r=r*c;, where g > 0, @, = [c1)3",t;,t5]" is a solution to the limit cycle problem.
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Proof. We begin by directly computing (8.15) evaluatedt= [cly*T,t{,tg]T with r =r*cy,

which can be written as

[—Kg,1][| — eMl)elicyp = 2rcy (8.28)

By dividing both sides byi, we arrive at the solution dfl;(®;+). Since the left-hand sides of
(8.14) and (8.16) are linear with respect to the initialestétec; term can be immediately divided
out, proving[c1y;T,t5,t5]T solves the limit cycle problent]

Proposition 1 shows that there is a linear relationship betwthe play radiusand the ampli-
tude of the limit cycles generated in (8.8)-(8.9). Next, \aa show that the bias of the limit cycles

can be set to non-zero values. Consider the system

X(t) =AX(t) + B(V(t) + W [v; ] (1))
&(t) =Cx(t) i

V(t) = — Kix(t) — Koo(t) (8.29)

wherey; is a constant reference. The only difference between theeadguation and our original

system is the presence of the teymLet us assume that

rank =n+1

This is a well known necessary and sufficient condition fereRistence of a steady-state solution

to systems with constant references when integral corgna$éd. Lek € (" ando € [0 be such
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that

0=(A— BKy)X— BK@, 0=CX—y; (8.30)

Definingv = —K;x— K0, we can see that (8.30) reduces to

A Bl |x 0

C 0| |v Yr

Therefore, our assumption guarantees the existence aqdangss ok ando. Next, define the

coordinates

X

Il
0
X
Qv

Il
Q

|
Q|

(8.31)

Note that sincg, X ando are constants, the closed-loop system can be written agy((&i30)),

X(t) =(A—BKyp)X(t) + B(—K2(t) +W[v; 0](t))

G(t) =CX (8.32)

This is the same form as that considered in (8.5). Therefoessystem (8.29) and (8.9) possesses
the same limit cycle as (8.8)-(8.9), with the exception obastant shift in the coordinatesand

X. We present this result as the following proposition.

Proposition 2 Let ®g = [yg,tl,tz]T denote the solution of the limit cycle problem {8t8)-(8.9).
Then,®* = [(xo+X)T, a0 — K20, t;,t3]T is a solution to the limit cycle problem for the system

(8.29)and (8.9).
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Finally, we consider a special case of the system (8.5), eviverassume to be a scalar and
whose derivative obeys

X(t) = ax(t) + (v(t) + Wi [v; Q] (t))

We then select the control to bé&) = [kpa,a?/2]y(t), wherek,, € (0.5,1). The eigenvalues of the

systems then linearly scale with increasmdrhe system matrices are then

V(1) = Agyt), i =12 (8.33)
where
1-kya 1 1—kya 1
N CRCRE IOV L)
—-a/2 0 —a?—kp(1—kp)a? —kpa

We can now show that the frequency of the limit cycles is Iihegelated to the parameter Let
us focus on the system in the linear region of operation, y¢) = Axy(t). The characteristic

equation of this system is

$* —Tr(Az)s+ Det(Ay) =0 (8.34)

with

Tr(A2) = (1— 2kp)a, Det(Ay) = a2

where Tr and Det denote the trace and determinant respigctivet us consider the stateas the

output of this second-order system, and formulate a caabfaom transformation. Lex; = x and
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X2 = X. This transforms the system equations baseAowith our specified control gains into

X1(t) =x2(t)

Xo(t) = —@xa(t) + (1— 2kp)axa(t)

Next, letn; = ax1, and letn, = x2. Then equations are then

Ni(t) =anz(t)

N2(t) =—an(t) + (1 - 2kp)ana(t)

Finally, let the time variablé = at, which implies that

d_1d
dr  adt
Equation (8.37) now becomes
dny,_,
F(T) =n2(T)
dn

s (1) =—nN(1) + (1= 2kp)N2(T)

(8.35)

(8.36)

(8.37)

(8.38)

(8.39)

(8.40)

which is independent od. The same transform can be applied to the system governekdeby t

A; matrix, which then also becomes independena.ofThe resulting system equations in these
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transformed coordinates are

An1= Anz = (8.41)

We can then apply equations (8.14)-(8.16) to (8.41), whokdisn will be independent cd. By
reversing the coordinate transforms on resulting solytism see that the effect of increasiags

to scale down the amplitude and scale up the frequency oethdting oscillations. Equivalently,
the switching interval$; andt, are scaled by fa. This result allows us to present the following

proposition.

Proposition 3 Consider the systel8.33) Let the solution of the limit cycle problem with-aa*
be denoted byy;T,t;,t5]T. Then, if a= a*cy, where g > 0, 1/c1[yT,t;,t3]7 is a solution to the

limit-cycle problem.

8.3.3 Stability of Self-Excited Limit Cycles

We will now investigate the stability of the resulting limadycles. Note that the solution of (8.8)

evolving according t@b* obeys the Poincare mapping,

Vo =W(y5) & alagitlighilo gl (8.42)

The (local) stability of this mapping is determined by lineag the mapping about the fixed point
¥, if the eigenvalues have magnitude less than 1, then thémols locally stable [95]. Note that

t; andt; are in fact dependent on the stage therefore in linearizing the system, the dependence

163



of the switching times on the staggnust be considered. To do this, we define the mappings

Wi(y) =€y, Wy(y) = ehilzy

We also define

K = [—Ky,1][| — ]

It can then be shown using [95] that the differential of thewgs can be computed as,

(T
dWy(y) = (I - @i‘gy)) el (8.43)
dWa(y) = (I - %) etz (8.44)

We can then calculate the differential of the Poincare map as

dW(y*) = [dWa(y (f2)) dW1 ()2 (8.45)

wherey*(t;) = eAZtlyg. Note that though these mappings are dependedt‘oimowever, we have
suppressed this dependence in our notation for clarityendgfinition of the differential. Since,
for any square matri with eigenvalues\, the eigenvalues o&? are equal to\2, we need only
compute the eigenvalues of the matdW(y*(t1))dW1()5). This is the limit of our analytical
results, as we do not possess an analytical formgorHowever, this condition can be quickly

verified for any system using the numerical results of Se@i@.1.
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Figure 8.4: Switching times computed from algorithm andwuation, versus gaikp,.

8.4 Simulation Results

We now continue our examination of the limit cycles throughwdation. These simulations are
performed on a system obeying (8.33), whare 1, andr = 0.5. First, we explore the variation
of the solution to the limit cycle probler®* with respect to the controller gaky. The effect of
the gainkp on the limit cycle solution is difficult to determine anabaily; we instead explore its
effect in simulation. Simultaneously, we verify the capi@piof the proposed Newton-Raphson
method in computing the limit cycles by comparing its restdtthose observed in simulation.
Fig. 8.4 shows the switching times of the limit cycle as cotegiby both the Newton-Raphson
algorithm and directly from simulation of the dynamics. Taege ofk, considered was.B5 to
0.99. There are several features of note on this figure. Fiesgn able to confirm the algorithm’s
effectiveness at computing the solution to the limit cycléhva scalar plant, as the simulation

results agree very closely with the algorithm results. 8dctooking at Fig. 8.4, we see that as
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Figure 8.5: Limit cycle solutions computed from algorithndesimulation, versus gak,.

kp approaches 1, the system spends more and more time in theeglay (denotedb) versus the
linear region (denotety). This is because the eigenvalues in the linear region gréfisiantly
faster than those in the play region whgnis high, meaning the system must spend more time in
the play region to keep the system in steady state. Accdsdisgaller values ok results in the
system spending more time in the linear region than the @gipn.

Fig. 8.5 shows the variation of the limit cycle solutions lwky. Again, we see that the
simulation and algorithm calculations are in tight agreemé-ig. 8.5 also indicates that &g
approaches .8, the limit cycle solutions rapidly grow in size. This si¢gma rapid growth in the
amplitude of the limit cycles fok,, with the system becoming unstable kyr> 0.5. Furthermore,
Fig. 8.6 shows that the amplitude of the oscillations isrggty correlated with the size a@fy.

Propositions 1-3 show that the bias, amplitude, and freqquei the limit cycles generated

in the closed-loop system are related to the parametersedytbiem or, in the case of the bias,
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Figure 8.6: Peak amplitude of limit cycles versus absolataesof the limit cycle solutionayp.

to an external input. Our next set of simulations verify obility to tune the properties of these
oscillations, in particular, the frequency and amplitufiéghese limit cycles. We will demonstrate
this property by running our system with two different setgparameters, and then scaling or
shifting one of the resulting solutions so that it equalsdtteer. The oscillator (8.8) is first run
with Wo = 0(0) = 0, x(0) =1, a=>5, ky = 0.75, andr = 0.5. This solution is used as a base to
construct the limit cycles obtained from different paragnetets. In particular, we look at tuning
the amplitude of the oscillations by changing the play radiuThe play radius was increased to
r =1, and the simulation was rerun yielding what we call the soiation. We then multiplied the
base solution by the ratio of the two radii, which is 2, to domns the scaled solution.

Figs. 8.7 and 8.8 compare the true and scaled solutions. Fign8.7, we see a slight phase
shift between the oscillations, which is caused by diffeemnin the transient behaviors of the

systems. This phase difference can be computed with Faamgdysis, which can then be used to
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Figure 8.7: True solution and Scaled solutionifes 1. Note the phase difference created by the
different transient behavior.

compute the appropriate time offset to move the signalsphtse, as was done in Fig. 8.8. This
figure confirms our theoretical expectations, with the tetaiins matching up exactly.

We then explore tuning the oscillations through manipalaof the parametes. The same
solution was used for the base as in the Figs. 8.7 and 8.8hardue solution was generated from
(8.8) witha = 10. Fig. 8.9 shows the comparison between the true and ssaletions at the
steady state, once the phase offset is correctly includgdinAwe see the agreement between the

two solutions.
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Figure 8.9: True solution and Scaled solutiondet 10 at steady state, with phase offset included.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

Systems with hysteresis have been explored for over a gehiutrhave recently garnered tremen-
dous attention due to developments in smart materials.vsltetil by the performance demands of
technologies such as Scanning Probe Microscopy, we havereghe application of servocom-
pensators to systems with hysteresis. Such controlledgd®the conceptual gap observed in the
literature between rejection-focused controllers anérision-focused controllers.

We first discussed the design of robust servocompensatwispraposed their use in a sys-
tem modeled by a cascade of a modified Pl operator and untéreaar dynamics. By utilizing
hysteresis inversion together with the robust servocorsgen, we were able to prove the asymp-
totic stability and periodicity of the closed-loop systeinsteady state. The periodicity of the
solution then allowed us to prove that a multi-harmonic seovpensator could directly attenuate
the effect of hysteresis at steady state. These results tweneconfirmed through experiments
conducted on a commercial nanopositioner, where we obddhat the multi-harmonic servo-
compensator could significantly outperform existing methim nanopositioning control, such as
Iterative Learning Control and Proportional-Integral coht

Next, we performed harmonic analysis on hysteresis operato particular, we showed that
the output of PKP and play operators can be formulated as agf@eries, and presented sample

calculations for sinusoidal and sawtooth signals. For plpgrators, we demonstrated that the
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coefficients of the Fourier series are polynomial functiohshe radius of the play operator and
amplitude of the input.

After confirming the potential of the multi-harmonic sereogpensator for controlling systems
with hysteresis, we then began to address shortcominge iagbroach. The first shortcoming we
addressed was the requirement that the frequency of theneketrajectory was requiredpriori
for the design of the servocompensator. A frequency-etibmaased adaptive servocompensator,
which we referred to as an indirect adaptive servocompensaas proposed to solve this prob-
lem. We began by demonstrating the failings of existing &deservocompensator designs for
our problem. As an alternative, we then presented a sloytatian based adaptive law coupled
with a frequency-domain stabilizing controller. The sk&piof this controller was then proved
using the theory of two-time-scale adaptation. Severall@oations of reference trajectories and
disturbances were considered, including some not diragtplicable to nanopositioning applica-
tions. We then confirmed the stability and effectivenes$efihdirect adaptive servocompensator
through simulations and experiments, including showingemteresting properties regarding the
behavior of the adaptation law.

We next addressed the requirement that hysteresis inmelbgioncluded in the controller to
prove the stability of the closed-loop system. We saw thahifntegral action was present in the
controller, a coordinate transform could be defined in otdgslace the system into a switched
system form, where the switching is governed by the statéseolfiysteresis operator. A common
Lyapunov approach was then taken which, together with anddvitition, allowed us to prove the
stability and tracking error convergence of the closeglsgstem when constant references were
considered. These results allowed us to prove the boundsdri¢he system when a servocom-
pensator was used to control the system. By removing theragant of hysteresis inversion, we

were able to experimentally demonstrate that the multiHosic servocompensator without using

171



hysteresis inversion can produce half the tracking errdhasnulti-harmonic servocompensator
when inversion is used.

Motivated by observations made during our research intd_Mecondition, we then investi-
gated circumstances where a system with hysteresis calldize to a self-excited limit cycle. In
particular, we explored the properties of self-excitedtlioycles in an integral-controlled system
with backlash. We proposed a Newton-Raphson algorithm dadicalculating the solutions of
the limit cycles. We also demonstrated that the amplituskgjufency, and bias of the limit cycles

posses linear relationships with parameters in the system.

9.2 Future Work

There remain several open problems for future work. Our LédLiit proved the stability of our sys-
tem with hysteresis when controlled by a servocompenshtovever, periodicity of the solutions
cannot be proven. In Chapter 7, we assumed the periodicitglofisns in order to demonstrate
the effectiveness of the servocompensator, and justifisdatsumption based on experimental
results observed in the literature together with our earésults in Chapter 3. Proving that this
assumption does indeed hold would represent a strong botitm to the field of systems with
hysteresis.

A second contribution would involve devising a method okséhg the control gains in order
to satisfy the LMI conditions presented in Chapter 7. Ourenfrresults serve as an analysis tool,
where we can verify the stability of a system with hysteresiwever, there are no currently
available methods to select the control gains in order toaniae that the LMIs are satisfied. In
addition, the current LMI framework cannot incorporatdestabservers, and instead must rely on

state feedback.

172



We also note that in this work, we have used a finite-dimerdjariassical or modified Pl
operator to model the hysteresis, and have assumed thaoilhel omcertainties are limited to the
weights of the operator. Conceivably, there will be a misimatetween the hysteresis nonlinearity
in a physical system and what can be modeled with a clagsiodlfied Pl operator. While this type
of modeling error can be reduced by increasing the numbgrspiand deadzone) elements in the
PI1 model along with using sound practices in parameter ifieation, it is of interest to understand
the impact of such modeling error. In particular, one cowldsider a small, unknown, hysteresis
operatord|v| that represents the difference between the actual hysteand the identified Pl
operator. Since the operatdf| and the rest of the closed-loop system form feedback coiomesct
one interesting approach to potentially analyzing suchesys would be to generalize the small
gain theorem [64] to the hysteretic setting.

There are also a number of smaller contributions that coaldnbde to extend the work of
this dissertation. Preliminary simulations seem to ingi¢hat it is possible to extend the stability
results for then frequency case of the indirect adaptive servocompengatociude stability in the
large. In addition, alternative stabilizing controllemutd be designed to improve the performance
of the multi-harmonic indirect adaptive servocompensatdrigh frequencies. An analytical proof
for the existence of limit cycles of the system considere® nould be a strong contribution. We
briefly discussed in Remark 13 how such a proof could be cordudt is also of interest to gain
understanding on whether (8.27) admits a unique solutisrguat computational examples have

suggested.
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