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Monitoring aquatic environment is of great interest to the ecosystem, marine life, and human health. This
article presents the design and implementation of Samba—an aquatic surveillance robot that integrates
an off-the-shelf Android smartphone and a robotic fish to monitor harmful aquatic processes such as oil
spills and harmful algal blooms. Using the built-in camera of the smartphone, Samba can detect spatially
dispersed aquatic processes in dynamic and complex environment. To reduce the excessive false alarms
caused by the nonwater area (e.g., trees on the shore), Samba segments the captured images and performs
target detection in the identified water area only. However, a major challenge in the design of Samba is the
high energy consumption resulted from continuous image segmentation. We propose a novel approach that
leverages the power-efficient inertial sensors on smartphones to assist image processing. In particular, based
on the learned mapping models between inertial and visual features, Samba uses real-time inertial sensor
readings to estimate the visual features that guide image segmentation, significantly reducing the energy
consumption and computation overhead. Samba also features a set of lightweight and robust computer
vision algorithms, which detect harmful aquatic processes based on their distinctive color features. Last,
Samba employs a feedback-based rotation control algorithm to adapt to spatiotemporal development of the
target aquatic process. We have implemented a Samba prototype and evaluated it through extensive field
experiments, lab experiments, and trace-driven simulations. The results show that Samba can achieve a
94% detection rate, a 5% false alarm rate, and a lifetime up to nearly 2 months.

Categories and Subject Descriptors: C.3 [Special-purpose and Application-based Systems]: Signal Pro-
cessing Systems; C.4 [Performance of Systems]: Modeling Techniques; 1.4 [Image Processing and Com-
puter Vision]: Scene Analysis—Object recognition

General Terms: Measurement, Performance

Additional Key Words and Phrases: Robotic sensor, smartphone, computer vision, object detection, inertial
sensing

A preliminary version of this work was published in the following conference paper:

Yu Wang, Rui Tan, Guoliang Xing, Xiaobo Tan, Jianxun Wang, and Xiaoming Liu. 2015. Samba: a
smartphone-based robot system for energy-efficient aquatic environment monitoring. In Proceedings of the
14th ACM /IEEE Conference on Information Processing in Sensor Networks (IPSN). 262-273.

This work was supported in part by the U.S. National Science Foundation under grants CCF-1331852,
CNS-1218475, and ECCS-1446793, and in part by a Start-up grant at Nanyang Technological University.
Yu Wang is now with Samsung Electronics America, Inc.

Jianxun Wang is now with Apple Inc.

Authors’ addresses: Y. Wang, G. Xing, and X. Liu, Department of Computer Science and Engineering,
Michigan State University, 428 South Shaw Lane, East Lansing, MI 48824, USA; emails: {wangyu3, glxing,
liuxm}@msu.edu; R. Tan, School of Computer Science and Engineering, Nanyang Technological University,
Block N4 Nanyang Avenue, 639798, Singapore; email: tanrui@ntu.edu.sg; J. Wang and X. Tan, Department
of Electrical and Computer Engineering, Michigan State University, 428 South Shaw Lane, East Lansing,
MI 48824, USA; emails: {wangjil9, xbtan}@msu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 1550-4859/2016/06-ART25 $15.00

DOI: http://dx.doi.org/10.1145/2932190

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 25, Publication date: June 2016.



http://dx.doi.org/10.1145/2932190

25:2 Y. Wang et al.

ACM Reference Format:

Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan, and Xiaoming Liu. 2016. Energy-efficient
aquatic environment monitoring using smartphone-based robots. ACM Trans. Sen. Netw. 12, 3, Article 25
(June 2016), 28 pages.

DOT: http://dx.doi.org/10.1145/2932190

1. INTRODUCTION

The aquatic environment is facing increasing threats from climate change, industrial
pollution, and improper waste disposal. The last 4 decades have witnessed more than
a dozen major oil spills with each releasing over 30 million gallons of oil [Oil Spills and
Disasters 2010]. Harmful algal blooms (HABs) have been observed in more locations
than ever before [National Ocean Service 2014]. Figure 1(a) shows a recent prolifer-
ation of HABs in the Gulf of Mexico [Southern Regional Water Program 2011]. Such
harmful aquatic processes greatly endanger the marine biology, ecosystem sustain-
ability, and public health. For example, HABs contaminated Ohio’s inland lakes that
supply drinking water, resulting in 41 confirmed cases of health impact to humans in
2010 [Ohio Environmental Protection Angency 2010]. It is thus imperative to detect
these harmful aquatic processes, monitor their development, and alarm the authorities
to take preventive actions.

Although manual opportunistic spotting may be applied to monitor small-scale harm-
ful aquatic processes, it is often labor-intensive and unreliable. An alternative method
is in situ visual survey with patrol boats [Ammerman and Glover 2000]. However,
this method is costly and can only cover a limited period of time. More advanced
methods employ remote sensing technologies, for example, balloon [Kako et al. 2012],
aircraft [Hu et al. 2003], and satellite imaging [Brekke and Solberg 2005]. The balloon-
based monitoring is effective only for one-off and short-term surveillance of highly
concentrated aquatic processes that have already been detected. The monitoring ap-
proaches using aircraft and satellite imaging often incur high operational overhead and
cannot achieve fine monitoring resolution. Recently, autonomous underwater vehicles
(AUVs) [Rudnick et al. 2004] have been used for various underwater sensing tasks.
However, the manufacturing costs of AUV platforms are often high (over $50,000 per
unit [Rudnick et al. 2004]). In summary, these limitations make remote sensing and
AUV-based approaches ill-suited for monitoring spatially scattered and temporally de-
veloping aquatic processes.

This article presents Samba (Smartphone-based aquatic monitoring robotic
platform), an energy-efficient and low-cost robot system that integrates an off-the-shelf
Android smartphone and a robotic fish to monitor phenomena on the water surface.
Figure 1(b) shows a prototype of Samba that is built with a Samsung Galaxy Nexus
phone. The integrated smartphone and robotic fish assemble a promising platform for
aquatic monitoring due to the following salient advantages. The robotic fish developed
in our previous work [Gliding Robotic Fish 2013] is a low-cost (about $ 3,000 per unit)
aquatic mobile platform with high maneuverability in rotation and orientation main-
tenance, enabling Samba to adapt to the dynamic aquatic environment. Moreover, it
has stronger resistance to capsizing than robotic boats (e.g., Dunbabin and Grinham
[2010]) due to the enhanced stability from its bionic design. The on-board cameras of
smartphones provide an inexpensive yet high-resolution sensing modality for detecting
the harmful aquatic processes. For example, HABs, as shown in Figure 1(a), can be de-
tected using the phone’s built-in camera based on their distinctive colors. Moreover, in
addition to the camera, a few other sensors such as accelerometer and gyroscope, which
are commonly available on smartphones, can assist the navigation and control of robotic
fish. Second, compared with traditional chemical sensors that measure only one loca-
tion at a time, the camera has a wider sensing range and provides richer information
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Fig. 1. (a) Algal patches in the Gulf of Mexico where the water area on the left side is covered by HABs
and exhibits murky green color, 2011 (Photo Credit: Louisiana Universities Marine Consortium [Southern
Regional Water Program 2011]); (b) A Samba prototype integrating a Samsung Galaxy Nexus smartphone
with a robotic fish; (c) A sample image captured by the Samba prototype in an inland lake, where the water
and nonwater areas are separated by a shoreline; the trees exhibit similar color with the algal patches in
the water area.

about the aquatic process such as color and spatial distribution. Such information is
often important for the authorities to conduct hazard analysis and take contingency
measures. Third, current smartphones are capable of running advanced computer vi-
sion (CV) algorithms for real-time image processing. Last, the price of smartphones
has been dropping drastically in the past few years, making it economically possible to
deploy many Samba nodes to monitor a large affected area. Owing to these features,
Samba represents an energy-efficient, low-cost, yet intelligent mobile sensing platform
for aquatic monitoring.

Despite the aforementioned advantages, we need to address several major challenges
in the design of Samba. First, aquatic processes are often scattered as patches over
large geographic areas and spatiotemporally developing [Brekke and Solberg 2005;
Platt et al. 2003], which create challenges for fine-grained monitoring. Continuous vi-
sual sensing can track their development, which, however, imposes significant energy
and computation overhead to the smartphone. Second, the phones’ built-in cameras
have limited field of view. Although the controllable mobility of robot can help im-
prove the sensing coverage, aquatic locomotion may incur high energy consumption.
Last, existing vision-based detection algorithms, which often use background subtrac-
tion [Shapiro and Stockman 2001], perform poorly on the images captured in the
aquatic environment. For example, the patches of the target aquatic process present in
the camera view often block the background, making it difficult to learn the background
model. Moreover, the target detection may be greatly affected by various dynamics such
as blurred images caused by waves, highly variable illuminance, and complex nonwater
area in the image. These uncertainties can lead to excessive false alarms. Figure 1(c)
shows a sample image captured by a Samba prototype in an inland lake, where the
trees on the shore exhibit similar green color with the algal patches on the water,
potentially resulting in false detections.
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In this article, we make the following contributions to address the above challenges:

1) We propose an inertial-sensing-assisted image segmentation approach to identify-
ing the water area in the image. By focusing on the water area, Samba can reduce
the false alarms caused by the nonwater area. A key novelty of this approach is
to leverage the energy-efficient inertial sensing to replace the compute-intensive
algorithms for visual feature extraction used in image segmentation. Specifically,
Samba first learns the mapping models that project inertial sensor readings to vi-
sual features. It then uses these models and real-time inertial sensor readings to
estimate the visual features (e.g., the shoreline in Figure 1(a)) for image segmenta-
tion without actually extracting them from the images.

2) We propose several lightweight and robust CV algorithms to detect harmful aquatic
processes in dynamic environment. Our vision-based detection algorithms, consist-
ing of back projection and patch identification, detect the existence of a target pro-
cess based on its distinctive color features. The algorithms are specifically designed
to address the dynamics in aquatic monitoring such as highly variable illuminance
and the camera’s internal noises.

3) We design a feedback-based robot rotation control algorithm that increases coverage
and maintains a desired level of monitoring resolution on the developing aquatic
process (e.g., the area expansion of an algal patch between two consecutive observa-
tions during the rotation). Based on the dynamics of the target process, the control
algorithm adapts the rotation speed of Samba to meet the user’s requirement on
monitoring resolution.

4) We implement a prototype of Samba and evaluate it through real field experiments
in a small inland lake and extensive lab experiments. The results show that Samba
can accurately detect harmful aquatic processes, maintain the desired monitoring
resolution, and achieve a system lifetime up to nearly 2 months.

The rest of this article is organized as follows. Section 2 reviews the related work.
Section 3 provides an overview of Samba. Sections 4 through 6 present the hybrid image
segmentation, aquatic process detection, and adaptive rotation control algorithms,
respectively. Section 7 discusses a variant rotation control approach and other use
cases of Samba. Section 8 describes the prototype implementation. Section 9 evaluates
the performance of Samba. Section 10 concludes this article.

2. RELATED WORK

Current approaches to monitoring harmful aquatic processes fall into four categories:
manual spotting; patrol boat—assisted survey [Ammerman and Glover 2000]; AUV-
based autonomous sensing [Rudnick et al. 2004]; and remote sensing by balloon [Kako
et al. 2012], aircraft [Hu et al. 2003], and satellite imaging [Brekke and Solberg 2005].
Manual spotting, although viable for small-scale monitoring, is labor intensive and
unreliable. Approaches using patrol boats and remote sensing are prohibitively expen-
sive for long-term monitoring, especially when the target process is scattered over vast
geographic areas. Likewise, the adoption of AUV-based monitoring is limited by the
high manufacturing and operational costs of the platform.

Several research efforts have explored the integration of cameras with low-power
sensing motes. SensEye [Kulkarni et al. 2005] incorporates a Cyclops camera into
a Stargate platform [Stargate User’s Manual 2014] to detect objects at a 128 x 128
resolution. In Teixeira et al. [2006], a camera module is installed on an XYZ node
[Lymberopoulos and Savvides 2005] for gesture recognition at a resolution of 256 x 64.
These camera-based platforms can only conduct simple image processing tasks at low
resolutions due to their limited computation capabilities. Recently, mobile sensing us-
ing a smartphone receives increasing interest due to its rich computation, sensing, and
storage resources. For example, a face recognition method using sparse representation
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is designed for smartphones [Shen et al. 2014]. Different from existing vision-based
systems, Samba has to address several unique challenges in aquatic monitoring, such
as highly variable illuminance and dynamic aquatic process development. Moreover,
we need to make the image processing pipeline of Samba highly energy-efficient to
enable long-term autonomous monitoring.

In our previous work [Wang et al. 2014, 2016], we developed a smartphone-based
robotic platform named SOAR to detect arriving debris objects. Samba fundamentally
differs from SOAR in four aspects. First, Samba achieves significantly higher energy
efficiency by integrating inertial sensing with visual sensing through a learning-based
scheme. According to our experiments, Samba consumes 97% less energy than SOAR in
processing an image frame. Second, the generic design of Samba enables the monitoring
of either moving or static aquatic processes such as oil spills and HABs. In contrast,
SOAR is designed to detect moving debris objects only while treating all the static
targets as background. Moreover, SOAR identifies debris objects using a pixel-wise
approach, while Samba detects target aquatic processes based on their color features
without modeling each pixel. As a result, compared with SOAR, Samba drastically
decreases the overhead of robot mobility control, since it does not need to maintain the
correspondence between the pixels in different frames during the rotation movement in
dynamic aquatic environment. Last, Samba adopts a feedback-control-based algorithm
that adapts the robot’s movement based on the detected dynamics of the target, while
the movement of SOAR is primarily driven by prior knowledge such as an a priori
arrival model of the debris objects.

Inertial sensing has recently been explored in various mobile sensing applications.
In Hemminki et al. [2013], a set of inertial features are extracted from a phone’s
built-in accelerometer and used to identify the user’s transportation mode. In Wang
et al. [2013], accelerometer and gyroscope readings are employed to model vehicle
dynamics and estimate the device’s position inside the vehicle. In Faulkner et al. [2011],
smartphones collaboratively detect an earthquake using their on-board accelerometers.
The FOCUS system [Jain et al. 2013] mitigates shaken and blurred views during video
recording based on measured acceleration. The V-Sense system [Chen et al. 2015]
exploits measurements from various inertial sensors to detect dangerous maneuvers
of vehicle steering. Different from the aforementioned inertial sensing applications,
Samba employs inertial sensing as an energy-efficient alternative to visual sensing in
compute-intensive image processing tasks.

Detecting targets of interest from captured images is a fundamental CV task.
The traditional approach usually adopts background subtraction, which constructs
a background model for each pixel according to historical observations [Shapiro
and Stockman 2001]. However, background subtraction cannot be readily applied to
monitoring aquatic processes such as oil spills and HABs. This is because the camera’s
view can be dominated by the target process for a long period of time when the camera
is deployed in the affected area, making it difficult and even impossible to build
the background model [Shapiro and Stockman 2001]. The latest approaches [Erhan
et al. 2014; He et al. 2015] detect targets of interest without explicitly modeling the
background. However, they usually require a significant amount of training data and
incur heavy computation overhead. To address these issues, Samba features a set
of detection algorithms that are specifically designed based on the distinctive color
features of aquatic processes. The efficient design of these algorithms introduces
affordable computation overhead for smartphones.

3. OVERVIEW OF SAMBA

Samba integrates an off-the-shelf Android smartphone with a robotic fish. The phone
loads an app that implements the image processing and mobility control algorithms,
including hybrid image segmentation, aquatic process detection, and adaptive rotation
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control. The robotic fish receives a rotation schedule from the phone via wireline or
wireless communication and propels Samba by beating its tail. Samba is designed
to operate on the surface of relatively static waters with no or little water currents
and monitor harmful aquatic processes such as oil spills and HABs. These processes
typically disperse as patches in the aquatic environment and exhibit distinctive col-
ors [Brekke and Solberg 2005; Platt et al. 2003]. To monitor a large affected area,
multiple Samba nodes can be deployed to form a surveillance network. Their local
observations can be sent back to a central server via the long-range communication
interface on smartphones and stitched into a global map. In this article, we focus on
the design of a single Samba node.

Due to the limited angular view of the phone’s camera, it is challenging to monitor
the scattered patches of the target process. Although extra optical components like
fisheye lens can be used to broaden the camera view, their integration will complicate
the system design and introduce additional computation overhead due to the distorted
images [Shapiro and Stockman 2001]. Instead, we leverage the robotic fish’s mobility
to increase the sensing coverage. Specifically, Samba conducts orientation adjustment
(i.e., rotation) by performing carefully controlled tail beats. The rotation mobility is
much more energy-efficient than moving forward that requires continuous tail beats.

Before deployment, Samba is trained by sample images of the target aquatic process
(TAP). The sample images are close-up photos of the TAP and can be provided by domain
scientists. Samba can monitor multiple TAPs simultaneously when provided with their
sample images. Samba conducts aquatic monitoring at a set of orientations, which are
selected to ensure a full coverage of surrounding region given the angular view of
Samba’s on-board camera. After the initial deployment, it begins a TAP surveillance
process consisting of multiple rounds. In each round, Samba keeps monitoring toward
an orientation for a certain time interval. At the beginning of a round, Samba rotates
to a new orientation and starts to capture images at a certain rate. For each image, it
identifies the water area and executes several CV algorithms to detect the existence
of TAP in real time. At the end of this round, Samba estimates the dynamics of TAP
(e.g., development rate) and computes the monitoring interval for the next round. For
example, if the TAP develops rapidly, Samba will shorten the monitoring interval such
that it can rotate back to the current orientation sooner, keeping smooth track of the
TAP development, and vice versa. When drastic development of the TAP is detected,
Samba can alert the user by using the communication interface (cellular/Wi-Fi) on a
smartphone. A primary design objective of Samba is to achieve long-term (up to a few
months) autonomous monitoring given certain battery capacity. Between two image
captures, Samba sleeps to reduce energy consumption. A novel feature of Samba is the
inertial sensing—assisted image processing scheme that can lead to significant energy
savings. In particular, Samba uses the learned models that partition an image based
on inertial sensor readings, without actually extracting the visual features from the
images that is often compute intensive. Specifically, Samba comprises the following
three major components.

Hybrid image segmentation: By partitioning an image into water and nonwater
areas, Samba performs aquatic process detection in the water area only. This approach
reduces detection false alarms and computation energy consumption. Samba adopts a
novel hybrid image segmentation framework, as illustrated in Figure 2(a). Specifically,
it uses both vision-based and inertia-based segmentation modes. This hybrid approach
learns regression-based mapping models that project the inertial sensor readings to the
visual features for image segmentation. Therefore, Samba can partition an image based
on the visual features estimated from the inertial sensor readings, avoiding executing
the compute-intensive CV algorithms to actually extract the visual features. Samba
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Fig. 2. The aquatic environment monitoring pipeline when Samba keeps an orientation. Samba periodically
adjusts its orientation to adapt to the dynamics of surrounding target aquatic process (TAP) patches.

switches to vision-based segmentation if the mapping models need to be updated, for
example, when the accuracy of inertia-based segmentation drops or Samba rotates to
a new orientation.

Real-time TAP detection: This component detects TAP in the segmented images. As
illustrated in Figure 2(b), it consists of two lightweight image processing modules (i.e.,
back projection and patch identification). First, Samba extracts robust color features
of TAP in HSV color space, and performs back projection to identify the candidate
pixels of TAP in each segmented image. The projected image is then passed to patch
identification for probability thresholding, noise removal, and patch recognition. The
patch identification can effectively deal with various environment and system dynamics
such as highly variable illuminance and the camera’s internal noises.

Adaptive rotation control: Samba monitors the surrounding TAP with full circular
coverage and fine temporal granularity while meeting energy consumption constraints.
Full circular coverage means that Samba rotates to fully cover the circular region
around it such that newly developed patches within Samba’s sensing radius will not
be missed. As Samba needs to rotate to achieve full circular coverage while the TAP is
developing or moving, fine temporal granularity means that the change of the TAP’s
property (e.g., area) between two Samba’s consecutive observations toward a particular
orientation is small. Fine temporal granularity enables the user of Samba to capture
fine-grained details about the TAP development. For example, domain scientists can
measure the growth rate of HABs seamlessly. To adapt to the dynamics of TAP that
is primarily affected by environmental conditions, we develop a feedback control al-
gorithm to maintain the desired temporal granularity. On the completion of a round,
Samba estimates the dynamics of TAP (e.g., diffusion of oil slick and growth of HABs)
based on detection results and then calculates a new rotation speed such that the
expected temporal granularity in the next round can be maintained at the desired
level.

4. HYBRID IMAGE SEGMENTATION

Image segmentation is the process of partitioning an image into multiple parts [Shapiro
and Stockman 2001]. In aquatic monitoring, we adopt image segmentation to remove
the nonwater area from the captured images, and thus perform the detection of TAP
in the water area only. This can avoid the false alarms that occur in the nonwater area
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Fig. 3. The overall structure of hybrid image segmentation where Samba switches between the vision-based
and inertia-based segmentation modes. In the online learning phase, Samba jointly uses inertial and visual
sensing to learn regression-based mapping models, which project the camera Euler angles (obtained from the
inertial sensors) to the extracted visual features (obtained from the camera). In the estimation phase, Samba
utilizes the learned mapping models to estimate the visual features and conducts the image segmentation
accordingly.

(e.g., those caused by trees in Figure 1(c)) and reduce computation in subsequent image
processing tasks. Image segmentation is usually conducted based on visual features.
For example, the shoreline can be used to identify the water area in inland lakes. How-
ever, most visual feature extraction CV algorithms are compute-intensive. According
to our experiments (see Section 9.2.1), the Hough transform [Shapiro and Stockman
2001] for line extraction consumes more than 95% of the energy for processing an im-
age. Moreover, the vision-based segmentation may fail due to the lack of differentiating
color features and blurred images caused by waves. In this section, we propose a robust
approach to overcoming the above limitations of vision-based segmentation.

4.1. Overview

In this article, we develop a novel hybrid image segmentation approach that utilizes
both camera and inertial sensors on the phone, as illustrated in Figure 3. Inertial sen-
sors provide the camera’s transient pose, which can be used to guide the segmentation
of captured images. To characterize a camera’s projection, the visual sensing approach
is susceptible to the quality of captured image and blocked line of sight, while inertial
sensing will not be affected by these factors. Moreover, the energy consumption of in-
ertial sensing is much lower than that of visual sensing. Our experiments show that
the computation delay of inertia-based segmentation is only 2% of that of vision-based
segmentation (see Section 9.2.1). The proposed hybrid approach aims to leverage these
two heterogeneous sensing modalities. Specifically, it consists of an online learning
phase and an estimation phase. The vision-based image segmentation is executed in
the learning phase, and the inertia-based image segmentation is executed in the esti-
mation phase. In our design, Samba switches between the two modes to save system
energy while maintaining segmentation accuracy.

In the learning phase, images are segmented based on the extracted visual features,
as shown in Figure 3(a). Meanwhile, the inertial sensor readings are converted to Euler
angles, which describe the camera’s orientation with respect to the world coordinate
system. These angles, along with the corresponding visual features, are then used to
learn the mapping models via regression. In the estimation phase, the visual features
are estimated using the inertial sensor readings and the learned mapping models.
These estimated visual features are used to guide the image segmentation, as shown in
Figure 3(b). Therefore, the execution of the compute-intensive visual feature extraction
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CV algorithms is avoided. The hybrid approach periodically calibrates the inertial
sensors and updates the mapping models in the learning phase, thus adapting to the
possible environmental condition changes.

4.2. Measuring Camera Orientation

A key step in the hybrid image segmentation is to relate the inertial sensing results
with the corresponding visual sensing results represented using the camera projection
model. The camera’s orientation characterizes its projection. Therefore, it is critical to
accurately measure the camera’s orientation. There are typically no built-in physical
orientation sensors on Android smartphones.! Hence, we need to implement our own
virtual orientation sensor based on other available inertial sensors such as accelerome-
ter and geomagnetic field sensor. However, inertial sensor readings are often inaccurate
and volatile. Studies have shown that the mean error for orientation measurements
computed based on inertial sensor readings can be up to 30° [Blum et al. 2013]. To deal
with the bias and random noise, we calibrate and denoise the sensor readings. Figure 4
shows the workflow of our virtual orientation sensor. It first uses inertial sensor read-
ings to compute the rotation matrix that bridges the device coordinate system to the
world coordinate system and then obtains the phone’s orientation. Figure 5 compares
the distributions of the orientation measurement errors before and after a calibration
process on a Google Nexus 4 phone. The ground truth is measured using a protractor.
We can see that the virtual orientation sensor is subjected to both biases and random
noises, and the biases can be effectively removed by the calibration process. After the
calibration process, the orientation measurement errors along all the three axes are
smaller than 1°.

4.3. Feature Extraction

In order to establish the mapping models, Samba needs to extract features from both
the camera’s image frames and the inertial sensor readings obtained at the same time
instants. In this article, we focus on the lake environment where the shoreline can

IThe orientation sensor API has been deprecated in Android since version 2.2 [Android 2.2 Platform High-
lights 2010].
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help identify the water area. We assume that the shoreline is the longest visible line to
Samba. This is reasonable as the shoreline usually crosses the captured images hori-
zontally, as shown in Figure 1(c). Note that the shoreline is not static to Samba because
of waves and Samba’s rotational movements. Our approach can be easily extended to
address other scenarios with different visual references for image segmentation. For
image frame i, let & and A; denote the shoreline slope and average vertical coordinate
in the image plane, as illustrated in Figure 3(a). The phone can extract the shoreline
using Hough transform [Shapiro and Stockman 2001] and thus obtain %; and A;. With
these two parameters, frame i can be partitioned accordingly. Therefore, we define
(k;, h;) as the visual features of frame i.

The camera’s orientation, represented by Euler angles, is measured by the virtual
orientation sensor. At runtime, we synchronize the orientation measurements with
visual features obtained from the camera using the timestamps. We now derive their
relationship based on the camera’s perspective projection model [Shapiro and Stockman
2001]. We set the world coordinate system originated at the camera. We adopt «;, f;,
and y; to denote the yaw, pitch, and roll angles of the camera when frame i is taken,
and P = (x, y, z) to denote the coordinates of an observable point on the shoreline in the
world coordinate system. We first project P to the Cartesian coordinate system that is
originated at the camera and rotated by («;, ;, y;) with respect to the world coordinate
system. The projected coordinates, denoted by P’ = (x/, y’, 2’), are given by

1 0 0 cosa; 0 —sing; cosf; sinp; 0
P’:P~|:0 coS ¥; sinyi:|-|: 0 1 0 :|-|:—sinﬂi cos,3i0:|.
0 —siny; cosy; sino; 0 cosa; 0 0 1

Based on the similar triangles [Shapiro and Stockman 2001], we then project P’ to the
2D image plane using the following formula:

" " / / x ° (/) 0
[x y]=[x y]|:f g‘z fy-g(z/)]’

where (x”, y”) denote the corresponding coordinates in the image plane, f; and f, are
two hardware-dependent scaling parameters, and g(z') is a scaling factor determined
by 2.

Our following analysis shows that, under the above transforms, we can relate the
camera’s orientation (w;, f8;, ;) to the visual features (h;, k). We first derive &; that
represents the slope of the shoreline. Suppose (x7, y{) and (x}, y;) are two points on
the extracted shoreline in frame i, and (x1, y1, z1) and (x2, y9, 2z2) are the corresponding
points in the world plane. The shoreline slope in the image plane, that is, %;, can be
computed as

b — Y =¥y _ Iy afis —yifia) — afis —y2fia) o fis —wafia 1)
xf{—xy  fi afir—y1fi2) —(afi1—ya2fie) fir—w2fi2’

where w1 = f,/f: and ws = (y1 —y2)/(x1 — x2) are two unknown but constant coefficients
that are determined by the camera hardware and the shoreline slope in the world co-
ordinate system. The 4-tuple (f;1, fi.2, fi.3. fi.4) can be computed based on the camera’s
orientation by

fia1 = cos(a;) - cos(B;),

fi.2 = cos(e;) - sin(B;),

fi.s = sin(e;) - cos(B;) - sin(y;) — sin(B;) - cos(y;),

fi.a = sin(a;) - sin(B;) - sin(y;) + cos(B;) - cos(y;).
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They interpret the camera projection model using orientation measurements. The
above 4-tuple are defined as inertial features, which are related to the visual fea-
ture through the mapping model given by Equation (1). Similarly, we can derive the
mapping model between another set of inertial features (with 3 unknown coefficients)
and the vertical position of the shoreline in the image plane (i.e., ;). With the mapping
models, we can estimate the shoreline purely based on the inertial sensor readings and
conduct image segmentation.

4.4. Learning Mapping Models

With the extracted visual and inertial features, Samba learns the mapping models that
project the latter to the former. Based on Equation (1), we adopt a regression-based
approach to estimating the unknown coefficients w; and wg. Specifically, the training
data instance from frame i can be expressed as (%, fi.1, fi.2, fi.3, fi.4), in which % is
obtained from the camera and (f; 1, fi.2, fi.3, fi.4) are computed based on inertial sensor
readings. Suppose the training dataset consists of N frames. We define the feature set,
denoted by F, as an N x 4 matrix that contains the inertial features extracted from the
N frames

fl,l f1,2 f1,3 f1,4
F=— . . . .

Nt Ine Ins va |y,

Moreover, we define the observation vector, denoted by K, as an N x 1 vector that
contains the visual features (i.e., the shoreline slope), that is, K = [k, ..., ky]T. We
then employ multivariate nonlinear regression to learn w; and ws with F and K. Using
the estimated w; and wy, we can infer the shoreline slope from the inertial sensor
readings based on the mapping model given by Equation (1).

We now discuss the impact of training dataset size (i.e., N) on system performance.
The N training frames can be evenly selected from an updating period. Therefore, the
value of N defines the frequency at which Samba switches between the vision-based
and inertia-based segmentation modes. In order to perform regression, N should be no
smaller than the number of coefficients to be learned (i.e., 2). In aquatic monitoring, N
is expected to be larger than this lower bound to account for the dynamics resulted from
camera shaking and sensor noises. Intuitively, a larger training dataset with diverse
training data can improve the regression accuracy. However, it also imposes additional
computation overhead for the phone. Specifically, with a larger N, visual feature ex-
traction has to be conducted more frequently to generate training data. Moreover, the
computation overhead of the regression also increases with N. In Section 9.2.5, we
will evaluate the trade-off between regression accuracy and system overhead through
experiments. At runtime, Samba can assess inertia-based segmentation accuracy in
the learning phase by comparing it with vision-based segmentation, and adaptively
configure N.

5. AQUATIC PROCESS DETECTION

The real-time TAP detection pipeline of Samba is illustrated in Figure 2(b). Although
our approach is based on elementary CV algorithms, it is nontrivial to customize them
for detecting TAP and efficiently implement them on a smartphone. Samba consists of
two major image processing modules (i.e., back projection and patch identification). The
back projection models the TAP by extracting its color histogram, which is built using
selected channels in HSV. The HSV representation is more robust to highly variable
illuminance than the RGB color space [Maree et al. 2005]. It then detects candidate
pixels of TAP in the image segment of water area. The patch identification removes
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the salt-and-pepper noises from the projected segmented image and then identifies the
TAP patches.

5.1. Back Projection

Back projection is a CV technique that characterizes how well the pixels of a given
image fit a histogram model [Shapiro and Stockman 2001]. In this article, we adopt
back projection to identify the existence of TAP in the captured frames given its unique
features. The patches of TAP are often scattered over large water area. For example,
the HABs occurred at Lake Mendota in Wisconsin produce algal patches spread over
a 15km? water area [HABs and Lake Mendota 2007]. Therefore, Samba may have a
camera view dominated by the TAP patches when deployed in an affected area. The
widely used target detection approach based on background subtraction is thus not
applicable, as it needs to build a background model without the TAP. Moreover, this
approach requires all the captured images to be aligned and thus has limited feasibility
in wavy waters. Our proposed approach is motivated by the fact that a TAP usually has
featured and nearly constant colors. For example, oil slicks often appear to be brighter
than the surrounding water surface [Brekke and Solberg 2005], and the typical color of
HABSs is green or red [Platt et al. 2003]. Therefore, to perform detection, we can match
the pixels in a new frame with the histogram model constructed with offline sample
images of the TAP.

Back projection constructs the histogram model based on sample images as follows.
Let Iy denote a sample image of the TAP. We first convert the representation of I
to HSV (Hue, Saturation, and Value) model. In HSV, the hue channel represents the
color, the saturation channel is the dominance of hue, and the value channel indicates
the lightness of the color. The hue and saturation channels are robust to illumination
changes [Maree et al. 2005] and hence effective in interpreting color features in the
presence of reflection on water surface. Thus, we adopt the hue-saturation histogram
and calculate it from I;. We equally divide the range of hue [0, 360) and the range of
saturation [0, 1] into [0, A9, hs, ..., hp—1,360) and [0, so, s3, ..., S4—1., 1], respectively, to
compute the color histogram M, ,. Specifically, the (i, j)*" entry of M is the frequency
of pixels in I, with saturation within [s;, s;+1) and hue within [A;, hj,1). Note that
the color histogram can be obtained based on multiple images by repeating the above
process. Let M denote the normalized histogram where each element characterizes
the probability of the corresponding color representing the TAP. Therefore, M depicts
the tonality of the TAP, which is used as its histogram model. Figure 2(b) shows a
sample image of HABs that occurred in the Gulf of Mexico [Southern Regional Water
Program 2011] and the extracted hue-saturation histogram model.

When a new segmented frame (denoted by I;) is available, we leverage the histogram
model M to detect the existence of TAP. For each pixel p,,, in I, we ﬁrgt extract
iﬁs hue A, , and saturation s, ,, and locate the corresponding element in M, that is,
M (s, Am,n). We then construct a projected frame I that is in the same size of I; but

replaces each pixel p,,, with M (sp, n, Amn). Note that M (s, ,, hnn) characterizes the
probability that p,,, in I; represents a pixel of TAP. Visually, the brighter a pixel in I]
is, the corresponding pixel in I; is more likely to be from the TAP. An example of the
projected frame I is shown in Figure 6(a).

In back projection, each pixel in the new frame is classified based on how well it
matches the color histogram obtained from TAP sample images. Therefore, the simi-
larity in color between the TAP and water area affects the detection performance. In
this article, we adopt a color similarity [Smith and Chang 1997] metric to measure
the color resemblance. It quantifies the similarity between any two colors based on
their proximity in the cylindrical HSV model. For two colors indexed by (4, s;, v;) and
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(a) Projected frame (b) Binarized frame

K~ .

(¢) Opening morphology (d) Detected result

Fig. 6. Sample patch identification process.

(h;j, s;j, v;), the color similarity, denoted by 7, is given by

1 \/(vi —vj)?2 + (s; cos h; — sjcos hj)? + (s;sinh; — s sinh;)?
n=1- :
5

The n ranges from 0 to 1, where the lower bound 0 indicates the highest level of color
contrast and the upper bound 1 represents the same color. Therefore, a larger value of
n suggests a stronger color resemblance between the TAP candidate and water area,
and hence the TAP candidate is less likely to be identified by the patch identification
module in Section 5.2. In Section 9.2.6, we will evaluate the impact of n on detection
performance through experiments.

5.2. Patch Identification

As illustrated in Figure 6, patch identification works on the projected image and identi-
fies the TAP patches. In the projected frame shown in Figure 6(a), each pixel maintains
avalue within [0, 1], which represents the probability that it is from the TAP. We ignore
the pixels with low probabilities of being TAP. The probability for a pixel being TAP is
referred to as matching probability. In this section, we present a robust approach to
identifying TAP pixels from the projected frame. Specifically, we model the distribution
of the matching probabilities in the projected frame using a Gaussian mixture model
(GMM) [Shapiro and Stockman 2001], which is a widely used model to characterize
complex distributions. The choice of GMM is mainly due to the observations that, the
water pixels have similar colors and low matching probabilities that can be described
by a single Gaussian distribution, while the matching probabilities of TAP pixels of-
ten exhibit an irregular and complex distribution. Such a mixed pattern can be well
captured by a GMM model. We adopt OpenCV’s implementation of the Expectation
Maximization (EM) clustering algorithm [Moon 1996] to learn the GMM. To determine
the number of Gaussians, we try a range of settings and select the value that minimizes
the fitting error. Figure 7 shows the distribution of the matching probabilities and the
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Fig. 7. The distribution of the matching probabilities and the fitted GMM.

fitted GMM for the projected frame shown in Figure 6(a). The fitted GMM comprises
three one-dimensional Gaussians. In particular, the Gaussian with the smallest mean
corresponds to the water area. This is from the said fact that water pixels have similar
colors of low matching probabilities. We define a threshold to be the sum of the mean
value of this Gaussian and 2.5 times of its standard deviation. For any pixel with a
matching probability higher than this threshold, we consider it as a candidate TAP
pixel and round its matching probability to 1; otherwise, we classify it as a water area
pixel and round its matching probability to 0. A key advantage of this GMM-based
approach is that it can capture the irregular and complex pattern of the matching
probabilities of TAP pixels and accurately model the matching probabilities of water
pixels. Based on the accurate model for water pixels, this approach can reliably detect
the TAP pixels. At runtime, Samba runs the EM algorithm based on a captured frame
and updates the TAP pixel detection threshold when rotating to a new orientation.

The aforementioned GMM approach will binarize the projected frame. The binarized
frame, as shown in Figure 6(b), often contains randomly distributed noise pixels. This
is because the back projection is conducted in a pixel-wise manner where the labeling
of candidate TAP pixel can be affected by the camera’s internal noises. To remove
these false alarms, we apply the opening morphology operation [Shapiro and Stockman
2001]. It consists of an erosion operation followed by a dilation operation, where the
former eliminates the noise pixels and the latter preserves the shape of true TAP area.
Figure 6(c) depicts the resulted frame after noise removal. We then perform region
growing [Shapiro and Stockman 2001] to identify the TAP patches. In particular, it
uses the detected pixels as initial seed points and merges connected regions to obtain
the candidate TAP patches. Finally, we apply another threshold to exclude the small
patches. The patch with a small area in the frame usually indicates a false alarm.
Figure 6(d) depicts the final detection result. We note that the detected TAP patches
can be larger than the ground truth due to the reflection of trees on the water surface.
One possible approach to addressing this is to improve the histogram model accuracy
by using more selective sample images of TAP.

6. ADAPTIVE ROTATION CONTROL

Samba periodically adjusts its orientation to monitor the surrounding TAP patches
with full circular coverage and fine temporal granularity. Feedback motion control
for the fish tail beating can maintain the orientation of Samba in relatively static
waters. Thus, Samba can remain stationary to the TAP patches and detect their area
expansions. Taking HABs monitoring as an example, the temporal granularity can
be characterized by the area expansion of an algal patch between two consecutive
observations toward the patch during the robot rotation. However, this is challenging
because the development of an aquatic process is heavily affected by changeable and
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even unpredictable environmental conditions. For example, the diffusion of oil slick
can be affected by water salinity and temperature [LaRoche et al. 1970], and the
growth of HABs is sensitive to local nutrient availability [Hecky and Kilham 1988]. To
address such uncertainties, we propose a rotation control algorithm, which maintains
the temporal granularity at the desired level by adjusting the monitoring interval in
each round.

6.1. Dynamics of Aquatic Process

The sensing coverage of a camera is described by its field of view (FOV) where any target
with dimensions greater than some thresholds can be reliably identified [Shapiro and
Stockman 2001]. FOV is typically modeled as a sector originated at the camera with an
angular view 6 and a radius R, in which 6 depends on lens and R can be measured for
a particular application. Since a TAP is likely to be scattered over a large area [Brekke
and Solberg 2005; Platt et al. 2003], we define the surveillance region of Samba as the
circular area originated at the robot with a radius R. Limited by 6, Samba needs to
change its orientation to cover all the TAP patches within its surveillance region. To
address both the TAP development and the camera’s limited angular view, Samba needs
to continuously rotate to achieve the desired temporal coverage of each orientation.

The robot rotation initiates a monitoring round. Each round has a camera orientation
and an associated monitoring interval. In our design, we equally divide the circular
surveillance region into several sectors based on the camera’s angular view 6 such that
the surveillance region can be fully covered by these discrete orientations. During a
round, Samba remains stationary toward an orientation and conducts hybrid image
segmentation and TAP detection at the user-specified sleep/wake duty cycle rate. For
each frame, the severeness of TAP can be measured by the total area of detected patches
in the frame. Thus, the area expansion of TAP patches characterizes the dynamics.
Using frames captured at different time instants, Samba can estimate the dynamics of
TAP by computing the change in severeness.

To achieve full circular coverage and fine temporal granularity of monitoring with
limited energy budget, the rotation of Samba needs to be carefully scheduled. Samba
controls the monitoring interval of each round to adapt to the dynamics of TAP. We de-
fine rotation speed, denoted by p, as the rotated angle over a monitoring interval. Note
that the rotated angle for each round is fixed. For simplicity of exposition, the following
discussion focuses on rotation speed. If the TAP spreads fast, p is expected to be large
to capture the fast dynamics. When the development of TAP slows down, Samba may
decrease p accordingly to save energy. Let ¢ denote the dynamics of TAP measured
by the camera. We define the monitoring resolution A s as the change in severeness
between two consecutive observations toward a certain orientation. Therefore, A s de-
pends on the dynamics of TAP and p. For example, the spread of diffusion process is
approximately linear with time [Crank 1979], that is, As = ¢ - 27/p. In Section 6.2, a
robot rotation control algorithm is designed based on this model, and it can be easily
extended to address other models of TAP dynamics.

6.2. Robot Rotation Control

Our objective is to maintain a desired resolution on severeness change, denoted by
8, under various environment and system uncertainties. Specifically, § is the desired
change of the total TAP area between two consecutive observations toward a certain
orientation. To save energy, Samba rotates at a low speed as long as it can provide the
required resolution. The setting of § describes how fine the user aims to keep track
of the TAP development. Figure 8 shows the block diagram of feedback control loop,
where G.(z), Gy(2), and H(z) represent the transfer functions of the rotation scheduling
algorithm, the dynamics model of TAP, and the feedback, respectively. In particular,
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the desired resolution § is the reference, and the actually detected severeness change A s
is the controlled variable. Because A s is a nonlinear function of p, we define t = 27 /p as
the control input to simplify the controller design. Thus, A s = ¢ - 7, and its z-transform
is Gp(2) = ¢. In each round, Samba updates ¢ for the next round and sets p accordingly.
As the feedback control will take effect in the next round, H(z) = z7!, representing
the delay of one orientation adjustment. Given that the system is of zero order, it is
sufficient to adopt a first-order controller to maintain the stability and convergence of
the control loop [Ogata 1995]. Therefore, we set G.(z) = ;—=, wherea > 0 and b > 0.
Following the standard method for analyzing stability and convergence [Ogata 1995],
the stability and convergence condition can be obtained as b = 1 and 0 < a < 2/e.

The uncertainties are modeled as disturbances in the control loop shown in Figure 8.
First, Samba suffers rotation errors since the robot may not head exactly toward the
desired orientation due to complex fluid dynamics. Such errors reflect the uncertainties
in motion control. Figure 9 evaluates this type of error by the discrepancies between de-
sired and actual orientations, where we collect the data using our Samba prototype (see
Section 8) in wavy water. Second, the detected severeness of TAP exhibits variance. As
the detection of severeness is conducted in a pixel-wise manner, it can be affected by dy-
namics like the camera’s internal noises. Such errors reflect the uncertainties in visual
sensing. We define the relative error for A s as the absolute error to the ground truth of
TAP area in the image. For each captured image, we manually pinpoint the boundary
of algal patches to provide the ground truth. Figure 10 plots the CDF and average of
this relative error when Samba fixes its orientation and monitors a still TAP. Without
special care of the aforementioned uncertainties, they may significantly increase the
volatility of the feedback-based rotation scheduling. For example, Samba may rotate
at fast changing speeds. To mitigate the impact of such considerable uncertainties, we
specifically design the controller G.(z) as follows. From control theory [Ogata 1995], the
effects of injected disturbances on the controlled variable A s can be minimized if the
gain of G.(2)G,(2)H(z) is set as large as possible. By jointly considering the stability
and convergence, we set a = 2¢/¢, where c is a relatively large value within [0, 1]. In
the experiments, we set ¢ to be 0.85.

Implementing G.(z) in the time domain gives the robot rotation scheduling algorithm.
According to Figure 8, we have G.(z) = t(2)/(§ — H(z)As). From H(z) and G.(2), the
control input can be expressed as t(z) = z7'7(2)+2bs1(§ —z"1 A s), and its time-domain
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implementation is given by 1, = 1,1 + 2be1(§ — A s,_1), where £ is the count of orien-
tation adjustments. The average rotation speed to be set for the £ round is thus given
by or = 27 /1.

7. DISCUSSIONS
7.1. Irregularly Distributed TAP Monitoring

In this section, we discuss an extension to our rotation control approach to monitoring
the TAP that is irregularly distributed around Samba. In previous sections, we as-
sume that Samba is surrounded by TAP patches. Thus, our feedback control algorithm
schedules the monitoring interval toward an orientation per control cycle. Specifically,
it determines the monitoring interval toward the next orientation based on the de-
tected area expansion of TAP patches in the current orientation. This approach can
be easily extended to monitor irregularly distributed TAP. In this case, we can define
the controlled variable as the total TAP area expansion detected during the previous
full round rotation. Accordingly, based on the detected TAP area expansion, a feed-
back control algorithm schedules the total monitoring interval for the next full round
rotation to adapt to the TAP development. The new total monitoring interval can be
allocated proportionally to all orientations based on the detected area expansions in
individual orientations in the last round. In this approach, the orientations with faster
area expansions will be allocated with longer monitoring intervals. Nevertheless, it is
still important for Samba to conduct full round rotation to not to miss newly developed
TAPs, where an orientation without TAP can be allocated with a minimum monitoring
interval.

7.2. Extended Use Cases

We now discuss other potential use cases of Samba. Although our discussion has been
mainly focused on HABs, Samba can be used to monitor other TAPs such as aquatic
debris and oil spills. These distinctive phenomena on the water surface are observable
to Samba if the vision-based detection module is trained with proper sample images.
Moreover, Samba can also be used to monitor the status of a fish farming pond for
an extended period of time. In pisciculture, infectious diseases and lack of dissolved
oxygen in water due to various reasons are two major threats. Samba can be deployed to
detect fish kills with floating heads, tails, or bellies up on the water surface. As the fish
has distinctive colors from the water area, Samba can effectively identify abnormal
events and send immediate warnings to the farmer. Last but not least, Samba can
be used for various security monitoring applications. For example, for water systems
in closed fishing seasons, Samba can be deployed to detect fishing boats and fishnet
buoys. Pictures of suspicious objects can be transmitted using cellular networks to the
authorities to examine and take actions.

8. IMPLEMENTATION

We have built a proof-of-concept prototype of Samba for evaluation. Figure 1(b) shows
the Samba prototype that integrates a Galaxy in a water-proof enclosure with a robotic
fish swimming in a water tank in our lab. The hybrid image segmentation, TAP de-
tection, and adaptive rotation control algorithms presented in Sections 4 through 6
are implemented on Android. System evaluation is mainly conducted on two phones,
including a Samsung Galaxy Nexus (referred to as Galaxy) and a Google Nexus 4
(referred to as Nexus4) running Android 4.3 Jelly Bean and 4.4 KitKat, respectively.
Galaxy is equipped with a 1.2GHz dual-core processor and 1GB memory, and Nexus4
is equipped with a 1.5GHz quad-core processor and 2GB memory. They are represen-
tative low- and mid-end Android smartphones. Moreover, Android 4.4 introduces the
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new runtime environment Android Runtime (ART) that features ahead-of-time compi-
lation [Android Runtime 2014]. We will investigate the performance improvement in
app execution of ART over the Dalvik process virtual machine used in Android 4.3. The
app takes about 6.24MB of storage on the phone after installation and requires about
10.8MB RAM allocation while running on a frame resolution of 720 x 480. To exploit
the multicore computation capability, the visual feature extraction, mapping models
learning, and TAP detection are implemented in separate threads.

The communication between the phone and the fish can be established in different
ways. For example, wireless connections such as Wi-Fi, Bluetooth, ZigBee and Z-Wave
can be used. An alternative solution is wireline communication through USB or an
audio jack, which can be more energy-efficient since the phone does not need to keep
the communication processor awake. Moreover, the USB connection enables power
transfer to the phone. In our prototype, we use a host computer to relay the wireless
communications between the phone (via Wi-Fi) and the robotic fish (via ZigBee). Thus,
under our current implementation, the lifetime of Samba presented in Section 9.2.3 is
underestimated. In the future, we plan to set up direct wireline connection between
the phone and the fish.

On initialization, Samba extracts the hue-saturation histogram of TAP based on
provided sample images. When a new frame is available, it first conducts image seg-
mentation to identify the water area. After the mapping models are learned, Samba
switches between the vision-based and inertia-based segmentation modes according
to the frequency specified by N (See Section 4.4). Then, the robot executes the TAP
detection algorithms on the segmented frame of water area. During the implementa-
tion, we find that the Hough transform, which is used to extract the shoreline, incurs
excessive computation overhead. Note that we use OpenCV’s implementation of the
Hough transform through Java Native Interface. We also examined the frame process-
ing performance when the app uses ART. According to our measurements, ART can
reduce the system delay by about 20% over Dalvik.

9. PERFORMANCE EVALUATION

We evaluate Samba through field experiments, lab experiments, and trace-driven sim-
ulations. The field experiments thoroughly test Samba’s performance in detecting real
HABSs in an inland lake. The lab experiments evaluate system overhead, monitoring
effectiveness under a wide range of environmental conditions, as well as the overall
performance of a fully integrated Samba node. The trace-driven simulations examine
the performance of adaptive rotation control with varied settings. Our results show that
Samba can achieve reliable detection performance in the presence of various dynamics
while maintaining a lifetime up to nearly 2 months.

9.1. Field Experiments

To test the detection performance of Samba in real world, we deployed our prototype
in an inland lake with an area of 200,000ft?on September 22, 2014. Part of the lake
was covered by patches of filamentous algae [Boyd 2003] that exhibit pale green color,
as shown in Figure 1(c). During the experiments, the average illuminance was around
1,082 1ux, as measured by phone’s built-in ambient light sensor. The impact of signifi-
cant illuminance change on Samba will be evaluated in Section 9.2.7. We set the frame
resolution to be 720 x 480 and the frame rate to be 0.5fps. The hybrid image segmenta-
tion updates the mapping models every 20 frames (i.e., N = 20). Because the HABs at
the test site were in a stable stage, we focused on evaluating the detection performance
without rotating the robot. Samba runs the hybrid image segmentation and TAP de-
tection algorithms consecutively on each frame. A total of 5,211 frames were captured
and processed. For each frame, we manually pinpoint the boundary of algal patches to

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 25, Publication date: June 2016.



Energy-Efficient Aquatic Environment Monitoring Using Smartphone-Based Robots 25:19

1

0.8
£ 0.75
= 0.5 0.6
2 0.4
wn
0.25 0.2
0 0
0 /2 s 3m/2 27
Hue
(a) Sample image (b) Histogram model
-==shoreline by inertia—based approach
*shoreline by vision—based approach
b=y - N Bt Gl =,
(c) A typical frame (d) Detection result

Fig. 11. Sample HABs detection in the field experiments.

provide the ground truth. For comparison, we adopt a baseline approach that uses the
same sample images but constructs the color histogram model in the RGB color space.
The RGB-based baseline approach is executed offline using the captured frames. The
purpose of our field experiments is threefold. First, we test the detection performance
of Samba in a real aquatic environment with complex background and colors. Second,
we evaluate the real-time execution of hybrid image segmentation and TAP detection
algorithms. Last, we validate that Samba can effectively reduce the false alarms caused
by the nonwater area through image segmentation.

9.1.1. Sample HABs Detection. Figure 11 depicts a sample HABs detection in the field
experiments. An image of the algal patch, as shown in Figure 11(a), is used as the sam-
ple image for the detection pipeline. Figure 11(b) shows the normalized hue-saturation
histogram, in which each element characterizes the probability that the correspond-
ing color represents the HABs. Therefore, a majority of colors in the histogram are of
near-zero probability. For each frame, Samba first extracts the water area by locating
the shoreline through hybrid image segmentation. Figure 11(c) shows a typical frame
captured by Samba, where the red and black dashed lines represent the shorelines
obtained by the vision-based and inertia-based image segmentation, respectively. As
we can see, the inertia-based approach yields a fairly accurate estimation of shoreline,
which is partially due to the calm water during the experiment. In Section 9.2.4, we
will evaluate the performance of hybrid image segmentation under more dynamic envi-
ronment. On the segmented water area, Samba executes the TAP detection algorithms.
Figure 11(d) presents the detection result after back projection and patch identifica-
tion. We can observe that our TAP detection algorithms effectively identify the algal
patches in the segmented frame.

9.1.2. Detection Performance. We now evaluate the detection performance of Samba.
For each frame, we define the positive overlap ratio as the ratio of the overlap area
between the detected TAP area and the ground-truth TAP area to the ground-truth

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 25, Publication date: June 2016.



25:20

Y. Wang et al.
1 I T LT T = 1 T T ]
" RGB-based
o 08} E o 08F % \our approach ----- -
= & |
.5 0.6 |- - g 0.6 |- .“ E
3 04l i 5 04} y i
A RGB-based = \
02F  our appro: - =02} .
pproach -----.
0 1 1 1 1 \ 0 1 1 L
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

Threshold for positive overlap ratio Threshold for negative overlap ratio

Fig. 12. Detection performance under various

Fig. 13. False alarm rate under various thresholds
thresholds for positive overlap ratio.

for negative overlap ratio.

TAP area. Hence, the positive overlap ratio characterizes the effectiveness of detec-
tion algorithms in a frame. Given a threshold on positive overlap ratio, we calculate
the detection rate as the ratio of the frames with positive overlap ratio larger than
this threshold to the total frames with TAP patches. Figure 12 plots the detection
rate versus the threshold for positive overlap ratio for our approach (i.e., using hue-
saturation histogram) and the RGB-based baseline approach, respectively. When the
positive overlap ratio is lower-bounded at 0.8, Samba can achieve detection rate up
to 94%. Moreover, our approach yields consistently higher detection rates than the
baseline approach. In the field experiments, the HABs and water area have a color
similarity n of 0.88, which represents a rather strong color resemblance (see Sec-
tion 5.1). In Section 9.2.7, we will evaluate the impact of n on detection performance.

9.1.3. Effectiveness of Image Segmentation. In TAP detection, we define the negative over-
lap ratio as the area of false TAP detection to the ground-truth TAP area in each frame.
We say a false alarm occurs when the negative overlap ratio exceeds a given thresh-
old. We calculate the false alarm rate as the ratio of the frames with false alarms to
the frames without TAP. In the field experiments, the false TAP detections mainly
result from the captured shore area. In particular, the trees on the shore, with a color
similarity n of up to 0.97 with the target filamentous algae, are the major reason of
the false TAP detections. Figure 13 plots the false alarm rate versus the threshold for
negative overlap ratio for our approach and the RGB-based baseline approach, respec-
tively. We find that our approach achieves consistently lower false alarm rates than
the baseline approach. This is because our approach can characterize the TAP color
features more effectively. We then validate the effectiveness of image segmentation in
reducing false alarms. Image segmentation allows Samba to perform HABs detection
in the water area only. Figure 14 compares the false alarm rates for our approach and
the RGB-based baseline approach, respectively, with and without image segmentation.
The reported results are obtained based on a threshold for the negative overlap ratio
of 0.5. We can see that by applying image segmentation, the false alarm rate of our
approach is reduced by over 90%. Moreover, the baseline approach also benefits from
image segmentation but still yields a higher false alarm rate than our approach.

9.2. Lab Experiments

The objective of lab experiments is to evaluate Samba under more dynamic environ-
ment. The experiments were conducted in a 15 feet x 10 feet water tank in our lab.
We vertically place a white foam board along a side of the tank to produce an artificial
shoreline. The settings of Samba are consistent with those in the field experiments
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unless otherwise stated. We test the performance of hybrid image segmentation and
TAP detection algorithms under a wide range of environmental conditions and sys-
tem settings such as training dataset size, wavy water, illuminance change, and color
similarity between the TAP and water area.

9.2.1. Computation Overhead. We first evaluate the overhead of image segmentation and
TAP detection algorithms, where the reduction in computation delay characterizes the
improvement in energy efficiency on phone. In this set of experiments, we measure the
computation delay of each module, that is, vision-based segmentation, inertia-based
segmentation, and TAP detection, on Galaxy and Nexus4, respectively. The computa-
tion delay is measured as the elapsed time using Android API System.nanoTime (). The
results are plotted in Figure 15. We can see that the vision-based segmentation incurs
the longest delay, which is mainly due to the compute-intensive Hough transform. In
contrast, the inertia-based segmentation is rather efficient, achieving 98% reduction in
computation delay. Note that in the hybrid segmentation, Samba learns the mapping
models every N = 20 frames. Thus, the measured overhead of inertia-based segmen-
tation provides an overhead upper bound of the proposed hybrid approach. The TAP
detection algorithms take about 80ms and 50ms on Galaxy and Nexus4, respectively.
Therefore, our aquatic monitoring solution is efficient on mainstream smartphones
and can well meet the real-time requirement. Compared with SOAR [Wang et al. 2014]
which typically takes more than 3 seconds to process a frame, Samba reduces the
computation delay by about 97%.

9.2.2. Impact of Image Scaling. Samba reduces the overhead of CV algorithms by lever-
aging the energy-efficient inertial sensing. There are other approaches to decreasing
the computation overhead purely from a CV perspective, for example, image scaling.
Image downsampling can reduce the number of pixels to be processed. However, sens-
ing performance will also decrease due to lost information during the downsampling
process. In this set of experiments, we evaluate the trade-off between the TAP de-
tection rate and the image processing delay under different downsampling settings.
Specifically, we proportionally down scale the height and width of a captured frame
and define the downsampling rate as the ratio of the remaining pixels. Figure 16 shows
the detection rate and the execution time of the TAP detection algorithm under dif-
ferent settings of the downsampling rate. We can see that, with downsampled frames,
the detection rate decreases. This is because the scaled image loses information such
as small TAP patches. On the other hand, downsampling reduces the processing delay.
Note that other parameters of visual sensing, e.g., frame rate, can be tuned to reduce
computation overhead while losing sensing granularity and accuracy.

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 25, Publication date: June 2016.



25:22 Y. Wang et al.

T, T T
1 | detection rate FSSSNy ) =41 5} fish rotation X" lifetime (vision) —m—
execution time[--e-- S E phonesleep mmmm  lifetime (hybrid) --e@--
% / \ s phone wake XXX

; 0.8 |- / - 0.7 ‘g 50 F T 4 =

S / 3 S
2 2 B R
3 s 2 a0l 1°E%
g 06| 4042 2 {283
e = = S
R 2 £ 30 1182

[~ A 3

0.4 0.1 3]

0.36 0.64 . 1 20 30 50 70 0
Image downsampling rate Duty cycle (%)

Fig. 16. Impact ofimage resolution on detection per-  Fig. 17. Projected lifetime and daily energy con-
formance and computation delay. sumption breakdown.

Table I. Samba Power Consumption Profile

Voltage (V) | Current (A) | Power (W)
Galaxy wake 3.7 0.439 1.624
Galaxy sleep 3.7 0.014 0.518
Servo motor 6 0.5 3

9.2.3. Projected Lifetime. We now evaluate the lifetime of Samba based on its power
consumption profile as shown in Table I. Smartphone computation, standby, and fish
rotation consume the highest powers. The energy drain on phone can be calculated
using offline measurements and duty cycle. Specifically, we measure the power con-
sumption of Galaxy using an Agilent 34411A multimeter when the phone is executing
the TAP detection algorithms with vision-based and hybrid segmentations. According
to the integrated evaluation, a monitoring round lasts 5 minutes, on average, and
Samba can rotate to the scheduled orientation within 15 seconds. We can thus upper-
bound the daily consumed energy for fish rotation by (12 x 60/5) x (15/3,600) x p, Wh,
where p, is the motor power consumption for beating the tail. Figure 17 shows the
projected lifetime of Samba when running the vision-based and hybrid segmentations,
respectively. We can see that the system lifetime is almost doubled by switching vision-
based segmentation to hybrid approach. Figure 17 also evaluates the impact of duty
cycle, which is defined as the ratio of wake time to the total time. As expected, the
system lifetime decreases with duty cycle. In our current prototype, Samba has a total
of 170 Wh battery capacity, including a backup 13.5 Wh and two main 75 Wh batteries
on the fish, and a 6.48 Wh battery on the phone. Even with half of the battery capac-
ity, Samba can achieve a lifetime of nearly a month with hybrid segmentation and
30% duty cycle. Moreover, the breakdown of daily energy consumption is plotted in
Figure 17. We find that a majority of energy is actually consumed by the sleep periods
and fish rotation. Owing to the high efficiency of hybrid image segmentation and TAP
detection algorithms, the wake periods consume the least amount of energy. Therefore,
the lifetime of Samba can be further extended if the phone is powered off during the
sleep periods.

9.2.4. Image Segmentation Accuracy. We then evaluate the accuracy of hybrid image
segmentation. To create dynamics, we generate waves by connecting a feed pump to the
tank. As a result, the shoreline slope (i.e., &;) varies up to 20°, and the average vertical
coordinate (i.e., ;) varies up to_170 pixels. We define the estimation errors for visual
features as |k — k;| and |h; — h;|, where k and h; are the estimated visual features
by the inertia-based approach, and % and A; are the ground truth measured by the
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camera. Figure 18 plots the CDF and average of the estimation errors for k. We can
see that the inertia-based segmentation can accurately estimate %;, with an average
estimation error of about 2.3°. Moreover, Figure 19 plots the CDF of the estimation
errors for h;. As shown in this figure, the average estimation error is around 18 pixels.
This set of experiments validate that the proposed hybrid image segmentation can
achieve satisfactory performance under wavy water environment.

9.2.5. Impact of Training Dataset Size. As discussed in Section 4.4, there is a trade-off
between the estimation accuracy and system overhead caused by the training dataset
size N. In this set of experiments, we evaluate the impact of N. Figure 20 plots the
estimation errors for k2 and h; under various settings of N. It can be observed that
the average estimation accuracy of both & and A; increases with N. In Samba, the
setting of IV determines the size of the buffer to store the training data for mapping
models learning. Therefore, a larger N increases the diversity of training data, result-
ing in mapping models that account for a wider range of dynamics. Moreover, we find
that the variance of estimation errors decreases with N. Meanwhile, the setting of
N contributes to the system overhead. Figure 21 shows that the computation delay
of hybrid segmentation increases with N. This is mainly because the visual features
are extracted more frequently under a larger N. The computation overhead of map-
ping models learning also increases with N. According to our measurements, such
delay is in the order of millisecond and thus has limited impact on computation delay.
In practice, system designers can conduct similar experiments to choose a satisfac-
tory setting of N. Figure 21 also compares the accumulative computation delay of
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vision-based and hybrid approaches. We can see that the delay is notably shortened
with the hybrid image segmentation.

9.2.6. Impact of Color Similarity. Samba identifies the TAP from the water area by dis-
tinguishing their color features (see Section 5.1). This set of experiments evaluate how
the color similarity n between the two areas affects the TAP detection performance. We
adopt three boards in different colors as the TAP patches. For each colored patch, we
conduct 10 runs of experiments. For each run, we apply a threshold of 0.8 for the pos-
itive overlap ratio to determine the detection rate. Figure 22 shows the detection rate
under various n, where the error bar represents standard deviation. We can see that
the detection rate decreases with n. As n quantifies the proximity of two colors in the
cylindrical HSV model, the increase in 7 reduces the likelihood of identifying the TAP
patches from water. We can also find that our TAP detection algorithms achieve satis-
factory detection performance under high color similarity. For example, when n = 0.83,
the detection rate is about 84%. Moreover, our approach yields consistently better de-
tection performance than the RGB-based baseline approach becaudse the HSV model
differentiates similar colors more effectively.

9.2.7. Impact of lllumination. As discussed in Section 5.1, we adopt two designs to
enhance Samba’s robustness to illuminance change. First, the color histogram is built
in the HSV model and excludes the value channel that is sensitive to illumination
condition. Second, we normalize the color histogram before applying it to back
projection. In the experiments, we create various illumination conditions by using
different combinations of three compact fluorescent lamps and a Power Tech LED
light [Power Tech LED 2014]. We use the patch with n = 0.64 and conduct 10 runs of
experiments for each illumination condition. Figure 23 plots the detection rate under
various illumination conditions, where the reported illuminance is measured by the
phone’s built-in light sensor. We can see that our TAP detection algorithms maintain
consistently satisfactory performance under different illumination levels, while the
RGB-based baseline approach is sensitive to illumination change.

9.2.8. Integrated Evaluation. In this set of experiments, all modules of Samba, that is,
hybrid image segmentation, TAP detection, and adaptive rotation scheduling, are in-
tegrated and evaluated. Moreover, on the control board of robotic fish, we implement
a closed-loop proportional-integral-derivative (PID) controller that adaptively controls
the tail beats based on the discrepancy between the scheduled and actual orienta-
tions. We imitate TAP development by gradually uncovering the board’s surface (with
n = 0.64). Based on the angular view of Galaxy, we select the camera orientations
as {0, /4, /2,37 /4, 7} with respect to the tank’s side to ensure that the semi-circle
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can be fully covered when Samba rotates over these orientations. At ¢ = 0, Samba is
deployed in parallel to the tank’s side and starts the aquatic monitoring. We set the
initial average rotation speed as 6°/min. Therefore, the first monitoring round has an
interval of 7.5 minutes. After the first round, Samba adaptively schedules its rotation
speed to maintain the desired severeness change, which is set to be 595 pixels, until
it is parallel to the tank’s side again. Throughout the experiments, Samba achieves
a detection rate of around 97% and a false alarm rate of about 5%. Figure 24 plots
the detected severeness changes in the first five rounds, which are well maintained at
the desired level. Moreover, Figure 24 shows the total monitoring time versus index
of robot rotation. We can see that the monitoring time varies across rounds, and it
has a 5-minute length, on average. During the experiment, we also find that our PID
controller can generally direct Samba to the desired camera orientation, with an error
lower than 7°.

9.3. Trace-Driven Simulations

We evaluate the adaptive rotation control of Samba through trace-driven simulations,
given the difficulty in accessing an actively developing TAP. To improve realism, we
collect data traces, including Samba rotation errors and real chemical diffusion process,
and use them in our simulations. First, the error traces of rotation are collected using
our prototype in the water tank. We measure the rotation error by the discrepancy
between the desired orientation and actual heading direction of Samba. Second, we
record the diffusion traces of Rhodamine-B, which is a solution featuring red color, in
saline water using a camera. Hence, the development of diffusion process is charac-
terized by the expansion of the red area over time. The diffusion traces include the
detected Rhodamine-B area and corresponding timestamp.

In the simulations, Samba monitors TAP within its circular surveillance region.
According to our measurements, the camera on Galaxy has an angular view of 57/18.
Hence, we partition the surveillance region into 8 sectors such that a full coverage can
be achieved by a complete scan. For each rotation, the actual direction is set based
on the collected error traces and thus is subjected to errors. For each orientation, the
monitoring interval is determined by the scheduled rotation speed. We use the collected
diffusion traces as severeness measurements, based on which the robot estimates the
dynamics of TAP and schedules the rotation speed. Other settings include the desired
resolution § = 25 and controller coefficient ¢ = 0.85.

Figure 25 plots the detected severeness change A s in the first 10 rounds. We can see
that A s quickly converges to the desired severeness resolution §. Figure 25 also shows
the scheduled rotation speed, which is scheduled based on the current dynamics of
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TAP and §. We further evaluate the response of our algorithm to the sudden changes in
the TAP development. Specifically, we artificially reduce the severeness measurements
by 30% at the 7t rotation (i.e., the left arrow in Figure 26) and continuously since
the 14" rotation (i.e., the right arrow in Figure 26). For both types of changes, our
algorithm converges within a few rounds of rotation. Therefore, the proposed algorithm
can effectively adapt the rotation of Samba to the developing dynamics of TAP.

10. CONCLUSION AND FUTURE WORK

This article presents Samba—a novel aquatic robot designed for monitoring harm-
ful aquatic processes such as oil spills and HABs. Samba integrates an off-the-shelf
Android smartphone and a robotic fish. Samba features hybrid image segmentation,
TAP detection, and adaptive rotation control algorithms. The hybrid image segmen-
tation effectively reduces the false TAP detections by excluding the nonwater area in
TAP detection. It also significantly decreases the overhead of continuous visual sens-
ing by integrating inertial sensing via a learning-based approach. The TAP detection
algorithms are lightweight and robust to various environment and system dynamics
such as illuminance change and the camera’s internal noises. The adaptive rotation
control enables Samba to achieve full circular coverage and fine temporal granularity
in monitoring the spatiotemporally developing TAP by adjusting the rotation speed.
Field experiments, lab experiments, and trace-driven simulations show that Samba
can achieve reliable and real-time TAP detection with a system lifetime up to nearly 2
months. In our future work, we plan to deploy Samba to more lakes/ponds to evaluate
its effectiveness under diverse environments.
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