
SOFT PRESSURE SENSING SYSTEM WITH APPLICATION TO
UNDERWATER SEA LAMPREY DETECTION

By

Hongyang Shi

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Electrical Engineering — Doctor of Philosophy

2022



ABSTRACT

SOFT PRESSURE SENSING SYSTEM WITH APPLICATION TO
UNDERWATER SEA LAMPREY DETECTION

By

Hongyang Shi

Species-specific monitoring offers fundamental tools for natural resource management

and conservation but requires techniques that target species-specific traits or markers. Sea

lamprey, a destructive invasive species in the Great Lakes in North America and conservation

target in Europe, is among very few fishes that rely on oral suction during migration and

spawning. Yet attachment by suction has not been exploited for sea lamprey control or

conservation. This dissertation is focused on advancing soft pressure sensing systems for

underwater sea lamprey detection.

First, a pressure sensing panel based on commercial vacuum sensors is developed to

measure the suction dynamics of juvenile and adult sea lampreys, such as pressure amplitude,

frequency and suction duration. Measurements from an array of sensors indicate that the

suction pressure distribution is largely uniform across the mouths of lampreys, and the

suction pressure does not differ between static and flowing water conditions when the water

velocity is lower than 0.45 m/s. Such biological information could inform the design of new

systems to monitor behavior, distribution and abundance of lampreys.

Based on the measured biological information, two types of soft pressure sensors are

proposed for underwater sea lamprey detection. First, a soft capacitive pressure sensor is

developed, which is made using a low-cost screen-printing process and can reliably detect

both positive and negative pressures. The sensor is made with a soft dielectric layer and

stretchable conductive polymer electrodes. Air gaps are designed and incorporated into the



dielectric layer to significantly enhance the sample deformation and the response to pressures

especially negative pressure. This soft capacitive pressure sensor can successfully detect non-

conductive objects like plastic blocks compressed against it or rubber suction cup attached

to it; however, it does not work well underwater since water causes parasitic capacitance on

the sensor that interferes with the detection.

The second sensor we present is a low-cost and efficient piezoresistive pressure sensor,

which consists of a layer of piezoresistive film patch matrix sandwiched between two layers of

perpendicular copper tape electrodes. Here, the measured two-point resistance is not equal

to the actual cell resistance for that pixel due to the cross-talk effect of the pixels. Sev-

eral regularized least-squares algorithms are proposed to reconstruct the cell resistance map

from the two-point resistance measurements. Experiments show that this pressure sensor

is able to capture the pressure profiles during sea lamprey attachment. The performance

and computational complexity of the reconstruction algorithms with different regularization

functions are also compared.

Finally, we design an automated sea lamprey detection system based on the piezoresistive

pressure sensor array using machine learning. Three types of object detection algorithms are

deployed to learn features of the mapping contours when effective attachment by “compres-

sion” or “suction” is formed on the sensor array. Their validation performance and inference

speeds are evaluated and compared in depth, and YOLOv5s proves to be the best detector.

Furthermore, a detection approach based on the YOLOv5s model with a confidence filter

unit, is proposed. In particular, different optimal detection thresholds are proposed for the

compression and suction patterns, respectively, in order to reduce the false positive rate

caused by the sensor’s memory effect. The efficacy of the proposed method is supported

with experimental results on real-time underwater detection of sea lampreys.
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Chapter 1

Introduction and Motivation

The sea lamprey (Petromyzon marinus) in North America is a species of anadromous fish

native along the Atlantic coast. It presumably invaded the Laurentian Great Lakes in the

early 1900s, and contributed to the collapse of major fish stocks in the Great Lakes. In order

to control the sea lamprey invasion and restore the fish community, real-time detection of

adult sea lampreys within or near a fish passage is of much significance and practical merits,

which could afford the opportunity to alter fishway operation to block the sea lampreys in

response to the detected information. Attachment to surfaces by oral suction is a prominent

characteristic of sea lampreys, which offers an opportunity for utilizing soft pressure sensors

to detect the sea lamprey while it is sucking onto the sensor. In this chapter, the challenges

of sea lamprey detection, the mechanism of sea lamprey’s suction, the problems of soft

pressure sensors, and the feasibility to use soft pressure sensor array for underwater sea

lamprey detection as well as the automated detection system are discussed. The state of

the art in these areas is surveyed, followed by a summary of contributions we have made for

each research topic.
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1.1 Sea Lamprey Detection via Attachment by Suction

1.1.1 State of the Art

Species-specific monitoring activities, such as animal detection [2], behavior observation [3],

population assessment [4] and habitat use evaluation [5], represent fundamental tools for

natural resource management and conservation. In aquatic environments, monitoring meth-

ods have long relied on sonar imaging to characterize distributions and densities of groups

and on capturing methods to identify individuals [6, 7]. Emerging technologies promise to

overcome many of the inherent limitations of those methods. For example, autonomous un-

derwater vehicles (AUV) can be used to collect multimedia data and detect animals through

image processing [4]. However, automated species identification remains a great challenge

and may not be practical in some environments [8]. Environmental DNA (eDNA) [9, 10] has

also become popular for species-level monitoring, but may be limited to species-level occu-

pancy and be subject to false positives caused by transport of tissues by currents and other

processes in natural environments [11]. Therefore, more effective monitoring techniques that

take advantage of species-specific characteristics are desired.

Sea lampreys (Petromyzon marinus) are anadromous fish native to the Atlantic Ocean,

that invaded the Laurentian Great Lakes in the early 1900s, contributed to the collapse of

major fish stocks in the Great Lakes [12, 13, 14], and triggered formation of a bi-national,

basin-wide population control program. Success of the control program has been attributed

to the use of barriers, traps, sterilization, and lampricides [15, 16]. In Europe and North

America, attempts to conserve and restore native lamprey populations have included dam

removal [17] and artificial propagation [18]. In either case, strategies target individuals in

life stages and habitats where they are most vulnerable to perturbations based on knowledge
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of species ecology and life history. Sea lampreys are basal vertebrates with a life history

comprised of distinct larval, juvenile, and adult stages [19, 20, 21]. Larval sea lampreys

burrow into stream sediment and feed on micro-organisms for 3–5 years. They then undergo

a drastic metamorphosis into the juvenile stage with a powerful suctorial mouth, migrate

downstream into the Atlantic Ocean or a Laurentian Great Lake, and parasitize fish for

about 1.5 years [22], killing 18 kg of host fishes on average during that time [23]. Next, adult

sea lampreys migrate upstream in the spring, where they will spawn and die. Although

adult sea lampreys do not feed, they rely on oral suction during migration and spawning,

for station-holding, nest construction, competition for mates, and mating [24].

Although many fishes use oral suction to feed, the ability to attach to surfaces using oral

suction is unique to lampreys among freshwater fishes in the northern hemisphere (others

include suckermouth catfishes of the genus Hypostomus, which are native to South America).

When a lamprey approaches the desired surface, its annular muscle contracts and the buccal

funnel spreads over the surface. The tooth-studded oral disc conforms to the surface and

completes a seal, and then the armed tongue retracts into the oral passage and seals off the

buccal funnel from the pharyngeal cavity. With the expansion of the buccal cavity, a partial

vacuum inside this cavity and a corresponding suction force are created, which maintains a

suction attachment. Next, water is pushed out of the pharyngeal cavity to the velar-sealed

branchial cavity through the compression of an inner sinus, which increases vacuum pressure

within the pharyngeal cavity. Once the tongue protracts, the vacuum pressure spreads into

the buccal cavity and thereby forms a stronger suction [25]. Over time, suction pressure

decreases due to leakage and pressure must be re-applied. Therefore, sea lamprey suction

dynamics are characterized as intermittent cycles of rapid “pumps” (application of suction)

separated by periods of leakage (loss of suction).
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Although oral suction is a prominent characteristic of lampreys, it has not been exploited

for lamprey management or conservation. Knowledge of specific characteristics of sea lam-

prey suction (e.g., amplitude, duration, and pattern of suction events; hereafter ‘suction dy-

namics’) may be useful to develop devices that detect, record, and respond to the presence of

sea lamprey at a given place and time or as feeding devices for aquaculture. Apart from the

suction mechanism, few researchers have measured the suction pressures created by sea lam-

preys. Gradwell [26] inserted cannulas into gill pouches and naris of four pre-spawning adult

lampreys and measured the hydrostatic pressures of lampreys using a pressure transducer

connected to each cannula. To obtain the pressure exerted by the spawning-run lampreys

on an acrylic surface, Adams [25] connected an absolute pressure sensor to a port in the

designated attachment area on the acrylic flange. However, the suction dynamics of adult

lampreys and juvenile lampreys in flowing water have yet to be described. Additionally, it

is not known if measurement of oral suction is sensitive to measurement location within the

mouth (i.e., uniformity of vacuum pressure across the mouth).

A pressure sensing panel which can measure the biological suction pressure, if deployed in

tributaries or on dams, has the potential for sea lamprey detection, population assessment,

and facilitation of lamprey passage or blockage. For instance, it could be deployed in a

fishway to detect the sea lamprey according to the suction pressure change when it attaches,

and to trigger action to block passage or repel the lamprey. It could also be deployed in

streams to determine timing of stream entry and upstream migration, and to describe refuge

habitat. Measurements of biological suction pressure dynamics, such as pressure amplitude,

frequency, and suction duration, might also indicate condition, life stage, body size, or sex

of sea lampreys, if those dynamics are related to those biological characteristics. Moreover,

the understanding of sea lampreys’ suction dynamics can improve design of next generation
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of soft pressure sensors, which are desired to be more bio-compatible and convenient for

deployment.

1.1.2 Contribution

Previous observations are limited to adult sea lampreys in static water. In this study, pressure

sensing panels based on commercial vacuum sensors are constructed and used to measure

oral suction pressures and describe suction dynamics of juvenile and adult sea lampreys at

multiple locations within the mouth and in static and flowing water. Suction dynamics are

largely consistent with previous descriptions, but more variation is observed. For adult sea

lampreys, suction pressures range from –0.6 kPa to –26 kPa with 20 s to 200 s between

pumps at rest, and increase to –8 kPa to –70 kPa when lampreys are manually disengaged.

Measurements from an array of sensors indicate that suction pressure distribution is largely

uniform across the mouths of both juvenile and adult lampreys; but some apparent variation

is attributed to obstruction of sensing portal holes by teeth. Suction pressure dose not

differ between static and flowing water when water velocity is lower than 0.45 m/s. Such

information may inform the design of new systems to monitor behavior, distribution and

abundance of lampreys.

1.2 Soft Pressure Sensor

1.2.1 State of the Art

Soft pressure sensors are promising for various applications including wearable electronic

skins [27, 28, 29, 30], soft robotics[31], environmental monitoring [32, 25, 33] and aerody-
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namic control of vehicles [33]. Many of these applications require positive pressure sensing

[29, 30, 31, 32] while others demand the capability of measuring negative pressure. Examples

include the detection of suction events from lamprey’s mouth [25] or octopus’ suction cups

[33] and measuring surface pressure distribution of cars during on-road driving [34]. Soft

pressure sensors can be formed based on various transducing principles, such as piezoelectric

sensing [35, 36, 37, 38, 39], capacitive sensing [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], piezore-

sistive sensing [29, 50, 51, 52, 53, 54, 55, 56, 57], and transistor mechanism [46, 58, 59, 60].

Piezoelectric pressure sensing foil [35] shows hysteresis in response because of the character-

istics of piezoelectric materials and the crosstalk in the sensor matrix is often pronounced.

Moreover, to our best knowledge, no work has been reported so far on using piezoelectric

sensors for negative pressure detection. Flexible pressure-sensitive organic thin film tran-

sistors [46, 58] rely on the gate dielectric layer to convert the pressure input to change in

the drain current; despite the high sensitivity, the multiple layers in the sensor films could

delaminate under negative pressure and thus cause sensor failure.

Capacitive pressure sensors can be made using simple parallel-plate capacitor [61] or

crossbar capacitor structures [62], where the capacitance is proportional to the area and

inversely proportional to the spacing between the two parallel electrodes. Ideally, such

structures should be able to detect both positive and negative pressure because the spacing

between the electrodes will decrease when the sensor is compressed (positive pressure) and

increase when under partial vacuum (negative pressure). Nevertheless, soft capacitive pres-

sure sensors are actually insensitive to negative pressure because of the viscos-elasticity of

the materials in the substrate, resulting in very small thickness change of the dielectric layer

under negative pressure.

In order to improve the sensitivity of soft pressure sensors, a number of strategies have
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been proposed including fabricating microstructures in the conducting materials or dielectric

layers. Bao’s research group first introduced micro pyramid features into the dielectric layers

of pressure sensors, gaining good sensitivity and short response time [30, 46, 58]. Hasan et

al. [51] designed micro pillars in their pressure sensors to enhance the sensitivity under

gentle touch, and the micropillar-based pressure sensors were also reported in Park [55] and

Engel’s work [40]. In addition, guided mechanical cracks [56, 63], hierarchical structure [64],

interlocked microdome structures [65, 66], and porous insulation layer [53, 54, 67, 49] have all

been demonstrated to improve the performance of pressure sensors. All these microstructures

would increase the number of conducting paths and conducting area in the materials, or

augment the dielectric performance when the sensor films are compressed, which drastically

enhances the conductivity and sensitivity of the pressure sensors. Nevertheless, most of

these sensor designs would fail to work under negative pressure because the current flow

would be cut off when the multilayers delaminate under negative pressures. Under negative

pressure, the sensor needs to not only be responsive to negative pressure, but also form a good

bonding between the layers in order to endure negative pressure and avoid delamination. A

diaphragm structure that is well bonded with its substrate can easily deform under both

negative and positive pressures, and the corresponding deformation can be converted to

change in capacitance when the structure is constructed as a capacitor. Taking the above

into consideration, a capacitive pressure sensor with a diaphragm structure [41, 44, 47] that

deflects by external pressure has become a promising solution for measurement of both

positive and negative pressures. The thin diaphragm instead of the entire sample deflects

under external pressure, which enlarges the spacing change between the two electrodes and

could be measured from the capacitance change. Lee et al. [44] fabricated a modular

expandable tactile sensor in the diaphragm structure using PDMS substrate and copper strip
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electrodes, and Nie et al. [47] reported a similar transparent iontronic film for capacitive

pressure sensing using polyethylene terephthalate (PET) films. However, these sensors are

not stretchable due to the copper electrodes and PET films used, and their responses to

negative pressure have not been reported yet. To achieve soft pressure sensors that are

stretchable, conductive nanomaterials such as graphene [56, 57], carbon nanotubes [50, 45],

metal nanowires [29, 48, 68], conducting oxides [51, 41, 67, 46, 47, 49, 58], or conducting

polymers [54, 69, 70] could be used.

On the other hand, piezoresistive pressure sensors generally exhibit good sensitivity under

compressive loads, but the layers of piezoresistive sensors tend to delaminate under negative

pressure, which cuts off the current flow in the piezoresistive materials. Among the resistive

pressure sensors, the low-cost pressure sensitive film called Velostat [71, 72, 73, 74, 75,

76, 77], comprised of carbon-impregnated polyolefin and exhibiting piezoresistive property,

has been widely investigated in the applications such as finger gesture recognition [71],

human grasp monitoring [72], foot pressure measurement [73], sitting posture monitoring

[74], and prosthetic in-socket pressure sensing [75]. Another idea is to sandwich a matrix of

individual Velostat film patches between two layers of perpendicular electrodes [77], where a

resistor network forms in the circuit, which inevitably introduces the crosstalk issue between

adjacent resistors – that is, the measured two-point resistance is influenced by all the other

resistors in the network. The relation between the cell resistance at any pixel and the

equivalent resistance between the two electrodes (i.e., corresponding column and row) is

analytically derived in Tan’s work [78, 79], expressed as an explicit nonlinear forward function

from the Laplacian matrix of the cell conductance to the equivalent two-point resistance

matrix. Nevertheless, the inverse problem is intractable and ill-posed, and no analytical

solution is available. Moreover, the crosstalk issue results in a resistor network dimension-
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related problem, which is that the equivalent two-point resistance measured from the resistor

networks of different row and column dimensions will have different amplitudes of changes

(i.e., relative change in resistance) under the same pressure at the corresponding pixels.

This characteristic of the resistor network will be problematic for pressure characterization

of sensing panels of different dimensions. Therefore, a general method for reconstructing

the cell resistance from the measured two-point resistance is needed for practical versatile

applications.

Some researchers studied the circuit hardware and proposed to place diodes as current

barriers between adjacent pixels to avoid cross-talk [77], but this would make the fabrica-

tion more complex and leave the sensing panel unsmooth for attachment. Other researchers

analyzed the crosstalk error by circuit simulation [80, 81], and put forward a few numerical

algorithms such as fixed-point formulation [82]. This algorithm was designed to calculate

the cell conductance from measured conductance, but the algorithm unexpectedly generated

negative conductance, which was directly replaced with zero in their work [82]. However,

those results were not reasonable or adequate for obtaining all the estimated cell resistance

values. A least-squares reconstruction method was also mentioned in [82]; however, the

ill-posed nature of the inversion [83, 84] was not accounted for in their method since the

minimization criterion was not regularized, a consequence of which is that a small amount

of noise on the data could be sufficient to make the solution diverge. In the field of electrical

impedance tomography (EIT) [84, 85], Tikhonov regularization technique is commonly uti-

lized to cope with similar ill-posed inverse problems, but it has not been used for Velostat

pressure sensing systems yet.
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1.2.2 Contribution

In this work, we have developed two types of soft pressure sensors. First, a soft capacitive

sensor that is stretchable and responsive to both positive and negative pressures has been

designed and prototyped. The sensor is comprised of a soft Ecoflex 00-30 dielectric layer sand-

wiched in between and tightly bonded with screen-printed poly(3,4-ethylenedioxythiophene):

poly (styrene-sulfonate) (PEDOT:PSS) electrodes and polydimethylsiloxane(PDMS) encap-

sulation layers. More importantly, air gap channels are incorporated and uniformly dis-

tributed in the Ecoflex 00-30 layer, which shape the diaphragm structures that greatly en-

hance the dielectric layer deformation under an external pressure, resulting in significantly

improved response, especially to negative pressure. Meanwhile, the PEDOT:PSS electrodes

are encapuslated on the Ecoflex-030 substrate with PDMS layers, which successfully protect

the electrodes and prevent the layers from delamination under negative pressure. The re-

sponse of the single pixel sensor is systematically characterized and finite element method

(FEM) simulation is used to study the influence of the air gap geometry on the sensor re-

sponse. The sensor with optimized design exhibits good sensitivity from –60 kPa to –20

kPa and great repeatability under compressive loads, vacuum suction, and even bending

or stretching conditions. Lastly, a 12×12-pixel sensor array that can measure the pressure

distrubution for both positive and negative pressures with high fidelity is demonstrated.

Second, we propose a pressure sensing system consisting of a matrix of individual Velostat

cells which are sandwiched between two orthogonal layers of copper tape electrodes and

are fixed separately by one layer of polyester tape and double-sided tapes with waterproof

encapsulation around the sensing panel. This design is effective preventing the delamination

between the sensor layers in the underwater attachment scenario. On the basis of the forward
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problem formulation, we build a numerical algorithm to estimate the cell resistance for the

resistor network using least-squares minimization criterion as the baseline. Moreover, we

explore four novel compound minimization criteria to obtain satisfactory solutions, where an

a priori term which penalizes the cell resistance, the relative change in cell resistance, the

gradient of cell resistance, and the gradient of relative change in cell resistance, respectively,

is added to the least-squares term to form the respective cost function. The performance

of these new regularization methods is compared and discussed, which offers an insight

into how sea lampreys can be detected according to the mapping contours corresponding

to the suctorial mouth attachment. This soft piezoresistive pressure sensing system is also

promising for other extensive applications in electronic skins and soft robotics.

1.3 Soft Pressure Sensor-based Sea Lamprey Detection

1.3.1 The Need for Automated Sea Lamprey Detection

In order to control the sea lamprey invasion and restore the fish community, the Great

Lakes Fishery Commission (GLFC) has recently developed a selective fish passage program

[86, 87]. Such a fish passage is designed to allow native and desirable fishes to pass dams while

preventing passage of sea lampreys. One of the key problems of implementing a selective

fish passage is how to detect sea lampreys automatically when they approach. In addition

to the operation of a selective fish passage, detection and monitoring of sea lampreys can

facilitate the design of new trapping systems, support assessment of sea lamprey populations,

and help understand their life history and ecology (e.g., refuge-seeking behavior and habitat

characteristics).

11



1.3.2 State of the Art

Object detection is a technology for identifying instances of objects of a certain class in im-

ages, videos and other types of datasets. It has numerous applications, such as number

plate recognition [88], product identification [89, 90], face detection and recognition [91], an-

imal monitoring [92], and autonomous driving [93]. Video analysis based on object detection

methods has been used to detect underwater adult Pacific lampreys (Entosphenus tridenta-

tus) [94]; however, image quality may not be suitable under a wide range of light conditions.

Instead, underwater sea lampreys could be detected by taking advantage of their oral suc-

tion trait [95] in a more economical and efficient way using some proper pressure sensors

[1, 39] or contact sensors [96]. This is feasible since the suction of a sea lamprey’s oral disc

on the sensor would introduce distinct pressure patterns or related changes in the sensor’s

characteristics. Nevertheless, the sensor system alone significantly relies on human interven-

tion to recognize the pressure patterns or contact events from the sensor’s output signals,

and to further decide whether, when, and where the sea lamprey is attaching on.

In order to reduce burden from human decision, the sea lamprey detection system needs

to be automated. In Chapter 5, we report the first automated sensing system for detecting

sea lamprey attachment based on a soft pressure sensor array. Specifically, machine learning-

based object detection algorithms are used to learn features from the measured data of a

soft pressure sensor array and perform automatic detection of sea lamprey attachment on

the generated mapping contours.

Basically, the measured data from the soft pressure sensor array can be either used

directly to learn features of the sensor’s response to sea lamprey’s attachment, or they can

be first converted to mapping contour images, which are then used to learn features using
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computer vision technologies. The data-based sea lamprey detection method can be realized

by some basic neural network approaches such as the multilayer perceptron (MLP), which is a

fully connected class of feedforward artificial neural network (ANN) that takes data as input,

where each neuron in one layer is connected to all neurons in the next layer. On the other

hand, the image-based sea lamprey detection method could be realized by some convolutional

neural networks (CNNs) which analyze visual imagery using convolutional layers and sparsely

connected or partially connected layers. Both the data-based method and the image-based

method are promising for the soft pressure sensor array-based sea lamprey detection, but

in Chapter 5, we only report the image-based method for sea lamprey detection as it is

straightforward and convenient in visualization.

The state-of-the-art object detection algorithms can be categorized into two main types:

one-stage detectors and two-stage ones. Representative two-stage object detectors are region-

based convolutional neural networks (R-CNN [97], fast R-CNN [98], faster R-CNN [99], and

mask R-CNN [100]), which firstly use selective search algorithms to extract candidate region

proposals from the image, and then classify each single object and estimate its size with a

bounding box. They achieve higher detection accuracy but are typically slower than the one-

stage detectors, which predict bounding boxes over the images without the region proposal

step.

Examples of the most popular one-stage detectors include YOLO (You Only Look Once)

[101], SSD (Single-Shot Detector) [102], and RetinaNet [103]. YOLO reframes object detec-

tion as a single regression problem from the image pixels to the bounding box coordinates

and associated class probabilities. More advanced versions of YOLO have been released in

the past few years, such as YOLOv3 [104], YOLOv4 [105], and YOLOv5 [106]. Different

from all prior releases, YOLOv5 is implemented in PyTorch, which is well supported on ma-
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jor platforms and is versatile for research prototyping. SSD uses a single deep neural network

to output multi-scale convolutional bounding box, and predicts category scores and box off-

sets for a set of default bounding boxes. RetinaNet applies a modulating factor to the cross

entropy loss in order to address the extreme foreground-background class imbalance during

training. However, RetinaNet still designs two separate sub-networks in the end: one for

classifying anchor boxes, and the other for the regression of object boxes; which could be

merged into one regression network in theory.

1.3.3 Contribution

In this work, a comprehensive sea lamprey mapping contour dataset is first generated for

the training model to learn features. These mappings typically show two different types

of patterns under lamprey attachment: a high-pressure circular pattern corresponding to

the mouth rim compressed against the sensor (“compression” pattern), and a low-pressure

blob corresponding to the partial vacuum region of the sucking mouth (“suction” pattern).

Three types of object detection algorithms are deployed for sea lamprey detection, including

SSD, RetinaNet, and YOLOv5s (which is a small scale model of YOLOv5 that has fewer

layers of convolutional neural networks for faster and simpler object detection tasks). Their

validation performance and inference speeds are evaluated and compared in depth, and the

results show that YOLOv5s achieves the highest mean average prevision (mAP@0.5 : 0.95

up to 69.77%), and the fastest inference speed (up to 8.4 ms per image) on the experimental

GPU device. Finally, a detection approach based on the YOLOv5s model with a confidence

filter unit, is proposed. In particular, different optimal detection thresholds are proposed

for the compression and suction patterns, respectively, in order to reduce the false positive

rate caused by the sensor’s memory effect. The efficacy of the proposed method is supported
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with experimental results on real-time underwater detection of sea lampreys.
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Chapter 2

Measurement of Suction Pressure

Dynamics of Sea Lampreys,

Petromyzon marinus

In this chapter, an effective pressure sensing panel, comprised of arrays of commercial vacuum

pressure sensors, is developed to characterize suction dynamics of sea lampreys underwater.

Objectives of this study are: (1) to record and describe the range and distribution of suc-

tion pressures exerted by individual lampreys at two life stages (juvenile and adult); (2) to

describe the frequency of suction events (re-pressurizing “pumps”); (3) to determine if vac-

uum pressure varies spatially across the sea lamprey mouth; and (4) to determine if suction

dynamics (i.e., pressure ranges; event frequencies) differ when the sea lamprey is in static

vs. flowing water. This chapter was previously published as [95], and has been reformatted

to meet the requirements of this dissertation.

This chapter is organized as follows. The pressure sensing apparatuses are first presented

in Section 2.1 followed by the leakage checking method. Experimental animals and three

experiments with the data analysis method are proposed in Section 2.2. Experimental results

of both the sensing systems’ leakage performance and the sea lamprey’s suction dynamics

are presented in Section 2.3. Finally, discussions are provided in Section 2.4.
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2.1 Methods

2.1.1 The Pressure Sensing Apparatuses

Commercial vacuum pressure sensors (Honeywell 40PC015V2A) were used to construct the

sensing system for monitoring vacuum pressures exerted by sea lampreys on test surfaces.

Each pressure sensor had an operating pressure range of 0 kPa to –103.4 kPa and response

time of 1 ms maximum. Two types of pressure-sensing apparatuses were developed for

comprehensive experiments, including a panel with a single sensing port (Figure 2.1), and a

panel with a 9-port circular pressure sensing matrix Figure 2.2), respectively. The single port

system was comprised of an elbow-shape tight-seal moisture-resistant barbed tube connector,

which was the smallest we could find to build this pressure sensing system, glued into a 2.5-

mm port in a smooth acrylic plate. A soft plastic tube connected the tube fitting to a

vacuum pressure sensor 20 cm away. For encapsulation of the port, a 5-mm-thick layer of

polydimethylsiloxane (PDMS, Sylgard-184, Dow Corning) was cast on the acrylic plate with

a mixing ratio of 10:1 (PDMS base: curing agent, wt.%), and then cured at 70 ℃ for 2 hours.

The acrylic plate was then placed vertically in water against the wall of a 200 L aquarium so

that the side of the panel with barb fitting, tubing and PMDS was against the glass. During

each test, a sea lamprey was gently held with its mouth centered over the port on the acrylic

plate until it attached to the plate via oral suction. Pressure data from the sensor, measured

in kPa, were acquired by an Arduino processor board (Arduino Uno for single port sensor;

Arduino Mega 2560 for 9-port sensing panel) at a sampling frequency of 200 Hz and stored

in a computer. The 9-port system was fabricated in a similar way, but contained a central

port surrounded by eight ports arranged in a circular pattern with a radius of 8 mm (Figure

2.2-b) such that all ports would be covered by the sea lamprey’s oral disc.
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Figure 2.1: The single-port pressure sensing system used to measure oral suction pressures
of sea lamprey, Petromyzon marinus. (a) The single-port sensing panel with a port on the
acrylic plate encapsulated with polydimethylsiloxane (PDMS) and connected to the vacuum
sensor beside the Arduino Uno microcontroller board via soft tubing, and (b) an adult sea
lamprey attached to the sensing panel at the sensing port in a water-filled tank.

2.1.2 Leakage Check of the Pressure Sensing System

A three-part experiment was used to determine if sea lamprey suction measurements were

influenced by air leakage (Objective 1; Figure 2.3-a,b,c). Specifically, for the single-port

pressure sensing system, we used a vacuum pump and vacuum chamber to determine if

leakage was related to the type of connection used at the port (direct-fit potted vs. simulated

lamprey mouth suction cup), magnitude of suction applied (–10 vs. –20 kPa), or surrounding

medium (air vs. water). In the direct-fit test, small tubing from the vacuum chamber was

connected to the sensing port on the acrylic plate and PDMS was used to encapsulate the

sensing port (Figure 2.3-a). The PDMS encapsulation was assumed robust enough that any

observed leakage would be attributed to other parts of the system that were also used in
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Figure 2.2: The 9-port circular pressure sensing system used to measure oral suction pressures
of sea lamprey, Petromyzon marinus. (a) The full view of the setup, (b) enlarged view of an
adult sea lamprey attached to the sensing panel with its mouth covering all the 9 sensing
ports, and (c) a schematic of the 9 ports.

measurements of live lampreys (i.e., Tubing B in Figure 2.3-a, the vacuum sensor, or the

connection between them). A second setup used to simulate oral suction from a lamprey,

was comprised of a suction cup (rim diameters: inner, 32 mm, outer, 40 mm; depth: 20 mm)

made of PDMS via a molding and casting process, and placed on the sensing port with its

inlet connected to the vacuum chamber (Figure 2.3-b). Leakage was evaluated as described

for the first setup. Finally, to simulate the lamprey’s suction under water, the suction cup

setup was immersed in water in a 45 cm × 30 cm × 30 cm water tank (Figure 2.3-c).

During each test, the vacuum pump was turned on to create vacuum pressure in the vacuum

chamber. When the pressure reached the set-point, a valve on the vacuum chamber was

closed to block the inlet between the vacuum pump and the vacuum chamber, but equalize

the air pressure between the vacuum chamber and the vacuum sensor. Under this state,

the pressure sensor output was recorded for 1000 s and possible leakage was evaluated. For
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each setup, three times of leakage checking tests, each one lasting for 1000 s, were conducted

in order to show the reliability of the single-port pressure sensing system. Similarly, the

9-port pressure sensing system was also tested to check possible leakage under these three

setups, with three experiments conducted for 1000 s for each setup. Figure 2.3-d shows the

counterpart of the direct-fit potting setup for the 9-port sensing system, where a 1.5 mm

thick layer of 3M VHB4905 double-sided tape was used to bond the bottom surface of suction

cup and the acrylic plate around the nine ports, which had a good seal and any observed

leakage would be attributed to other parts of the system.

Figure 2.3: Schematic (not to scale) of experimental setups for checking leakage of the single-
and 9-port pressure sensing systems used to measure oral suction pressures of sea lamprey,
Petromyzon marinus. (a) Apply vacuum from the vacuum chamber to the vacuum sensor
through tubing B, sensing port and tubing C, (b) apply vacuum from the vacuum chamber
to the vacuum sensor through tubing B, suction cup attached on the plate, sensing port and
tubing C, and (c) test setup (b) under water by putting part of the sensing plate and the
suction cup under water in a water tank. Abbreviations: PDMS = polydimethylsiloxane;
PCB = printed circuit board.
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2.2 Measurement of Sea Lamprey Suction Dynamics

2.2.1 Experimental animals

Three experiments were conducted in 2019 and 2020 using spawning phase adult and para-

sitic juvenile sea lampreys (see Table 2.1). During Experiment 1, suction pressures of adult

sea lampreys were measured using the single port pressure sensing system in a 200 L aquar-

ium with static water. During Experiment 2, suction pressures of adult and juvenile sea

lampreys were measured using single and 9-port pressure sensing systems in a 200 L aquar-

ium with static water. During Experiment 3, suction pressures of adult sea lampreys were

measured using a 9-port pressure sensing system in a 1000 L aquarium with static and flow-

ing water. Adult sea lampreys used in this study were captured in traps during upstream

spawning migration in the St. Marys River (Michigan, USA and Ontario, Canada) during

July 2019 and 2020. Traps were operated by Canada Department of Fisheries and Oceans

and the U. S. Fish and Wildlife Service. Juvenile sea lampreys were collected by commer-

cial fishers in northern Lake Huron during September 2019. All lampreys were transported

to the U. S. Geological Survey Great Lakes Science Center’s Hammond Bay Biological Sta-

tion, Millersburg, Michigan, USA where they were held in aerated 1000 L tanks supplied

continuously with Lake Huron water maintained at 8 ℃ until tests were conducted. Prior

to tests, body weight, total body length, and mouth diameter were measured for most, but

not all sea lampreys (Table 2.1). All sea lamprey experiments were performed in accordance

with protocols and guidelines approved by Michigan State University’s Institutional Animal

Care and Use Committee (IACUC, No. 02/18-028-00). After the suction pressure experi-

ments in this study, the sea lampreys were housed for use in further research by Hammond

Bay Biological Station.
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Table 2.1: Summary of vacuum pressure tests of live sea lampreys, including months, instru-
ments used (sensor type), flow conditions (water flow), and biological variables (life stage,
sex (M = male; F = female; N/A = unavailable), number of individuals (N), body weight,
body length, and mouth diameter). Data are presented in the type of mean ± standard de-
viation. Sex could not be determined for juvenile sea lampreys. Mouth diameter was not
measured during tests conducted in Aug. 2019.

No. Month
Sensor
Type

Water
Flow

Life
Stage

Sex N
Body
Weight
(g)

Body
Length
(mm)

Mouth
Diameter
(mm)

1
Aug.
2019

Single Static Adult
M 2 246.5± 25.5 490.0± 20.0 N/A
F 2 233.0± 50.0 480.0± 30.0 32.0± 1.0

2
Oct.
2019

Single Static Adult
M 2 150.0± 31.0 416.0± 35.0 31.5± 1.5
F 7 224.2± 24.8 469.8± 17.4 32.1± 0.9

9-port Static
Adult F 5 198.0± 30.2 459.6± 20.8 30.6± 2.0

Juvenile N/A 6 109.0± 7.4 422.3± 11.8 30.5± 1.1

3

Aug.
2020

9-port Flow Adult
M 3 187.0± 34.2 433.0± 31.8 31.3± 1.9
F 4 212.3± 26.0 447.5± 18.4 27.8± 1.4

Sept.
2020

9-port Flow Adult
M 4 147.5± 17.6 395.0± 16.6 28.2± 1.5
F 5 163.4± 16.2 420.0± 25.7 25.1± 1.6

Juvenile lampreys were shorter and lighter than the adult lampreys on average, less than

half of the total weight of adults, but the lampreys of both these two stages had suctorial

mouths in similar size and anatomy (e.g., number and location of teeth; Figure 2.4). The

natural logarithm (ln) of body weight was positively correlated with the natural logarithms of

length of adult male, female and juvenile lampreys (Figure 2.5-a). The length-weight relation

was similar between male (linear regression: slope = 2.449; R2 = 0.90; p-value = 0.000) and

female (slope = 2.492; R2 = 0.83; p-value = 0.000) adult lampreys, but juveniles (slope =

2.205; R2 = 0.76; p-value = 0.023) weighed less than similar-body-length adults, possibly

because their reproductive organs were not yet developed. Smaller slope for juveniles than

adults may be a consequence of physiological differences between life stages — juveniles are

growing while non-feeding adults are senescing (and shrinking). Male (Figure 2.5-b; linear

regression: slope = 1.219; R2 = 0.22; p-value = 0.202) and female (slope = 1.097; R2 =

22



0.29; p-value = 0.012) adult lampreys weighed more than juveniles with similar-sized mouths

(slope = –0.085; R2 = 0.00; p-value = 0.936), but differences were not large enough to allow

sex or life stage determination based on mouth diameter. However, we also reiterate that

the juveniles used in this study were in the parasitic form, so it is unlikely that these two

life stages would co-occur (e.g., in a stream at the same time).

Figure 2.4: Pictures of the suctorial mouths of the adult and juvenile sea lampreys.(a)
Suctorial mouths of an adult sea lamprey, and (b) a juvenile sea lamprey showing that the
two are morphologically similar.

2.2.2 Experiment 1: Recording of Adult Sea Lamprey Suction

Dynamics with a Single Pressure Sensor in Static Water

First, the single-port panel was used to measure suction pressures of two male and two

female adult sea lampreys in August 2019, and another two male and seven female adult

sea lampreys in October 2019 in a 200 L rectangular aquarium tank supplied with Lake

Huron water but with no noticeable flow (i.e., static flow condition; Table 2.1). Each sea
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Figure 2.5: Relations between (a) natural logarithm of body weight (ln(weight)) and natural
logarithm of length (ln(length)), and (b) ln(weight) and natural logarithm of mouth diameter
(ln(mouth diameter)) for tested adult male, female, and juvenile sea lampreys.

lamprey was measured individually. In the experimental water tank, the sensing panel was

placed vertically along a glass wall of the tank so that the side with the elbow fitting and

tubing was against the wall and the smooth side with sensing port was available to the

sea lamprey (Figure 2.1-b). The water level in the tank was about 6 cm higher than the

sensing port, submerging all the sensing area around the sensing port. An adult sea lamprey

was transferred to the tank and allowed to explore the tank until it attached to the tank

surface via oral suction. If the lamprey did not attach onto the sensing area, it would

be gently re-positioned and held with its mouth over the sensing port until it attached.

Pressure measurements were recorded until the lamprey voluntarily detached from the panel

or first 20 minutes of attachment elapsed. If a lamprey voluntarily detached or was manually

disengaged from the panel after 20 minutes of attachment, it was allowed to rest for 10 min

before it was manually reattached to the panel for the pull test. After reattaching to the

panel for 5 minutes, the lamprey was gradually detached from the panel by gently pulling the

lamprey away from the panel until disengagement. Suction dynamics were summarized from
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recorded data. If the lamprey detached voluntarily before 5 minutes of static attachment

achieved, the lamprey was removed from the tank and manual pull test was not conducted.

2.2.3 Experiment 2: Recording of Juvenile and Adult Sea Lam-

prey Suction Dynamics with a 9-port Pressure Sensing Sys-

tem in Static Water

A second set of tests were conducted in October 2019 using the 9-port pressure sensing system

to determine if suction pressures varied spatially across a sea lamprey mouth (Objective 3).

Data were collected from 5 adult female lampreys and 6 juvenile lampreys using the 9-port

panel in rectangular aquarium tanks as described above (Table 2.1). No male sea lampreys

were used for those tests because they were not available. Adult female lampreys were smaller

during October 2019 tests than those measured during August 2019 tests (Table 2.1). Loss of

weight between August and October was expected because adult sea lampreys permanently

cease feeding prior to commencement of spawning migration and thus lose energy and mass

until death occurs. Body sizes of juvenile lampreys were also smaller than adults in October

2019, but suctorial mouths of adults and juvenile were similar in anatomy (e.g., number and

location of teeth) and size (Figure 2.4).

2.2.4 Experiment 3: Recording of Adult Sea Lamprey Suction

Dynamics with a 9-port Pressure Sensing System in Flowing

Water

A third set of tests were conducted in August and September 2020 to determine if suction

dynamics differed when the sea lamprey was in static vs. flowing water (Objective 4). In
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natural aquatic environments like rivers and streams, sea lampreys attach onto rocks or other

surfaces for resting; it is of interest to characterize the suction pressure in the presence of

water currents. Data were collected from 16 adult lampreys (Table 2.1) using the 9-port

panel in a 1000 L circular water tank (1.8 m in diameter) fed continuously with fresh lake

water from a spray bar near the surface to create consistent annular water flow around a

central stand-pipe drain. The 9-port sensing panel was affixed to the wall of the tank near

the surface (Figure 2.6) and water velocity was measured at the sensor panel using a portable

flow meter (Marsh McBirney Flo-mate 2000). At the start of each test, each sea lamprey

was manually placed on the sensing panel with its mouth over the 9 sensing ports. Each

lamprey was tested at four water velocities during each test. The test began with static

water conditions for 30 s after which time the water velocity was increased to 0.15 m/s, 0.30

m/s, and 0.45 m/s for 20 s at each velocity. Water flow was then returned to static conditions

and the sea lamprey was gently removed. Water velocities tested were within typical ranges

in sea lamprey spawning habitats [107, 108].

2.2.5 Data Analysis

Objectives 1 and 2 were addressed using suction pressure measurements from all experiments.

For each individual sea lamprey, maximum observed suction pressure, minimum observed

suction pressure, and median leakage time were calculated during each test. Non-parametric

Mann-Whitney U Tests were used to test the null hypothesis that maximum free suction

pressure (in static or flowing water without being manually pulled) and median leakage

time did not differ between life stages (juvenile vs. adult; sexes combined for adults) or

between sexes (male vs. female; adult life stage only). Test statistics and p-values were

calculated according to [109]. Simple linear regressions were used to determine if maximum
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Figure 2.6: The experimental setup for recording the suction dynamics of sea lampreys in
flowing water. (a) Side view, and (b) top view. Abbreviations: PCB = printed circuit board.

suction pressure were related to body weight within each group (i.e., adult male, adult

female, juvenile). Linear regressions were also used to determine if leakage time was related

to maximum suction pressure within each group. Coefficient of determination (R2) was

used as an indicator of strength of association between independent (e.g., body weight) and

response variables (e.g., max. suction pressure). Two-sided T tests were used to test the

null hypothesis that the slope between independent and dependent variables was not equal

to zero. Regression analysis were conducted using the Regression Analysis Tool in Microsoft

Excel 2008. Objective 3 and 4 were addressed using visual assessment of measured pressure

curves for each individual sea lamprey during each test.
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2.3 Results

2.3.1 Pressure Data for Leakage Check of the Apparatus

For the single-port sensing system, when Tubing B was potted directly to the sensing port

(Figure 2.3-a), initial pressure was maintained for the entire period recorded (1000 s) when

initial pressures were –10 kPa and –20 kPa (Figure 2.7), which implies that the system was

well sealed. When Tubing B was connected to the sensing port via PDMS suction cup in

air (Figure 2.3-b), measured vacuum pressure decreased over time, reaching 0 kPa after 500

s with an initial pressure of –10 kPa and reaching about –8 kPa after 1000 s when initial

pressure was –20 kPa (Figure 2.7). Slower leakage at higher pressures were attributed to the

larger compression of rim of the suction cup (and thus better seal at the interface) under

the higher pressure. Finally, the suction cup demonstrated better seal properties when

submerged in water. When the suction cup interface was submerged in water, measured

pressure decreased to –8 kPa after 1000 s when initial pressure was –10 kPa, and remained

near –20 kPa after 1000 s when initial pressure was –20 kPa. Similar results were observed

from the 9-port pressure sensing system (Figure 2.8). Measurements from the center port

(P4, Figure 2.2-c) of the 9-port sensor were very similar to single-port sensor measurements

for each connection method and initial pressure (Figure 2.8-a). Measurements were also

consistent among ports and similar to single port measurements for each connection method

and initial pressure (Figure 2.8-b). These results indicate that the single-port and 9-port

pressure sensing systems (in particular, the connection from the sensing port on the plate

to the sensor itself) were well sealed, the reading from the pressure sensor indeed reflected

the pressure at the suction point, and that apparent leakage with measurements of live

lampreys likely occurred through the interface between the mouth and plate or elsewhere in
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the lamprey body.

Figure 2.7: Vacuum pressures recorded during the first 1000 s for potential leakage tests of
the single-port pressure sensing setups. Low (–10 kPa) and high (–20 kPa) vacuum pressures
were applied with the vacuum chamber tubing attached to the sensor port via one of three
methods: direct-fit potting, tested in air (Setup in Figure 2.3-a); suction cup interface in air
(Setup in Figure 2.3-b), suction cup interface in water (Setup in Figure 2.3-c). Data were
down-sampled for display.

2.3.2 Suction Dynamics of Juvenile and Adult Sea Lampreys

Among all tests using the single-port sensing panel with live adult sea lampreys at rest

(excluding pull tests), free suction pressures ranged from –3.3 ± 0.9 kPa to –13.8 ± 3.2 kPa

with a leakage time (period between re-pressurizing pumps) of 319.5 ± 187.0 s (Table 2.2).

During pull tests, maximum suction pressures ranged from –8 kPa to –70 kPa. Owing to

small sample sizes and large variability (Figure 2.9), we did not detect statistically significant
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Figure 2.8: Vacuum pressures recorded during the first 1000 s for potential leakage tests of
the 9-port pressure sensing setups. (a) Mean and standard deviation (shown as the error
bar) of the pressure at port P4 at each time instant for three rounds of measurements, and
(b) mean and standard deviation of the mean pressure at all these 9 ports at each time
instant for three rounds of measurements.

differences in maximum free suction pressures between male and female adult sea lampreys

(Mann-Whitney U = 77.5, z = –1.342, p-value = 0.180) or between adult and juvenile sea

lampreys (U = 80.5, z = –0.515, p-value = 0.607). Similarly, we did not detect differences

in median leakage time between male and female adult sea lampreys (U = 104, z = –0.649,

p-value = 0.516). However, median leakage time was significantly greater for juvenile than

adult sea lampreys (U = 27, z = –2.803, p-value = 0.005). among groups (i.e., adult male,

adult female, juvenile). Maximum vacuum pressure was weakly associated with body weight

in juvenile sea lampreys (Figure 2.9-a; linear regression: slope = –0.376; R2 = 0.60; p-value

= 0.071) but not adult male (slope = 0.052; R2 = 0.04; p-value = 0.537) or female (slope =

0.023; R2 = 0.01; p-value = 0.639) sea lampreys. Leakage time was weakly associated with

maximum vacuum pressure in juvenile sea lampreys (Figure 2.9-b; slope = –32.902; R2 =

0.68; p-value = 0.042) but not adult male (slope = 3.488; R2 = 0.04; p-value = 0.534) or
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Table 2.2: Statistics of the pressure measurement results corresponding to Table 2.1, in-
cluding manual pull condition (pull), maximum suction pressure before disengagement (max
vacuum), minimum suction pressure to remain attachment (min vacuum), and the duration
period between two adjacent pressurizing processes (leakage time).

No.
Sensor
Type

Water
Flow

Life
Stage

Sex Pull
Max
Vacuum
(kPa)

Min
Vacuum
(kPa)

Leakage
Time
(s)

1,2 Single Static Adult
M

No -13.8± 3.2 -3.3± 0.9 319.5± 187.0
Yes -39.0± 31.0 0 19.0± 16.0

F
No -13.2± 2.9 -2.5± 1.1 379.1± 134.8
Yes -37.2± 4.0 0 16.0± 4.1

2 9-port Static
Adult F

No -10.7± 2.4 -1.1± 0.3 304.0± 131.3
Yes -32.8± 7.6 0 10.5± 2.3

Juvenile N/A
No -18.8± 3.6 -5.4± 2.4 608.3± 142.8
Yes -35.0± 1.2 0 7.1± 1.5

3 9-port Flowing Adult
M No -34.0± 3.9 -17.4± 4.5 161.4± 17.7
F No -27.7± 2.9 -8.2± 1.7 182.2± 18.6

female (slope = –3.632; R2 = 0.02; p-value = 0.520) sea lampreys.

Observed suction dynamics were largely consistent with previous descriptions but high

measurement rate coupled with experimental video provided detailed insights. For example,

during the 20 min experiment of suction on the sensing panel without change of attaching

position, the suction pressure of an adult female lamprey frequently fluctuated between –6

kPa and –1 kPa (Figure 2.10-a). It rose to –6 kPa suddenly in about 0.3 s, and then slowly

returned to –1 kPa in about 30 s. For some cycles, the recovering time lasted for 50 100 s.

During static attachment, the lamprey’s tongue was observed to protract (Figure 2.10-b),

i.e., the buccal cavity and the pharyngeal cavity were connected due to the protraction of

the tongue, and when the suction pressure was too low to maintain attachment, the tongue

retracted quickly to enclose the buccal funnel, and then, protracted immediately again to

open the oral passage (the timing of these tongue movements is indicated by the shaded

rectangles in Figure 2.10-b), which was consistent with the suction mechanism described in
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Figure 2.9: Relations between (a) maximum free suction pressure and weight, and (b) leakage
time and maximum free suction pressure for tested adult male, female, and juvenile sea
lampreys.

[25]. With these actions, the suction pressure increased rapidly, maintaining attachment on

the panel. Suction pressure leakage was common, and leaking and pressurizing processes

alternated until disengagement from the panel.

During the pull test of the same adult lamprey suction pressure rose slowly from –5 kPa

to –50 kPa in about 30 s, and then returned to 0 kPa in only one second (Figure 2.10-

c). During this test, the suction pressure increased to 10 times of its initial level, and the

sea lamprey’s tongue retracted and protracted more frequently and with larger amplitude

(Figure 2.10-d). To resist the drag force, the annular muscle around the mouth contracted

more vigorously until disengagement.
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Figure 2.10: Suction dynamics of an adult female sea lamprey in Experiment 1. (a) Suc-
tion pressure when the adult female lamprey attached to the panel during 400 s to 1200 s
after attachment, (b) suction pressure profile during 1080 s to 1140 s after attachment with
shaded rectangles showing the time when the lamprey’s tongue was protracted or retracted,
(c) suction pressure profile when the adult lamprey was pulled away from the panel with
corresponding snapshot of the lamprey’s mouth disengaged from the panel, and (d) pictures
of an adult lamprey’s mouth showing the protraction and retraction states of its tongue.

2.3.3 Suction Pressure Distribution within the Mouth of Adult

and Juvenile Lampreys

Among all tests using the 9-port sensing panel with live adult and juvenile sea lampreys at

rest (excluding pull tests), free suction pressures ranged from –0.5 kPa to –34 kPa (Table

2.2). During pull tests, maximum suction pressures ranged from –16 kPa to –47 kPa. The

leakage time varied within and among lampreys, but ranged from 80 s to 800 s for adult

lampreys and more than 800 s for a half of the tested juvenile lampreys. Suctions pressure
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measurements with the 9-port sensing system suggested that pressure distributions were

uniform throughout the mouth in some cases but not all. For example, suction pressures

from an adult female sea lamprey were very similar among all nine sensor ports during resting

state and pull tests, despite rapid changes in suction pressure over time (Figure 2.11-a,b).

For that individual, the median leakage time was about 150 s, and the maximum pressure in

static suction was about –7 kPa, while the maximum in the pull test was about –22.5 kPa.

However, suction pressure from another adult female lamprey varied considerably among

some sensor ports with no apparent pattern over time or among tests (Figure 2.11-c,d). For

this individual, the median leakage time was about 160 s, and the maximum pressure in

static suction was about –10 kPa, while the maximum in the pull test was about –45 kPa.

Specifically, the curves representing ports P0, P3 and P6 (labeled in Figure 2.2-c), which

were located at the left column of the ports, remained at some pressure levels for a few

minutes while pressures fluctuated in synchrony among other ports. However, as seen in the

picture in Figure 2.2-b (which corresponds to this case), these three ports were under the

coverage of the oral disc. Hence, this pressure difference might be related to the blocking

of the ports by some teeth on the oral disc. It is hypothesized that the oral disc covered

the port matrix and formed vacuum pressure in that area, but then some teeth might have

fallen into the ports and blocked the passage between the buccal cavity of the mouth and

the tubing connected to the pressure sensor, causing the pressure stagnation.

As a final example, suction pressures from one juvenile lamprey were very consistent

among all the sensor ports during static suction and pull tests (Figure 2.12-a,b). The juvenile

lamprey created a maximum suction pressure of –22 kPa and hence an effective –8 kPa

in the static states, and maintained attachment without pressurization for about 850 s.

From the pull test, it was recorded that the maximum suction pressure reached –37 kPa.
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Figure 2.11: Suction dynamics of two adult sea lampreys in Experiment 2. (a) Suction
pressure when an adult female lamprey was attaching by itself on the panel, (b) suction
pressure when the lamprey in (a) was pulled away from the panel, (c) suction pressure when
another adult female lamprey was attaching by itself on the panel, and (d) suction pressure
when the lamprey in (c) was pulled away from the panel.

And the suction pressure profiles of other juvenile sea lampreys tested in this experiment

showed similar pressure range and duration time of attachment to this example case both

at rest and in pull tests. Besides, compared to the pressure profiles of those adult female

lampreys (Figure 2.11-a,b,c,d), the juvenile lampreys appeared to be physically stronger

as they created higher maximum suction pressure at rest, and each period of attachment

without pressurization lasted longer than the adult lampreys.
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Figure 2.12: Suction dynamics of a juvenile sea lamprey in Experiment 2. (a) Suction
pressure when a juvenile sea lamprey was attaching by itself on the panel, (f) suction pressure
when the sea lamprey in (a) was pulled away from the panel.

2.3.4 Effects of flowing water on measured suction pressure

Among all tests in August and September 2020 using the 9-port sensing panel with live adult

lampreys in both static and flowing water (excluding pull tests), suction pressures ranged

from –2.5 kPa to –40 kPa (Table 2.2), the maximum of which was much higher than that of

the static water tests in August and October 2019. The median leakage time varied within

and among lampreys, but were all longer than 180 s, which implied the pump frequencies

were lower than those observed in the tests in 2019. More importantly, as the water velocity

increased step by step, the suction pressure of the adult lampreys did not appear to increase

accordingly, nor was a new suction event (re-pressurization) detected from the pressure data.

In contrast, the suction pressure of adult lampreys seemed to be insensitive to water flows

(velocity ⩽ 0.45 m/s), and decreased slowly due to water leakage. For example, suction

pressure of an adult male sea lamprey gradually decreased from initial pressure of –23 kPa

to –18 kPa while water velocity increased from 0 m/s to 0.45 m/s (190 s) and then was
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abruptly reduced to 0 m/s where it remained until disengagement at the end of the test

(225 s; Figure 2.13-a). Pressure curves were similar among all nine sensor ports during the

test. Similarly, suction pressures of an adult female showed no response to changing water

velocities during a flowing water test (Figure 2.13-b). The rate of leakage, however, did vary

among sensor ports during that test, perhaps because three ports were blocked by teeth.

Regardless, suction pressure did not increase as water flow increased (⩽ 0.45 m/s).

Figure 2.13: Suction dynamics of two adult sea lampreys showing characteristic responses
in Experiment 3. (a) Suction pressures of an adult male lamprey in the flowing water test,
and (b) suction pressures of an adult female lamprey in the flowing water test.

2.4 Discussion

We successfully recorded the suction dynamics for two life stages of sea lampreys in static and

flowing water. Observed suction behavior was consistent with previously described suction

mechanisms [25] and qualitatively similar to previous suction pressure measurements [25, 26],

and additional insight obtained may be important for future sensor design and practical

deployment. To our knowledge, our measurements are the first to describe suction of adult
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sea lampreys in flowing water, and to describe variation across the mouth opening. Our

9-port sensor revealed that the pressure distributions were uniform across the lamprey’s oral

disc, but that obstruction of sensor ports by teeth may impose measurement error for certain

devices. Finally, coupling of video recordings with high-sampling-frequency (200 Hz) pressure

measurements revealed the lamprey’s tongue movement and the oral disc contraction during

the pull test, which supported previous descriptions of the suction mechanism.

Observed minimum suction pressures showed that lampreys are capable of maintaining

attachment to smooth surfaces with relatively little suction, even in flowing water. As

shown in Figure 2.10-a and Figure 2.11-a, the suction pressure levels at each moment of

the re-pressurization processes were less than about –0.6 kPa, which implied a threshold of

pressure level that triggers re-pressurization. When the suction pressure was higher than this

threshold, the lamprey did not take action but remained attached; whereas if the leakage

reduced the pressure below the threshold, a pressurization process would be taken quickly.

The pressure threshold likely depends on a number of variables, including the area and

texture of the attachment substrate, size and health condition of the lamprey, the attachment

orientation during suction, and the ambient current flow or any other external force causing

disengagement.

Although sea lampreys may be capable of attaching to certain surfaces with relatively

small suction pressures, leakage at the mouth-substrate interface may necessitate the need for

lampreys to apply relatively large suction pressures (e.g., two orders of magnitude greater)

at the start of each pump cycle. A trade-off may exist between pump magnitude (pressure

applied) and frequency, wherein greater pressure applied to each pump results in fewer pumps

overall due to longer time until low-pressure threshold is reached, though we did not detect

any association between maximum pressure and leakage time in this study. Results from our
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leak test further suggest that higher pressure may improve the seal between the oral disk

and the substrate, thereby further reducing the leak rate and the number of pumps required

per unit time. Indeed, the rate of leakage slowed as pressure decreased in each of our tests.

Unlike minimum pressures, however, maximum suction pressures were highly variable among

individual lampreys, although it remains unknown if pressure applied is context-dependent,

if lampreys can sense the amount of pressure applied, or if pressure applied is simply related

to anatomical proportions (e.g., volume of buccal cavity).

Clearly, any device used to detect sea lamprey suction and differentiate it from other

sources needs to detect the range of negative pressures exerted by lampreys (described above).

To our knowledge, suction dynamics of other organisms and elements of the environment

have not been characterized in sea lamprey habitats, though we speculate that that the risk of

false-positive measurements from non-lamprey sources, such as water currents, are greater at

lower pressures. Thus, a threshold pressure for reliable sea lamprey identification may need

to be greater than the minimum pressure observed in sea lampreys. Fortunately, our results

imply that negative pressure is uniform throughout the mouth, so a single sensor should be

adequate, although improved designs may be needed to prevent obstruction of port holes by

teeth. For example, pressure curves in Figure 2.11-c where all the nine ports were covered by

the oral disc, six pressure curves coincided with each other during the 20 min test, but the

other three pressure curves remained at different levels. It was inferred that after the seal of

the suctorial disc on the sensing plate, three ports on the left column of the 9-port sensing

plate might have been blocked by teeth, which cut off the pressure transduction between the

ports and the vacuum sensors. Therefore, the corresponding pressure curves at these three

ports remained at some levels for a long period without decreasing, while those of the other

six ports gradually leaked until a sudden re-pressurization process was induced.
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Similarly, the uniformity of measured pressures from juvenile lampreys with the 9-port

sensor may have been due to characteristics of their teeth, which were smaller and shallower

(less than 1 mm long) than the adult lampreys (about 2 mm long in a cone-hook shape).

Hence, the juveniles’ teeth would have a lesser chance to block the ports on the panel, and

all the ports below the oral disc should be connected to each other and shared the same

pressure. Future sensors of the design used in our study may benefit from modifying the

port hole size to minimize occlusion by teeth, or compensating the influence by connecting

port hole matrix to the same pressure transduction channel.

We also compared the suction pressures of juvenile lampreys (Figure 2.12-a) with those

of adult lampreys (Figure 2.11-a,c). Observed differences in suction pressures and leakage

times between juvenile and adult sea lampreys may have been related to different energetic

states of two life stages. We hypothesize that some juveniles were in general physically

stronger than adults at the end phase of the lifecycle, demonstrating higher suction pressures

and longer seal, so the juvenile lampreys did not have to re-pressurize as frequently. This

might be attributed to the biological activity of the lampreys in different life stages: the

juvenile lampreys were in the parasitic stage, and thus were more active and energetic, with

stronger attachment for preparation of parasitizing and feeding; the adult lampreys, on the

other hand, were presumably much weaker after a long period of non-feeding during the

spawning stage, resulting in the suction pressure fluctuating frequently due to leakage. We

also analyzed the suction dynamics of adult lampreys in both static and flowing water (Figure

2.13). By increasing the water velocity from 0 to 0.45 m/s step by step while the lamprey

was attaching to the sensing panel, we found that the influence of water flow on the suction

dynamics of adult sea lampreys was insignificant. Apparently, suction pressure was adequate

for maintaining attachment in flowing currents with water velocity below 0.45 m/s.
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Oral suction is a multi-function tool that sea lampreys use for feeding, transportation,

resting, nest building, and mating, yet has not been utilized for species-specific detection

to inform conservation or management. Observations from our new pressure-sensing panels

have confirmed previous descriptions of suction dynamics of adult sea lampreys on smooth

surfaces and provided new insights into the suction parameters of sea lampreys at the juvenile

life stage and in flowing water. Our 9-port sensor array allowed us to investigate the suction

dynamics across the lamprey’s oral disc. These results are expected to inform development of

the next generation of lamprey assessment gears and may inspire similar efforts to develop

detection systems for other taxa with unique characteristics. Finally, sea lampreys often

attach onto other living organisms and rocks in the water, but it is still unclear how different

attachment surfaces engineered with different materials and roughness patterns will affect

the suction behavior. This will be part of our future work when designing deployable sensing

panels for operation in natural environments.
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Chapter 3

Screen-Printed Soft Capacitive

Sensors for Spatial Mapping of Both

Positive and Negative Pressures

In this chapter, we present a convenient and low-cost process for fabricating a soft capaci-

tive sensor that is stretchable and responsive to both positive and negative pressures. The

sensor is comprised of a soft Ecoflex 00-30 dielectric layer sandwiched in between and tightly

bonded with screen-printed poly(3,4-ethylenedioxythiophene): poly(styrene-sulfonate) (PE-

DOT:PSS) electrodes and polydimethylsiloxane(PDMS) encapsulation layers. More impor-

tantly, air gap channels are incorporated and uniformly distributed in the Ecoflex 00-30 layer,

which shape the diaphragm structures that greatly enhance the dielectric layer deformation

under an external pressure, resulting in significantly improved response, especially to nega-

tive pressure. Meanwhile, the PEDOT:PSS electrodes are encapuslated on the Ecoflex-030

substrate with PDMS layers, which successfully protect the electrodes and prevent the layers

from delamination under negative pressure. The response of the single pixel sensor is sys-

tematically characterized and finite element method (FEM) simulation is used to study the

influence of the air gap geometry on the sensor response. The sensor with optimized design

exhibits good sensitivity from –60 kPa to 20 kPa and great repeatability under compressive
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loads, vacuum suction, and even bending or stretching conditions. Lastly, a 12×12-pixel

sensor array that can automatically measure the pressure distribution for both positive and

negative pressures with high fidelity is demonstrated. However, from our experimental stud-

ies, it is found that there are some challenges for the soft capacitive pressure sensor for

detecting the attachment of sea lampreys underwater. When the soft capacitive pressure

sensor is deployed in water and attached by a sea lamprey, since both water and the sea lam-

prey are conductive, they will introduce parasitic capacitance to the pixels of the capacitive

sensor, and cause significant signal interference to the capacitance measurement, which re-

sults in failure in the sea lamprey detection. To address this challenge, additional effort is

required in the future. Materials in this chapter are an extension of the work reported in

[110].

The remainder of the chapter is organized as follows. The fabrication of the soft ca-

pacitive pressure sensors with air gap channels are first presented in Section 3.1. Then

the characterization of the single-pixel sensors is discussed in Section 3.2. Finite Element

Simulation results are described in Section 3.3, followed by spatial mapping results of pres-

sure distribution with the sensor array in Section 3.4. Further challenges of the capacitive

pressure sensor in detecting sea lamprey attachment are discussed in Section 3.5. Finally,

concluding remarks are provided in Section 3.6.

3.1 Fabrication of the Soft Capacitive Pressure Sensors

with Air Gap Channels

A crossbar array of soft capacitive pressure sensors is designed and fabricated and its

schematic is illustrated in Figure 3.1-a. The soft capacitive pressure sensor is comprised
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of an Ecoflex 00-30 dielectric layer sandwiched in between conductive polymer PEDOT:PSS

electrodes and PDMS encapsulation layers. The Ecoflex 00-30 dielectric layer is 1.4 mm

thick with multiple air gap channels (height: 0.5 mm, width: 1.2 mm, spacing: 1.5 mm)

uniformly distributed in the center. As will be discussed later, these air gap channels play

a critical role in the sensing of both positive and negative pressure by significantly enhanc-

ing the deformation of the dielectric layer under pressure, thereby increasing the sensitivity.

PEDOT:PSS polymer is used as the electrode due to its high conductivity (sheet resistance

of ∼ 34 Ω/sq) and ionic additive Bis(trifluoromethane)sulfonimide lithium salt is incorpo-

rated into the PEDOT:PSS to further improve its stretchability [70]. Figure 3.1-b shows the

bright field optical micrograph and scanning electron microscopy (SEM) image of the cured

PEDOT:PSS film with ionic additive transferred on a Si wafer with very good uniformity.

The picture of a completed 12×12 soft capacitive pressure sensor array is shown in Figure

3.1-c and its fabrication process is illustrated in Figure 3.1-d. First, an Ecoflex 00-30 dielectric

layer is cast in a mold on a treated glass plate with uniformly distributed 0.5 mm thick and

1.2 mm wide polycarbonate strips. After the Ecoflex 00-30 is cured, the polycarbonate

strips are removed, resulting in the Ecoflex 00-30 film with built-in air gap channels. A

0.5 mm thick PEDOT:PSS film is then screen-printed onto one side of the Ecoflex 00-30

dielectric layer with the PEDOT:PSS electrodes patterned in parallel but perpendicular to

the air gap channels. After curing by heating up at 70 °for 1 h, the PEDOT:PSS electrodes

were encapsulated by a 0.7 mm thick PDMS layer (PDMS base: curing agent = 10:1 wt%).

This encapsulation layer effectively protects the PEDOT:PSS electrodes from cracking under

external force and also forms a very strong bonding between PDMS and Ecoflex 00-30

substrate, preventing the sandwiched layers from delamination when negative pressure is

applied. Next, the device is peeled off from the glass plate and placed upside down. The
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PEDOT:PSS screen-printing and PDMS encapsulation process are then repeated on the

other side of the Ecoflex 00-30 dielectric with the newly patterned PEDOT:PSS electrodes

orthogonal to the previous electrodes in order to form a crossbar capacitor array. Also, this

layer of patterned PEDOT:PSS electrodes should be aligned with the air gap channels in

the substrate so that the electrodes could conform with the deformation of the diaphragms

in case of cracking.

3.2 Characterization of the Single-Pixel Sensors

The effect of the air gap channel geometry on the performance of the single-pixel sensors is

investigated. The devices are characterized by measuring the relative change in capacitance

as a function of pressure (∆C/C0 vs. P) and the results are shown in Figure 3.2. Figure

3.2-a presents the structure of the single-pixel sensor with height (H), width (W) and the

number (N) of the air gap channels labeled in the figure. Six groups of air gap parame-

ters have been selected, three devices have been fabricated for each configuration and three

rounds of measurements have been taken for each device to obtain the average response per-

formance. The error bar in Figure 3.2-a represents the standard error of the mean for each

group of testing points. As shown in Figure 3.2-b, all five configurations respond similarly to

positive pressure and exhibit a monotonic increase in relative change in capacitance with in-

creasing pressure. The pressure response also increases with increasing air gap size, reaching

a maximum ∆C/C0 value of 4.01 %, 6.15 %, 7.16 %, 8.10 %, 9.48 % at a positive pressure

of 20 kPa, for the sensors without air gap, and with air gap of dimensions H = 0.3 mm and

W = 1.2 mm, H = 0.5 mm and W = 1.2 mm, H = 0.5 mm and W = 1.6 mm, and H = 0.5

mm and W = 2.0 mm, respectively.
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Figure 3.1: (a) Schematic illustration of the soft capacitive pressure sensor array with air gap
channels and conductive polymer PEDOT:PSS electrodes. (b) Optical micrograph (top) and
SEM image (bottom) of the screen-printed PEDOT:PSS film with a feature thickness of ap-
proximately 200 µm. The PEDOT:PSS contains 10:1 wt% Bis(trifluoromethane)sulfonimide
lithium salt as stretchability and electrical conductivity enhancer. Scale bars: 20 µm and
2 µm, respectively. (c) Photograph of a 12×12 capacitive pressure sensor array. Scale bar:
1 cm. (d) Schematic illustrating the fabrication procedures of the soft capacitive pressure
sensor array.
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Table 3.1: Sensitivity of the single-pixel soft capacitive pressure sensors with different air
gap configurations.

Sensitivity
(% / kPa)

–60 ∼ –20
(kPa)

–20 ∼ 0
(kPa)

0 ∼ +10
(kPa)

+10 ∼ +20
(kPa)

Without Air Gap — — 0.18 0.13
H = 0.3 mm, W = 1.2 mm 0.34 0.30 0.38 0.15
H = 0.5 mm, W = 1.2 mm 0.34 0.34 0.56 0.13
H = 0.5 mm, W = 1.6 mm 0.35 0.40 0.62 0.12
H = 0.5 mm, W = 2.0 mm 0.30 0.56 0.77 0.15

For sensing a negative pressure, the importance of having an air gap channel in the

dielectric layer becomes evident as the sensor without an air gap channel fails to respond

properly and exhibits negligible capacitance change as the pressure changes between 0 ∼ –30

kPa. The slight increase of ∆C/C0 between –30 and –60 kPa can be attributed to the interior

of the suction cup pressing against the surface of the sensor under vacuum. In contrast, for

the sensors with air gap channels, ∆C/C0 decreases monotonically as the pressure varies

from 0 to –60 kPa, reaching –21.91 %, –22.90 %, –23.46 %, and –24.64 % for the sensor with

air gap H = 0.3 mm and W = 1.2 mm, H = 0.5 mm and W = 1.2 mm, H = 0.5 mm and W

= 1.6 mm, and H = 0.5 mm and W = 2.0 mm, respectively. Here, the sensor with air gap

H = 0.5 mm and W = 2.0 mm achieves the best sensing performance among all the air gap

configurations. Table 3.1 summaries the calculated sensitivity (defined as the slope of the

relative change in capacitance to pressure response curve, S = d(∆C/C0) / dP of the five

types of sensors above for different pressure ranges. Basically, a larger air gap would result

in sensors with higher sensitive to both negative and positive pressure.

The repeatability of the device is also evaluated on the sensor with air gap H = 0.5 mm

and W = 2.0 mm by cyclic test with 1,000 repetitions for four pressure levels: 5 kPa, 10

kPa, –10 kPa, and –20 kPa. As illustrated in Figure 3.2-c, the device can preserve stable

response throughout the 1,000 cycles for all pressure levels.
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Figure 3.2: Characterization of a single-pixel soft capacitive pressure sensor. (a) Schematic
diagram representing the multi-layer structure of the single capacitive pressure sensor. (b)
Relative change in capacitance in response to applied pressure for a single-pixel capacitive
pressure sensor with various configurations of air gap in the Ecoflex dielectric layer. (c) Cyclic
test of the sensor response for 1000 cycles at different pressures. (d) Schematic illustration
of the sensor in the bent state under normal force. (e) Pressure response of the sensor with
air gap (H = 0.5 mm, W = 2.0 mm) under a sequence of normal forces, 2 N, 3 N and 2 N
when the sensor is bent to curvature radii of 50, 30, and 17 mm, respectively. (f) Cyclic test
of the sensor at a bending radius of 17 mm for 1000 cycles. (g) Cyclic stretching test of the
sensor with air gap (H = 0.5 mm, W = 2.0 mm) at 10 % strain with the air gap direction
parallel to the stretch direction. (h) Cyclic stretching test of the sensor with air gap (H =
0.5 mm, W = 2.0 mm) at 10 % strain with the air gap direction perpendicular to the stretch
direction.

48



In order to demonstrate the capability of the soft capacitive pressure sensor working on

curved surfaces, we examine the device’s response to pressure when attached onto a pipe, as

illustrated in Figure 3.2-d. Figure 3.2-e presents the response of the sensor with air gap H

= 0.5 mm and W = 2.0 mm to pressure when mounted on cylindrical surfaces with various

radii (Rb = 50 mm, 30 mm, and 17 mm). Again, three rounds of measurements are taken

on each cylindrical surface when the sensor sample is tested under a sequence of force 2 N,

3 N and 2 N for about 20 s at each stage. The response curves reveal that the sensor is

more sensitive to compressive load when it is bent on a curved substrate compared to a non-

curved substrate. What’s more, the smaller the bending radius is, the higher the relative

change in capacitance would be. This is because when the sensor is in a bent state, the

compressive load will have a smaller contact surface area with the sensor device, thereby the

effective pressure applied on the electrodes and air gap channel would be much higher and

the corresponding larger deformation will cause more change in capacitance. The sensor also

exhibits good repeatability in pressure response even when bent with a radius of 17 mm as

shown in Figure 3.2-f.

The stretchability of the single-pixel sensor is tested. Tensile strain is applied along

two directions, parallel, and perpendicular to the air gap channel. As illustrated in Figure

3.2-g, when the strain is set to 10 % with a loading-unloading period of 12 s, the response

(∆C/C0) would increase by about 0.5 % every time when stretching. For the stretching

direction perpendicular to the air gap channel as shown in the inset in Figure 3.2-h, in each

period the response would increase and decrease by about 1.8 %. This change in capacitance

is reasonable according to the Poisson effect, which is that a material tends to compress in

directions perpendicular to the direction of expansion. And for the case in Figure 3.2-h,

since the air gap is perpendicular to the stretching direction, the sensor substrate would
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more easily deform. On the other hand, for both stretching directions, the overall response

would increase slightly by about 0.1 % after 1000 cycles. This increase of about 0.1 % might

be attributed to be the results of the sliding of the sensor substrate from the clamps in

the experiment setup. We also try to increase the strain to 11 % and test for 450 cycles

during the experiment. The increased strain leads to a crack in PEDOT:PSS electrode at the

intersection point between PEDOT:PSS and the silver paint, which is used for connecting

and fixing the copper wire to the PEDOT:PSS electrode. For better stretchability, the silver

paint can be replaced with some other stretchable conductive glue or liquid metal.

It is worth noting that this section focuses on the characterization of the single pixel sensor

with a single air gap channel in the Ecoflex 00-30 dielectric layer located right underneath the

electrode. For the single pixel sensor where there are multiple air gap channels distributed

evenly in the dielectric layer, the sensitivity of this single pixel sensor under both positive

and negative pressure would be much higher. As demonstrated in Figure 3.2-i, the single

pixel sensor with 9 air gap channels (H = 0.5 mm, W = 2.0 mm) can achieve relative change

in capacitance of about +15 % at +20 kPa and –32 % at –60 kPa, which are more sensitive

than the sensor with only one air gap channel as characterized in Figure 3.2-b. This is also

true for the sensor array with multiple air gap channels, which has higher sensitivity to both

positive and negative pressures than a single pixel sensor with only one air gap channel, as

will be explained in Section 2.4.

3.3 Finite Element Simulation

As discussed in Section 2.2, the geometry of the air gap channel has significant influence

on the sensitivity of the sensor responses. Therefore, studying the mechanical properties of
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Ecoflex 00-30 rubber, PDMS silicone and PEDOT:PSS conductive polymers is essential for

understanding the pressure-induced deformation of the sensor and the capacitive response

under external pressures. In this section, we use these material properties to set up the

finite element analysis models of the soft capacitive pressure sensor under both positive and

negative pressures and examine the distance change in between the two electrodes as well as

the vertical deformation of the whole sensor.

The finite element analysis modeling is conducted in ANSYS Workbench and one static

structural module is used to build up four separate analysis models: a sensor without air

gap channel under +20 kPa and –30 kPa pressure, and a sensor with air gap channel under

+20 kPa and 30 kPa pressure. The positive pressure is applied onto a glass slide (20 mm ×

18 mm × 1 mm) which is placed on the sensor (60 mm × 60 mm × 2.8 mm) in the center,

while the negative pressure is applied on the surface of the sensor in the region beneath the

suction cup (ϕ20.5 mm × ϕ14.5 mm × 15 mm in depth) with Dragon Skin 30 as the assigned

material, and the air gap channel in the dielectric layer designed with dimensions H = 0.5

mm and W = 2.0 mm.

Four materials of interest are the silicone materials (Ecoflex 00-30, PDMS 10:1, Dragon

Skin 30), and conductive polymer PEDOT:PSS. To characterize the material properties of

the silicones, a uniaxial tensile test is performed following the D412-15a standard [111].

The dumbbell test samples are stretched at a speed of 500 mm/min. Five samples of each

material are stretched using a tensile tester (Universal Testing Machine 3345, Instron) and

the average stress strain data obtained from the five samples are used in the finite element

analysis by data fitting to obtain the most fitted hyperelastic models. The Mooney-Rivlin 3

parameter model[112, 113] proves to be the best constitutive model for Ecoflex 00-30 with

parameters C10 = 90.523 Pa, C01 = 10137 Pa, and C11 =0.0504 Pa; the Yeoh 3rd order
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model [114] proves to be the best model for PDMS with parameters C10 = 2474.5 Pa, C20 =

0.00297 Pa, and C30 = 1.498E-7 Pa; and the Ogden 1st order model[115] turns out to be the

best one for Dragon Skin 30 with parameters α1 = 2.717, µ1 = 0.158 MPa. For PEDOT:PSS

(thickness range 150 to 200 µm) with 10 wt% of Bis(trifluoromethane)-sulfonimide lithium

salt, an isotropic elastic model with Young’s modulus 55 MPa is used according to the report

[70].

Under a positive pressure, the sensor is compressed and the air gap channel in the di-

electric layer will be squeezed. Note that the top and bottom surface of the air gap channel

cannot penetrate each other in reality, hence in the simulation, we define a frictional contact

between these two surfaces with a friction coefficient of 1.5, and this constraint condition

will work once these surfaces contact each other. When a negative pressure is applied, the

top surface of the sensor beneath the suction cup is pulled up, and the air gap channel will

be enlarged. Figure 3.3 displays the simulation results of all four analysis models, where the

top subfigures are the sectional views of the sensors under a glass slide or a suction cup, and

the bottom subfigures present the Z-directional deformation of the crossbar electrodes. Fig-

ure 3.3-a shows the deformation in a soft pressure sensor without an air gap under +20 kPa

pressure, in which the distance between the top and bottom electrodes decreases by –0.20

mm. In contrast, as shown in Figure 3.3-b, the total deformation in a sensor with an air gap

results in the electrode spacing decreasing by –0.51 mm. Similarly, the data in Figure 3.3-c

and d show that under a negative pressure of –30 kPa, the sensor with an air gap channel

exhibits a much larger increase in electrode spacing (2.87 mm) compared to the sensor with-

out an air gap channel (0.59 mm). In both cases, the larger deformation in the device with

an air gap will result in larger capacitance change and better sensitivity to pressure. These

four simulation results further validate the necessity of the air gap channel designed in the
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dielectric layer.

In addition, finite element models are also used to investigate the influence of dimensions

(height H and width W) of the air gap channel on the deformation of the sensor device.

Five configurations of the air gap channel are studied in the simulation corresponding to

the sensors’ configurations in the experiments of Section 2.2. Since the deformation is not

uniform along the electrodes, we focus on the center distance change between the crossbar

electrodes at the center of the sensor, which is defined as d0 as illustrated in Figure 3.3-e.

The distance d0 between the crossbar electrodes is 1.4 mm initially and becomes smaller

under positive pressure or larger under negative pressure. The simulation results of the

central distance change for these five groups of air gap configurations are plotted in Figure

3.3-f, where the sensor with larger air gap channel in width or height generates a larger

change in central distance of the crossbar electrodes, and the sensor with air gap (H =

0.5 mm, W = 2.0 mm) achieves the largest change in distance under both positive and

negative pressures, which is consistent with the experimental results present in Figure 3.2-b.

From the simulation results and according to the formula of crossbar capacitance, which is

inversely proportional to the spacing between the two parallel electrodes
C

ϵ
∝ 1

d0
, we can

conclude that the sensor with larger air gap channel has higher sensitivity for both positive

and negative pressures, which is consistent with the experimental results in Section 2.2.

3.4 Spatial Mapping of Pressure Distributions with the

Sensor Array

Based on the characterization of the single-pixel sensor with air gap channel, we extend our

work to a 12 × 12 sensor array with air gap channels uniformly distributed underneath the
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Figure 3.3: FEA Simulation of the sensor with and without an air gap in the Ecoflex 00-30
dielectric layer under different pressures.
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top layer electrodes. A channel-selection circuit that uses NI LabVIEW program to control

the communication between an Arduino Uno microcontroller board and AD7746 capacitive-

to-digital converter is designed to automatically scan through all pixels with a period of 28.6

ms to measure the ∆C/C0 before and after the pressure is applied in order to determine the

pressure distribution.

Taking the special mapping resolution into consideration, a 12 × 12-pixel sensor array

with 12 air gap channels (H = 0.5 mm, W = 1.2 mm) is fabricated (the one with W = 2.0

is not considered since the wider the air gap, the sparser the electrodes would be). Figure

3.4-a displays the photographs of the 12 × 12-pixel sensor array with air gap channels with

3D-printed M-, S-, U-, and O-shaped letter block placed on top. A loading pressure of +20

kPa is applied using a syringe pump and the pressure is set according to the contacting

surface area of the letter block and the force between the loading part of the syringe pump

and the letter block measured by a force sensing resistor. Figure 3.4-b depicts the mapping

contours of relative change in capacitance with the sensor array under corresponding letter

block, which are consistent with the profiles of the letter blocks used. Ideally, the relative

change in capacitance could be mapped into pressure values based on the characterization of

the single-pixel response. However, the single-pixel sensor reported in Section 2.2 only has

a single air gap channel in the dielectric layer, whereas the 12 × 12 sensor array contains 12

air gap channels uniformly distributed in the dielectric layer underneath each column. The

extra air gap channels in the sensor array increases the deformation of the sensor, which is

why the sensor array exhibits ∆C/C0 of more than 14 % under +20 kPa but the single-pixel

sensor in Figure 3.2 only exhibits approximately 5 % change at the same pressure. For the

reason above, the relative change in capacitance in the mapping contour cannot be simply

converted into pressure values according to the characterization in Section 2.2.
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Figure 3.4: Spatial mapping of pressure distributions with the sensor array under both
positive and negative pressures. (a) Photograph of the 12 × 12 pixel sensor array with
different shaped objects placed on top for pressure mapping testing. Scale bar: 2 cm. (b)
The corresponding distributions of the normalized capacitance change with +10 kPa pressure
applied. (c) Photograph of the 12×12 pixel sensor array with air gaps (H = 0.5 mm, W
= 1.2 mm) and the corresponding contour plots of relative change in capacitance under a
negative pressure of –10 kPa (left) and –20 kPa (right). Scale bar: 2 cm. (d) Photograph
of the 12 × 12 pixel sensor array without an air gap and the corresponding contour plot
of relative change in capacitance under a negative pressure of –10 kPa (left) and –20 kPa
(right). Scale bar: 2 cm.
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For the mapping of negative pressure, the sensor arrays with and without air gap channels

(H = 0.5 mm, W = 1.2 mm, N = 12) exhibit drastically different results. Figure 3.4-c

presents the pressure mapping results measured by the sensor array with air gap channels

under –10 kPa and –20 kPa of pressure, where the maximum capacitance change reaches

–4.1 % and –9.7 %, respectively. The contours also clearly show the profile of the rim of the

suction cup, which is under positive pressure, and the area inside the suction cup, which is

under negative pressure. In contrast, for the data collected from the sensor array without air

gap (Figure 3.4-d), the negative pressure region is indiscernible. The results highlight the

significance of incorporating air gap channels in the dielectric layer of the sensor for negative

pressure sensing applications.

3.5 Challenges in Detecting Sea Lamprey Attachment

Underwater

The 12×12 pixel sensor array with air gaps has demonstrated its capability to measuring

both positive and negative pressures when tested in air with those plastic letter blocks and

PDMS elastomer suction cup. And we have extended this sensor array to 12×12 pixels with

all the air gaps connected to the atmosphere through those tiny soft tubes. However, there

are some challenges for the soft capacitive pressure sensor for detecting the attachment of

sea lampreys underwater.

From our experimental studies, it is found that capacive sensors are not only sensitive

to pressures in contact mode, but also susceptible to conductive objects in non-contact

mode such as proximity by a finger or a hand, which could change the electric field at the

adjacent pixels and introduce unexpected parasitic capacitance. Also, once the soft capacitive
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pressure sensor is deployed in water, the pixels will be surrounded all over by water, which

is also conductive and will increase the capacitance measurments from the capacitive sensor.

Finally, the desired relative capacitance change caused by actual contact/suction pressures

of the sea lamprey might be attenuated by the combined influence of both water and the sea

lamprey’s conductivity.

As shown in Figure 3.5, three groups of experiments were conducted. In Figure 3.5-a,b,

the soft pressure sensor was placed underwater on the wall of a water container, and the

PDMS suction cup was attached onto the left bottom corner of the soft sensor array under

–20 kPa negative pressure. We can get obvious mapping contour plot of relative change in

capacitance in Figure 3.5-c which shows the correct suction area. But this setup did not work

well for underwater sea lamprey detection when the sensor array was submerged underwater

and clamped vertically against the wall of the water tank. As seen in Figure 3.5-f, no

distinguishable pattern could be observed from this mapping contour. This experiment was

conducted with several different sea lampreys, but the results were similar, with no apparent

mapping contour obtained. It was conjectured that water and the animal introduced parasitic

capacitance to each capacitor pixel and thus caused signal interference in the setup.

On the other hand, we attempted to reduce the influence of the water for the soft capaci-

tive sensor aray by fixing it above the water surface, but still made the sea lamprey attached

onto it vertically, as shown in Figure 3.5-g,h. The capacitance were measurement before

and after the lamprey’s suction in order to obtain the relative change in capacitance for this

condition, and it is surprising to achieve the expected contour patterns under this setup.

In summary, we have identified the challenges for soft capacitive pressure sensors for

underwater sea lamprey detection, which require additional effort to address in the future.
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Figure 3.5: Performance of the soft capacitive pressure sensor for underwater sea lamprey
detection. (a) Photograph of the 16×16 pixel sensor array placed vertically on the wall of
a water container for underwater experiment with a PDMS suction cup under –20 kPa. (b)
Front view of the soft pressure sensor array with the PDMS suction cup attaching on the left
bottom corner. (c) Corresponding mapping contour plots of relative change in capacitance
of the sensor array under a –20 kPa from the PDMS suction cup. (d) Photograph of the
soft pressure sensor array clamped vertically in water on the wall of a water tank with a sea
lamprey attaching on it. (e) Back view of the soft pressure sensor array under suction of
a sea lamprey. (f) Corresponding mapping contour plots of relative change in capacitance
of the sensor array under the suction of the sea lamprey in (d). (g) Photograph of the
soft pressure sensor array clamped horizontally out of water over the water tank with a
sea lamprey attaching on it vertically. (h) Side view of the experiment setup in (g). (i)
Corresponding mapping contour plots for experiment in (g).
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3.6 Conclusion

In this chapter, we have reported the design of a soft capacitive sensor that is capable

of measuring both positive and negative pressures. The ability to detect negative pressure,

which is rarely reported in the literature, is achieved in our work by designing air gap channels

in the dielectric layer between the crossbar electrodes. The air gap channels enhance the

deformation of the sensor and lead to significantly improved sensitivity especially for negative

pressure. The influence of the air gap geometry on the sensitivity is also systematically

studied through both single-pixel measurements and finite element simulation. Based on the

experimental and simulation analysis of single pixel sensors, a 12 × 12 sensor array for spatial

mapping of both positive and negative pressures is also demonstrated. With its convenient

and low-cost fabrication process and repeatable response even when bent or stretched, our

device may find a wide range of applications in soft robotics or wearable devices.

On the other hand, there were some challenges for the soft capacitive pressure sensor for

detecting the attachment of sea lampreys underwater, which were caused by the electromag-

netic interference (EMI) of the water. Effective EMI shielding methods should be applied to

the soft capacitive sensors before they can be deployed underwater for pressure sensing.
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Chapter 4

Soft Piezoresistive Pressure Sensor for

Underwater Sea Lamprey Detection

In this chapter, an economical and effective soft pressure sensor is proposed, which consists of

a layer of piezoresistive film matrix sandwiched between two layers of perpendicular copper

tape electrodes. With multiplexers, the apparent resistance corresponding to each pixel of

the sensing matrix can be measured directly, where the pixel is identified with the row and

the column of the respective electrodes. However, this measured two-point resistance is not

equal to the actual cell resistance for that pixel due to the crosstalk effect of the pixels.

Since the cell resistance reflects directly the pressure applied on each pixel, the relationship

between the cell resistance and the measured two-point resistance is analyzed, and more

importantly, several regularized least-squares algorithms are put forward to reconstruct the

cell resistance map from the two-point resistance measurements. The proposed pressure

sensor is applied to detect the suction attachment of sea lampreys, a devastating invasive

species in the Great Lakes region. Experimental results demonstrate that the pressure sensor

can successfully capture the rim profile of the lamprey’s sucking mouth. Moreover, the

performance and computational complexity of the reconstruction algorithms with different

regularization functions are compared. The contents of this chapter first appeared as [1].

The remainder of the chapter is organized as follows. The fabrication and characteriza-
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tion of the soft piezoresistive pressure sensors are first presented in Section 4.1. Then the

modeling of the resistor network is discussed in Section 4.2. Several algorithms of the cell re-

sistance reconstruction via least-squares regularization are proposed in Section 4.3, followed

by experimental animals and setup introduced in Section 4.4. Experimental results and com-

parison between different methods are discussed in Section 4.5. Finally, concluding remarks

are provided in Section 4.6.

4.1 Sensor Design and Fabrication

4.1.1 Working Principle and Characterization

To fabricate piezoresistive pressure sensor devices, the force-sensitive conductive film 1700

series (SCS company) is used in this work. This film is opaque, volume-conductive carbon-

impregnated polyolefin, which has a thickness of 102 µm and a volume resistivity of less

than 500 ohm·cm. Since the conductive carbon nanoparticles are embedded in the non-

conductive polyolefin polymers, as shown in Figure 4.1-a, the film exhibits a high resistance

in the initial state. When the film is under external compressive force or pressure (Figure

4.1-b), the carbon nanoparticles will get closer, which results in a lower resistance. The

resistance change directly reflects the magnitude of the external compressive pressure, and

this property can be used for piezoresistive pressure sensing.

To start from a single-pixel soft pressure sensor, a 6 mm×6 mm piezoresistive film is

between two cross-bar copper tape electrodes (100 mm×3 mm×0.04 mm) with polyester tape

and double-sided tapes for adhesion. Figure 4.1-c shows the soft sensor under a compressive

pressure, while Figure 4.1-d shows the sensor under suction pressure via a suction cup. Two

single-pixel pressure sensors were characterized with different loads and suction pressures,
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with each pressure tested for three rounds individually. The response results were averaged,

and the characterization curve of relative change in measured resistance ∆R/R0 vs. pressure

P (–10∼235 kPa) is shown in Figure 4.1-e. When the compressive load reaches 235 kPa,

the resistance decreased by 98%. On the other hand, when the suction pressure was set

to –10 kPa, the resistance increased by about 654%, likely due to local delamination upon

suction, although the delamination has been greatly mitigated by this structure design and

fabrication method.

4.1.2 Sensor Structure and Fabrication Process

The structure of the proposed conductive film-based pressure sensor (4-by-4 matrix for

schematic illustration) is shown in Figure 4.2-a,b, where individual conductive film patches

were distributed uniformly and sandwiched between two layers of copper tape electrodes.

Note that in order to have reliable resistance measurement, a good and stable contact be-

tween the surfaces of the conductive film patches and the copper tapes need to be guaranteed.

In this work, we used double-sided acrylic tapes and one-sided polyester tapes to bond the

layers. With more individual piezoresistive film patches embedded into the matrix, a larger

resistor network with M rows and N columns of pixels will be formed, as shown in Figure

4.2-c, which will be discussed in the modeling section.

It is observed that ∆R/R0 decreases linearly with the applied pressure in the low pressure

region. The pressure sensitivity, S = δ(∆R/R0)/δP , indicates the local slope in the response

curve. The inset of Figure 4.1-e shows the variation of the sensitivity depending on the

applied pressure: an S value of –0.192 kPa−1 between 0 and 2.5 kPa, which reduces to

about –0.016 kPa−1 for pressure between 2.5 and 28 kPa. When the pressure is above 28

kPa, the relative change in resistance seems to be largely saturated and not to decrease
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Figure 4.1: Working mechanism of the soft pressure sensor and characterization of a single-
pixel sensor device. (a) The soft pressure sensor in the initial relaxed state, which shows an
initial resistance of R0 between the top and bottom conductors, and (b) the pressure sensor
under compressive pressure, showing a new resistance RP . (c) The soft pressure sensor with
a piezoresistive film between two perpendicular copper tape electrodes under a compressive
load, (d) the sensor under a suction cup to test negative pressure response, and (e) the
average relative change in resistance (along with the standard deviation) of the single-pixel
sensor versus pressure when tested on a flat substrate.
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Figure 4.2: Performance of the soft pressure sensor device under different bending conditions.
(a) The initial (unloaded) resistance of the single-pixel pressure sensor at different curvature
radii. (b) The experimental setup for loading pressure on the sensor on curved surfaces. (c)
Time-resolved measurements of the output signal for an applied pressure with three rounds
of loading and unloading processes on a curved surface with radius 50 mm. (d) Pressure
response comparison of the single-pixel sensor at different curvature radii with an applied
pressure up to 40 kPa.
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appreciably with pressure.

To investigate the mechanical flexibility such as bending deformation of this soft sensor,

we examined a single-pixel sensor’s resistance when the sensor device was bent. Figure 4.2-a

shows the resistance of the sensor when it was bent and attached onto curvy surfaces. The

initial (unloaded) resistance was maximum at on a flat surface (zero curvature with a value

about 3.05 kΩ), and then decreased to about 1.03 kΩ, 560 Ω, and 350 Ω at a curvature of 20

m−1, 30.3 m−1, and 58.8 m−1, respectively, which demonstrates the significant dependence

of the initial resistance on the curvature. The reason for this change in the initial resistance

is that larger curvature implies higher bending stress in the sensor device, which leads to

greater compression between the electrodes and causes a drop in resistance. To shed light

on the pressure response of the sensor device on curvy surfaces, time-resolved measurements

were further conducted. As shown in Figure 4.2-b, a program-customized syringe pump

(Legato 110, KD Scientific, Inc.) was used to apply an external pressure of up to about 40

kPa onto the bending sensor (effective pressure contact area of 3 mm×3 mm from the copper

electrodes) attached on a pipe, where the pressure was calculated based on the measured

contact force through a load cell (GS0-100, Transducer Techniques, LLC). Three cycles of

loading and unloading processes were repeated with a period of approximately 18 s. Figure

4.2-c shows the relative change in the resistance, ∆R/R0, of the sensor for the case with

curvature radius of 50 mm, where, ∆R = R−R0, R0 is the initial resistance at the bending

status, and R is the new resistance under the external pressure. During these three rounds

of tests, the sensor was repeatable and robust. Furthermore, for different curvature radii (50

mm, 33 mm, and 17 mm), the pressure response curves of the same sensor device are plotted

in Figure 4.2-d for comparison. Clearly, the relative change in resistance exhibits maximal

values at 40 kPa, achieving –94% when the sensor device is on the flat substrate, then it
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reduces to –82%, –69%, and –81% on the curvy surface with a curvature radius of 50 mm,

33 mm and 17 mm, respectively. The maximum (absolute) change in the resistance output

for these curvy cases drops since the initial resistance of the sensor under bending on the

curvy surfaces is much smaller than that on the flat substrate.

4.1.3 Sensor Matrix Structure and Fabrication Process

The structure of the proposed conductive film-based pressure sensor (4-by-4 matrix for

schematic illustration) is shown in Figure 4.3, where individual conductive film patches were

distributed uniformly and encapsulated between two layers of copper tape electrodes. Note

that in order to have reliable resistance measurement, a good and stable contact between the

surfaces of the conductive film patches and the copper tapes needs to be guaranteed. In this

work, we used double-sided acrylic tapes and one-sided polyester tape to bond the layers.

With more individual piezoresistive film patches embedded into the matrix, a larger resis-

tor network with M rows and N columns of pixels will be formed, which will be discussed

in the modeling section.

Figure 4.4 shows the fabrication process for a 10×10 pressure-sensing matrix with a sens-

ing area of 10×10 cm2. First, 10 pieces of 15 cm×3 mm×0.04 mm (length×width×thickness)

copper foil tapes and 11 pieces of 15 cm×6.3 mm×0.04 mm (length×width×thickness)

double-sided acrylic tapes were adhered side by side in an alternating manner onto a 300

mm×300 mm×3 mm acrylic plate; each copper tape has two double-sided tapes bordering

on both sides. Then the conductive piezoresistive film was cut into one hundred pieces of

square patches (each measuring 6 mm×6 mm), which were placed uniformly on the copper

tapes as individual piezoresistive sensors. Here, the copper tapes would work as the col-

umn electrodes with the double-sided acrylic tapes serving two purposes: filling the space
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Figure 4.3: Schematic of a 4-by-4 piezoresistive pressure sensing matrix. (a) The bonding
status of all layers, and (b) the exploded view.

between the copper tapes (thus making the entire bottom layer flat) and fixing the edges

of the conductive film patches (which was why the patch was wider than the copper tape).

The shiny and non-adhesive surfaces of all the copper tapes were exposed outwards in order

to contact the conductive film patches since the adhesive side of the copper tape was not

prominently conductive.

Similarly, another 10 pieces of copper foil tapes and 11 pieces of double-sided acrylic tapes

were attached onto the adhesive side of a 10 cm×20 cm polyester tape, which would work as

the top layer of the pressure sensing panel. Then the top layer was rotated by 90◦C and put

upside down to attach onto the bottom layer, with the conductive film patches between the

top and bottom layers of copper tape electrodes. These two layers of copper electrodes would

serve as the address lines of the sensing panel. The panel was then pressed with caution in

order to form a stable bonding around each pixel between the adhesive layers. After that,

each copper tape was connected with a jumper wire by soldering as the circuit extension for
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Figure 4.4: Fabrication process of the 10-by-10 soft pressure sensing matrix. The paper
liners of the double-sided tapes were not peeled off in the top left and bottom left pictures,
but were peeled off in the following steps. Picture of the final fabricated 10-by-10 pressure
sensing panel with PDMS (polydimethylsiloxane) waterproof encapsulation. The red dashed
lines show the edges of the mold formed by 3M VHB 4905 tapes, while the white bounding
box titled “PDMS” shows the PDMS encapsulation layer between the inner and outer 3M
VHB 4905 tape boundaries.
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measurements. Finally, in order to be able to deploy the pressure sensing panel underwater,

waterproof encapsulation by polydimethylsiloxane (PDMS, with a 10:1 wt.% mixing ratio of

PDMS base: curing agent) was achieved around the sensing panel, where the red dash lines

show the edges of the 3M VHB 4905 double-sided tapes (3 layers bonded together, with a

thickness of 1 mm for each layer) attached on the panel which were used to form a mold for

the PDMS liquid before curing.

4.2 Modeling of the Resistor Network

4.2.1 The 2D Resistor Network

For the M -by-N 2D resistor network shown in Figure 4.5, two multiplexers are used to select

the column and the row to form the circuit for a given “pixel”. By using a voltage divider

with a reference resistor Rref , the resistance measurement Rk
j between the selected j th row

and k th column can be calculated as:

Rk
j =

Vout
Vcc − Vout

Rref (4.1)

Note, however, that the measured two-point resistance Rk
j is not equal to the cell resis-

tance rkj at that pixel (j, k) due to crosstalk; in particular, Rk
j is theoretically smaller than

rkj since it is a parallel connection between rkj and a network of resistors between row j and

column k. For instance, if row 1 and column 1 are selected by the multiplexers, the current

would be injected from node V 1 to V1 through cell resistor r11 and other branches; for ex-

ample, the current could flow from node V 1 to V2 through r21, then to V 2 through r22, and

finally back to V1 through r12. With larger dimensions of the network, there will be more
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Figure 4.5: Schematic of the M -by-N resistor network and the voltage-divider circuits for
resistance measurement.

circuit loops involved between the selected row and column.

4.2.2 Mapping Contours based on Measured Resistance

With the fabricated 10×10 soft pressure sensor array, using two 16-channel multiplexers

(SparkFun CD74HC4067) and a 1k ohm reference resistor, the two-point resistance between

each row and each column could be measured directly through the voltage divider circuit

given in Figure 4.5. A series of experiments were conducted on the 10×10 soft pressure sensor

array, such as the loading of an aluminum rod (Figure 4.6-a), the loading of weight through

a 3D-printed ring part (Figure 4.6-b), the suction and attachment of a suction cup under

different negative pressures in air (Figure 4.6-c,d), and also the suction cup experiments
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with the soft pressure sensor matrix under water in a tank (Figure 4.6-e,f). All the mapping

contours of relative change in directly measured resistance are shown side-by-side with the

corresponding experimental picture, which demonstrates that this soft pressure sensor can

successfully detect multiple kinds of pressure patterns.

4.2.3 Formulation of the Forward Problem

It is of interest to find the relation between the cell resistance values {rkj } and the measured

resistance values {Rk
j }, which is needed in the reconstruction algorithms. To derive this

relationship, nodal analysis or the branch current method is used in this work. In nodal

analysis one equation is given at each node, requiring that the branch currents incident at

a node must sum to zero based on the Kirchhoff’s current law (KCL). Once the branch

currents are expressed in terms of the circuit node voltages, the conductance between any

two nodes could be discovered.

In general, for the M ×N resistor network in Figure 4.5, if the voltage source is replaced

with a current source, M voltage nodes for the rows and N voltage nodes for the columns

can be studied; correspondingly, (M +N) current sources (including possibly zero current)

would be present at these (M + N) nodes. According to KCL, the node-voltage equations

can be written in a matrix form as:

LV = I (4.2)
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Figure 4.6: Mapping contours of the soft pressure sensing matrix based on relative change
in directly measured resistance with the following experimental conditions: (a) a ϕ40 mm
(ϕ represents diameter), 680 g aluminum rod was loaded on the sensing matrix, (b) a ϕ27
mm × ϕ35 mm × 5mm 3D printed ring part under a 850 g aluminum rod was loaded on the
sensing matrix, (c) –10 kPa and (d) –20 kPa, respectively, negative pressure was applied on
the sensing matrix via a ϕ27 mm × ϕ35 mm PDMS suction cup in air, and (e) –10 kPa and
(f) –20 kPa, respectively, negative pressure was applied on the sensing matrix via the same
suction cup under water, where the top row of copper tape electrode of the soft pressure
sensor was about 7 cm lower than the water level.
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and V =



V1

V2

...

VM

V 1

V 2

...

V N



, I =



I1

I2

...

IM

I1

I2

...

IN



(4.4)

where, L(M+N)(M+N) is the Laplacian matrix of the M × N resistor network, V is the

voltage pattern, and I is the current pattern. Cj,j is the sum of the conductance between

the row node Vj and any other node; Ck,k is the sum of the conductance between the column

node V k and any other node; Ck
j is the negative of the sum of the conductance between the
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row node Vj and the column node V k; Cj,h = 0, where 1 ≤ j ̸= h ≤ M , is the conductance

between row j and row h; and Ck,l = 0, where 1 ≤ k ̸= l ≤ N , is the conductance between

column k and column l, since the rows are not connected directly with each other and neither

are the columns. L is singular since the sum of all rows of L is equal to 0, which means

these (M+N) equations are not independent [78]. To remove the redundant equation, the

first row node can be chosen as the ground (zero voltage reference), V1 = 0, and the first

equation in Equation (4.2) can be eliminated. Then a new cofactor matrix with a reduced

dimension of (M +N − 1)× (M +N − 1) along with (M +N − 1) independent equations

can be obtained from the Laplacian matrix, and Equation (4.2) is reduced to

CV = I (4.5)
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where,

C =
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and V =



V2

V3

...

VM

V 1

V 2

...

V N



, I =



I2

I3

...

IM

I1

I2

...

IN



(4.7)

Here, C is non-singular, and gkj =
1

rkj
is the conductance of the cell resistor rkj . One can then

obtain

V = C−1I (4.8)

If all cell resistances {rkj } are known, the co-factor matrix C is available and so is its in-

verse. The current pattern I can be specified in this way: for the current loop between the

studied row node Vj and the column node V k, since the current source noted as i is in-

jected into the column node V k, the corresponding current element Ik = i; and since the

current is withdrawn from the row node Vj to the ground, the corresponding current el-

ement Ij = −i; and all the other row and column nodes have zero current sources. For

instance, if the column node V 1 (flow in) and the row node V2 (flow out) are the two points

to measure the resistance, the current pattern I =
[
I2 I3 · · · IM I1 I2 · · · IN

]T
=[

−i 0 · · · 0 i 0 · · · 0

]T
. If V 1 (flow in) and V1 (flow out) are the two points to
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measure the resistance, then the current pattern I =
[
0 0 · · · 0 i 0 · · · 0

]T
.

Based on Equation (4.8), the voltages at all the nodes can be expressed in terms of the

current i, and thus according to Ohm’s Law, the two-point resistance Rk
j between the studied

row Vj and column V k can be solved as:

Rk
j =

V k − Vj
i

(4.9)

With Equations (4.5)-(4.8), there exists an implicit function f(·) mapping from the cell

resistance matrix r =

[
rkj

]
to the measured two-point resistance matrix R =

[
Rk
j

]
:

R = f(r) (4.10)

The algorithm for computing R using r is given in Figure 4.7. Note that in reality

the measured two-point resistance matrix, Rm, is not exactly equal to R as calculated in

Equation (4.10), due to modeling errors and measurement noises.

Although Equation (4.5) is linear in the cell conductance, the mapping from the cell

conductance to the cell resistance is reciprocal and nonlinear. And since Cj,j and Ck,k

are the sums of the conductance connected to the same row or column node, respectively,

Equation (4.10) for the forward problem is nonlinear and implicit. In the next section we

present algorithms for solving the inverse problem.
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Figure 4.7: Forward mapping algorithm for computing the two-point resistance using the
cell resistance.

4.3 Cell Resistance Reconstruction via Least-Squares

Regularization

As discussed in the previous section, the forward problem from the cell resistance matrix

r to the measured resistance matrix R is relatively straightforward. However, the inverse

problem, which is reconstructing the cell resistance r based on the measured two-point

resistance Rm, is much harder and does not admit an analytical solution. Consequently,

numerical methods have to be used. We first present the basic least-squares algorithm, and

then describe four regularized least-squares algorithms with different regularization functions

that aim to enhance the robustness of the reconstruction in the presence of measurement
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noises and modeling errors.

4.3.1 Least-Squares Minimization (LSM)

The inverse problem for the resistive network can be formulated as an optimization problem

where the cost function to be minimized is the sum of squared residuals between the mea-

sured two-point resistances Rm and the calculated R based on Equation (4.10), with the

requirement that the cell resistance is larger than or equal to the measured resistance:

r̂ = argmin
r

M,N∑
j=1,k=1

∥∥∥f(r)kj − (Rm)kj

∥∥∥2 (4.11)

s.t. rkj ≥ (Rm)kj for all j and k (4.12)

where rkj is the cell resistance element at the pixel (j, k) while (Rm)kj is the corresponding

measured two-point resistance.

This least-squares problem is solved in MATLAB via the nonlinear least-square solver

“lsqnonlin”, which starts at an initial guess r0 ≥ Rm (where “≥” holds true element-

wise). The default algorithm for this solver is the trust-region-reflective algorithm based on

the interior-reflective Newton method described in [116], which approximates the objective

function by the first two terms of the Taylor-series approximation, restricts the trust-region

subproblem to a two-dimensional subspace, and chooses the solver step to force global con-

vergence via the gradient descent while achieving fast local convergence via the Newton step

if it exists. The complete algorithm for this reconstruction method is given in Figure 4.8.
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Figure 4.8: Reconstruction algorithm for computing the cell resistance using the measured
two-point resistance based on least-squares minimization (LSM).

4.3.2 Least-Squares Regularization on Cell Resistance (LSR-CR)

The resistor network inverse problem suffers from its ill-posed nature; in particular, the

numerical inverse solution depends sensitively on the input data and thus its performance

is susceptible to measurement noises and modeling uncertainties. In order to reconstruct

the cell resistance robustly and to give preference to particular solutions with desirable

properties, the Tikhonov regularization technique is exploited, where a regularization term

is included in the least squares minimization. One of the typical a priori regularization

terms is the L2 regularization, λ∥r∥22, which is the sum of the squares of all elements from

the inverse solution with a penalty weight λ that penalizes large cell resistance values:

r̂ = argmin
r

M,N∑
j=1,k=1

{
∥∥∥f(r)kj − (Rm)kj

∥∥∥2 + λ∥rkj ∥
2} (4.13)

s.t. rkj ≥ (Rm)kj for all j and k. (4.14)
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Figure 4.9: Reconstruction algorithm for computing the cell resistance using the measured
two-point resistance based on least-squares regularization on cell resistance (LSR-CR).

where λ ≥ 0 is the regularization (or penalty) parameter, which determines the trade-off

between the modeling discrepancy term and the regularization term. The regularization

method in Equation (4.13) accommodates simultaneously the norm of the residual [f(r)−

Rm] and the norm of the approximate solution r, enforcing the a priori knowledge on solving

the cell resistance, and improving the smoothness of the solution. The complete algorithm

for this reconstruction method is given in Figure 4.9.

4.3.3 Least-Squares Regularization on Relative Change in Cell

Resistance (LSR-∆CR)

Different sensor pixels might have quite different cell resistances in the initial relaxed state

before a pressure is applied, due to, for example, imperfect fabrication processes. So, an

alternative regularization function would be the relative change in the cell resistance values,
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instead of these values themselves:

[r̂0 r̂1] = arg min
r0 r1

M,N∑
j=1,k=1

{
∥∥∥f(r0)kj − (Rm0)

k
j

∥∥∥2+
∥∥∥f(r1)kj − (Rm1)

k
j

∥∥∥2 + λ

∥∥∥∥∥(r1)
k
j − (r0)

k
j

(r0)
k
j

× 100

∥∥∥∥∥
2

}

(4.15)

s.t. (r0)
k
j ≥ (Rm0)

k
j and (r1)

k
j ≥ (Rm1)

k
j for all j and k. (4.16)

where (r0)
k
j and (Rm0)

k
j are the cell resistance and the measured two-point resistance cor-

responding to the first group of measurements (e.g., prior to the application of the external

pressure), while (r1)
k
j and (Rm1)

k
j are those corresponding to the second group of mea-

surements (e.g., after the pressure is applied). The data 100 in the equation denotes the

percentage calculation in order to get the relative change in cell resistance.

The relative change in cell resistance is evaluated based on two consecutive cell resistance

matrices. For the initialization step of this regularization, in order to calculate the relative

change in cell resistance (in percentage), two groups of measured resistance Rm0 and Rm1

are required to be fed into Equation (4.15) at the beginning. Once the first two sets of cell

resistance solutions r0 and r1 are solved jointly, r0, Rm0, and Rm1 are not used any more,

while r1 is taken as the known new r′0. The next set of measured resistance Rm2 will be

used as the new R′
m1, and Equation (4.15) will be replaced with a new regularization in

order to find the corresponding solution r′1 for the new measurements:

r̂′1 = argmin
r′1

M,N∑
j=1,k=1

{
∥∥∥f(r′1)kj − (R′

m1)
k
j

∥∥∥2+
λ

∥∥∥∥∥(r
′
1)

k
j − (r′0)

k
j

(r′0)
k
j

× 100

∥∥∥∥∥
2

}

(4.17)
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s.t. (r′1)
k
j ≥ (R′

m1)
k
j for all j and k. (4.18)

The reconstruction will be initialized first and then be updated iteratively for the following

steps. The complete algorithm for this method is given in Figure 4.10.

4.3.4 Least-Squares Regularization on Gradient of Cell Resistance

(LSR-∇CR)

We also consider using the cell resistance gradient as the regularization term to minimize

spikes in the mapping contours. This method is captured as below:

r̂ = argmin
r

M,N∑
j=1,k=1

{
∥∥∥f(r)kj − (Rm)kj

∥∥∥2 + λ∥∇rkj ∥
2} (4.19)

s.t. rkj ≥ (Rm)kj for all j and k. (4.20)

The complete algorithm for this reconstruction method is given in Figure 4.11.

The gradient can be calculated differently according to the location of the pixel. If the

pixel is in the interior of the sensing matrix, the gradient components are approximated by

the central difference between the neighboring pixels. If the pixel is on the boundary, the

appropriate gradient components are calculated with single-sided differences. The gradient

calculation steps are summarized in Figure 4.12.
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Figure 4.10: Reconstruction algorithm for computing the cell resistance using the measured
two-point resistance based on least-squares regularization on relative change in cell resistance
(LSR-∆CR).
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Figure 4.11: Reconstruction algorithm for computing the cell resistance using the measured
two-point resistance based on least-squares regularization on gradient of cell resistance (LSR-
∇CR).

4.3.5 Least-Squares Regularization on Gradient of Relative Change

in Cell Resistance (LSR-∇∆CR)

Finally, we consider regularization based on the gradient of the relative change in cell resis-

tance

[r̂0 r̂1] = arg min
r0 r1

M,N∑
j=1,k=1

{
∥∥∥f(r0)kj − (Rm0)

k
j

∥∥∥2+
∥∥∥f(r1)kj − (Rm1)

k
j

∥∥∥2 + λ

∥∥∥∥∥∇(
(r1)

k
j − (r0)

k
j

(r0)
k
j

× 100)

∥∥∥∥∥
2

}

(4.21)

s.t. (r0)
k
j ≥ (Rm0)

k
j and (r1)

k
j ≥ (Rm1)

k
j for all j and k. (4.22)

where two consecutive sets of measured resistances Rm0 and Rm1 are required for initial-

ization at the beginning, and the gradient of the relative change in cell resistance can be
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Figure 4.12: Algorithm for calculating the gradient.

calculated accordingly. The updating rule of this algorithm is similar to that in the re-

construction method LSR-∆CR: first, solve r0 and r1 jointly; then, take r1 as the known

new r′0; and next, take a third set of resistance measurement as the new R′
m1, and the

corresponding new cell resistance r′1 could be generated from the following regularization:

r̂′1 = argmin
r′1

M,N∑
j=1,k=1

{
∥∥∥f(r′1)kj − (R′

m1)
k
j

∥∥∥2+
λ

∥∥∥∥∥∇(
(r′1)

k
j − (r′0)

k
j

(r′0)
k
j

× 100)

∥∥∥∥∥
2

}

(4.23)

s.t. (r′1)
k
j ≥ (R′

m1)
k
j for all j and k. (4.24)

The reconstruction will be updated iteratively with the new measurements coming in,

87



using the latest measurement as (Rm1) and using the previous solution as r0 in order to

guarantee the solving process to be consecutive and consistent. The complete algorithm

is given in Figure 4.13, which is similar with the algorithm in Figure 4.10 with both the

initialization step and the following steps, the only difference is that the regularization terms

are now the gradient of the relative change in cell resistance.

4.4 Experiments

4.4.1 Experimental Animals

In August 2020, thirty spawning phase adult sea lampreys were tested on the 10-by-10

pressure sensing panel. These sea lampreys were captured in traps during upstream spawning

migration in the St. Marys River (Michigan, USA and Ontario, Canada) during May-July

2020. Traps were operated by Canada Department of Fisheries and Oceans and the U. S.

Fish and Wildlife Service.

Lampreys were transported to the U. S. Geological Survey Great Lakes Science Center’s

Hammond Bay Biological Station, Millersburg, Michigan, USA where they were held in

aerated 1000 L tanks supplied continuously with Lake Huron water (salinity: 0 ppt, pH: 7-8)

maintained at 8-12 ◦C with a dissolved oxygen saturation of over 90 % in the sea lampreys

until tests were conducted. Prior to tests, body weight, total body length, and mouth

diameter were measured. All sea lamprey experiments were performed in accordance with

protocols and guidelines approved by Michigan State University’s Institutional Animal Care

and Use Committee (IACUC, No. 02/18-028-00). After the suction pressure experiments

in this study, the sea lampreys were housed for use in further research by Hammond Bay

Biological Station staff.
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Figure 4.13: Reconstruction algorithm for computing the cell resistance using the measured
two-point resistance based on least-squares regularization on gradient of relative change in
cell resistance (LSR-∇∆CR).
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Figure 4.14: Experimental setup of the pressure sensing system for sea lamprey detection.(a)
The soft piezoresistive pressure sensing panel and the hardware attached on the back side
of the panel, (b) the back view of the pressure sensing panel with an adult sea lamprey
attaching on it, and (c) the front view of the pressure sensing panel with another adult sea
lamprey attaching on it.

4.4.2 Experimental Setup

As shown in Figure 4.14, the resistance of the pressure sensors at each pixel was measured

by a voltage divider with a 1k ohm reference resistor. An Arduino Mega 2560 microcon-

troller board provided a 5 V voltage supply for the pressure sensing circuits, and generated

digital output signals for channel selection. Two analog/digital multiplexer breakout boards

(SparkFun CD74HC4067, 16 channels) were used to choose the circuits between one column

and one row of the perpendicular address lines. The output voltage on the reference resis-

tor could be measured by a 10-bit Analog-to-Digital Converter (ADC) through the analog

input.

The experimental setup is shown in Figure 4.14-a, in the experimental water tank (200

L). The pressure sensing panel was placed vertically on the acrylic hanger along a glass wall

of the water tank, while the Arduino Mega board and the voltage divider on the breadboard
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were adhered on the other side of the hanger. The acrylic hanger was clamped on the water

tank wall via two clamps. The water level in the tank was about 5 cm higher than the top

row electrode of the 10-by-10 pressure sensing panel, submerging all the sensing area.

4.4.3 Experiment on Sea Lampreys with the Pressure Sensor

In each round of measurement, the pressure sensing system scanned the pressure sensors

from the top left corner (X=1, Y=1) to the bottom right corner (X=10, Y=10) by selecting

the channels of the multiplexers. Resistance was measured consecutively for 20 times at

each pressure sensor, and then the average was taken as the measured two-point resistance

at that pixel for that time instance. The Arduino program would repeat the scanning and

measurement process every one second (overall sampling rate: 1 Hz) in loops by means of

timer interrupt. The resistance measurement data would be stored in the computer hard

drive once the program was closed.

Once the Arduino program started to run and measure the resistance periodically, an

adult sea lamprey was transferred to the tank and allowed to explore the tank until it

attached to the tank surface via oral suction. If the lamprey did not attach onto the sensing

area, it would be gently repositioned and held with its mouth over the sensing area until

it attached. The top surface of the sensing area was relatively smooth, and experiments

showed that most of the tested sea lampreys were able to attach to this sensor for a certain

time (e.g., > 20 s) after a few trials. As demonstrated in Figure 4.14-b,c, a sea lamprey

was attached onto the central area of the sensing panel, with a region spanning almost 4

rows and 4 columns of copper tapes covered by the sea lamprey’s oral disc. Resistance

measurement lasted until the lamprey volitionally detached from the panel or until the first

2 minutes of attachment elapsed. The measurement data would be processed to plot the
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mapping contours of relative change in the measured resistance directly, or would be used

to reconstruct the cell resistance first using one of the reconstruction methods proposed in

Section IV, and then to plot the mapping contours of the relative change in cell resistance.

4.5 Results

4.5.1 Comparison between Different Methods

To have a better understanding of all the methods explored above, mapping contours from

these methods are displayed in the same panel in Figure 4.15. For each regularization

method, a mapping contour with “best” choice of λ is selected (by “best”, we mean visually

perceived best tradeoff between data matching and smoothing). Figure 4.15-a shows the

mapping contour of the relative change in the measured resistance (between –82.6% and

–1.8%), which is a baseline for all the other results. Figure 4.15-b is the result from least-

squares minimization (LSM algorithm without regularization) with the relative change in

cell resistance between –99.5% and 11873.9%, and the following four mapping contours are

the results of relative change in cell resistance based on regularization on the cell resistance

(LSR-CR algorithm, Figure 4.15-c, λ=0.001, between –94% and 71%), regularization on

the relative change in cell resistance (LSR-∆CR algorithm, Figure 4.15-d, λ=10, between

–99.9% and 185%), regularization on the gradient of cell resistance (LSR-∇CR algorithm,

Figure 4.15-e, λ=0.001, between –97% and 59%), and lastly regularization on the gradient

of relative change in cell resistance (LSR-∇∆CR algorithm, Figure 4.15-f, λ=10, between

–99.9% and 155%), respectively.

As observed above, with the same color bar range, (1) directly measured resistance change

(Figure 4.15-a) is “blurry” as the measured resistance is related to the cell resistance through
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Figure 4.15: Comparison between mapping contours from different methods. Mapping con-
tours of (a) relative change in directly measured two-point resistance, (b) relative change in
cell resistance from least-squares minimization (LSM), (c) relative change in cell resistance
from least-squares regularization on the cell resistance (LSR-CR) with λ=0.001, (d) rela-
tive change in cell resistance from least-squares regularization on the relative change in cell
resistance (LSR-∆CR) with λ=10, (e) relative change in cell resistance from least-squares
regularization on the gradient of cell resistance (LSR-∇CR) with λ=0.001, and (f) relative
change in cell resistance from least-squares regularization on the gradient of relative change
in cell resistance (LSR-∇∆R) with λ=10.
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Table 4.1: Performance comparison of different reconstruction methods.

Method Specifications
Computation
Time
(s)

Absolute
Relative
Error
(%)

LSM Least Squares Minimization 16.45 ± 0.40 1.33 ± 1.29
LSR-CR Regularization on Cell Resistance 10.20 ± 2.04 7.36 ± 7.85

LSR-∆CR
Regularization on Relative Change in
Cell Resistance

58.63 1.19 ± 1.18

Following Steps after Initialization 8.05 ± 0.88 1.48 ± 1.51
LSR-∇CR Regularization on Gradient of Cell Re-

sistance
11.46 ± 1.71 5.67 ± 5.28

LSR-∆∇CR
Regularization on Gradient of Relative
Change in Cell Resistance

60.85 1.13 ± 1.13

Following Steps after Initialization 11.01 ± 0.96 1.48 ± 1.48
(Data are presented in the type of mean ± standard deviation.)

a nonlinear filter. (2) Plain LSM (Figure 4.15-b) produces large spikes at some pixels out-

side of the actual suction area, since this reconstruction method is susceptible to the effect of

measurement noises and modeling errors. (3) LSR-CR (Figure 4.15-c) and LSR-∇CR (Fig-

ure 4.15-e) produce more distinct patterns than directly measured resistance changes while

showing pronounced smoothing effect. And (4) LSR-∆CR (Figure 4.15-d) and LSR-∇∆CR

(Figure 4.15-f) produce the most distinct suction patterns with cell resistance decreased

along the rim of the oral disc and with cell resistance increased within oral disc.

In order to further compare the performance of different reconstruction methods, 21

consecutive sets of measured 10-by-10 two-point resistance matrices obtained during the sea

lamprey test were used for running these algorithms in MATLAB R2020b on the laptop

with a CPU of Intel i7-6700HQ (2.60 GHz) and a 16.0 GB RAM. The computation time

and absolute relative error (in percentage) between the derived two-point resistance and the

measured two-point resistance were calculated in the form of “mean ± standard deviation”

and are listed in Table 4.1.
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For the regularization methods LSR-∆CR and LSR-∇∆CR, the initialization step took

58.63 s and 60.85 s, respectively, while the following steps took only 8.05 ± 0.88 s and

11.01 ± 0.96. The reason for significantly longer computation time in the initialization

step is because these two methods need to solve for both matrices r0 and r1 jointly. But

for the steps after, the computation time dropped greatly while the absolute relative errors

remained within a desirable range. On the other hand, the computation time for the method

LSM was 16.45 ± 0.40 s, which was larger than the other methods like LSR-CR and LSR-

∇CR. Although it had a smaller absolute relative error, the mapping contour did not reflect

a perfect visualization result given the noise and the displayed shape. The final decision

of reconstruction methods will be a trade-off between the computational complexity, the

relative error in data matching, and the smoothing effect. Note that the mapping contours

of relative change in measured two-point resistance could still be used instantaneously in

real-time lamprey attachment detection, which takes about 0.31 s computation time to plot

the mapping contour for each round of new measurements in MATLAB using the surf(·)

function. The reconstruction methods require some time to compute the cell resistance

change and will be best for post-processing to gain further information about the detected

animal.

4.5.2 Mapping Contour Comparison between Sea Lampreys with

Large and Small Mouth Diameters

For demonstration, the least-squares regularization method on the gradient of cell resistance

(LSR-∇CR) with λ = 0.001 is chosen to further show the capability of the proposed sensor

panel in capturing the demographic information of the detected lampreys. The mapping
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contours of the 10-by-10 pressure sensing panel under suction and attachment of two different

adult sea lampreys are shown in Figure 4.16. The first adult male sea lamprey had a mouth

diameter of 35 mm, while the other adult male had a mouth diameter of 25 mm. From the

figures, we can observe that the blue mapping contour for the larger mouth was covering

a 4-by-4 grid area (6a-b), while the smaller one was covering a 3-by-3 grid area (6c-d),

indicating the ability to successfully measure the size of the sea lamprey’s mouth attaching

on the sensing panel.

4.6 Conclusion

An effective sensing technique to autonomously detect and monitor sea lampreys will be of

significant interest to the sea lamprey control effort in the Great Lakes and potentially to

programs that seek to conserve or restore lampreys elsewhere throughout their native ranges.

Motivated by this practical application, we developed a low-cost and efficient piezoresistive

pressure sensor based on a passive resistor network and proposed new algorithms for properly

processing the measured data to reconstruct the pressure pattern. In particular, in order to

recover the cell resistance from the measured two-point resistance, we derived the general

inverse mapping relationship based on basic Kirchhoff’s current law, and introduced several

inverse algorithms based on the least-squares minimization and Tikhonov regularization.

These approaches are novel and distinct from previous reports as our methods are general

and applicable to a passive resistor network of any size, with the measurement noises and

modelling uncertainties taken into consideration. The approaches were validated with results

from experiments with live sea lampreys. The pros and cons of the different reconstruction

methods were discussed in depth. While the sensing system was motivated by the sea
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Figure 4.16: Comparison of the mapping contours between sea lampreys with large and
small mouth diameters. (a) An adult sea lamprey attaching on the sensing panel with
a mouth diameter of about 35 mm, and (b) the mapping contour corresponding to the
attachment condition in (a) using the LSR-∇CR method. (c) Another smaller adult sea
lamprey attaching on the sensing panel with a mouth diameter of about 25 mm, and (d)
the mapping contour corresponding to the attachment condition in (c) using the LSR-∇CR
method.
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lamprey detection problem, it is applicable to other applications in soft robotics, wearable

electronics, biomonitoring, and human-machine interfaces.

The choice of the value of the regularization parameter λ in this paper was determined

by trying a few values in different orders of magnitude. While more principled methods of

choosing the λ value are available in the literature, such as the Morozov discrepancy principle

[83], and the ordinary cross-validation criteria [84], these methods are mostly applicable

for linear models. Developing a more systematic approach to choosing the regularization

parameter remains a direction for our future work. In addition, we will explore the refinement

of the fabrication methods to improve both spatial resolution and scalability. Scalability is

important for practical deployment of the sensing panel in detecting sea lampreys in fish

passages or other natural environments. For that purpose, we will investigate approaches

to integration of modular, elementary panels into larger panels (up to the size of 1 m × 1

m). We will also examine data analytics algorithms for automated recognition of suction

patterns (instead of relying on human recognition).

Finally, the developed pressure sensor is encapsulated and waterproofed; as such, envi-

ronmental factors such as the pH value, oxygen saturation, and conductivity of the water are

not expected to affect the outputs of the sensor. However, some other factors, such as the

water temperature and the depth-induced hydrostatic pressure could have an impact on the

sensor outputs. We will conduct further animal experiments to characterize the potential

dependence of the sensor outputs on water temperatures and sensor deployment depths, and

if needed, we will develop corresponding compensation algorithms to counter the influence

of these environmental variables.
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Chapter 5

Automated Soft Pressure Sensor

Array-based Sea Lamprey Detection

With Machine Learning

As discussed in the previous chapter, attachment by suction has been studied in soft pressure

sensors for sea lamprey detection. However, human decision is still required for recognition

of patterns in the measured signals. In this chapter, an automated soft pressure sensor

array-based sea lamprey detection approach is proposed using object detection convolutional

neural networks (CNNs). First, the two-point resistance measurements of the 10-by-10

pressure sensor array are converted to mapping contour plots of relative change in resistance.

Then, a comprehensive sea lamprey dataset of mapping contours from both compression

and suction patterns is collected for machine learning. Three types of object detection

algorithms are applied to the sea lamprey dataset, and comparison of their performance

shows that YOLOv5s model achieves the highest mean average precision and the fastest

inference speed. Furthermore, to improve the accuracy of the prediction model and reduce

false positive rate due to the sensor’s memory effect, a postprocessing unit with two designed

confidence thresholds for the compression pattern and suction pattern, respectively, is added

to the original machine learning algorithm. The trained model is validated and used to
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automatically detect sea lamprey attachment and locate the suction area on the sensor in

real time.

The remainder of this chapter is structured as follows. Section 5.1 introduces the exper-

imental animals and the setup with the soft pressure sensor array. Section 5.2 presents the

sea lamprey dataset with its image annotation formats, and shows the assessment results of

three object detectors in order to find the best one. Then the sea lamprey detection approach

with a postprocessing unit is proposed in Section 5.3. Experimental results for evaluating the

postprocessing performance are presented in Section 5.4. Concluding remarks are provided

in Section 5.5.

5.1 Experimental Animals and Setup

5.1.1 Experimental Animals

In September 2021 and June 2022, 140 spawning phase adult sea lampreys were tested on the

10-by-10 pressure sensing panel. These sea lampreys were captured in traps during upstream

spawning migration in the St. Marys River (Michigan, USA and Ontario, Canada).

Lampreys were transported to Hammond Bay Biological Station of the U. S. Geological

Survey Great Lakes Science Center at Millersburg, Michigan, where they were held in aer-

ated 1000 L tanks supplied continuously with Lake Huron water maintained at 8-12 ◦C until

tests were conducted. All sea lamprey experiments were performed in accordance with pro-

tocols and guidelines approved by Michigan State University’s Institutional Animal Care and

Use Committee (IACUC, No. 02/18-028-00, and AMEND202200009 / PROTO202100177).

After the experiments in this study, the sea lampreys were housed for use in further research

by Hammond Bay Biological Station staff.
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5.1.2 Soft Pressure Sensor Array

As shown in Figure 5.1-a, this work uses a 10-by-10 soft pressure sensor array (with a sensing

area of 10×10 cm2) that is made of piezoresistive films sandwiched between two layers of

perpendicular copper tape electrodes, with polyester tape encapsulated on an acrylic plate.

The detailed fabrication process is introduced in Chapter 4. The sensor array forms a resistor

network, with its circuits illustrated in Figure 5.1-b.

At each sensor pixel, when a compressive pressure load is applied (e.g., under the compres-

sion of the lamprey mouth rim), the resistance at that pixel reduces, resulting in a reduction

in the corresponding measured resistance via the coupling of the resistor network. Similarly,

when a partial vacuum pressure (e.g., under the suction of the lamprey mouth) is applied on

a sensor pixel, there will be a rise in the resistance measurement. It is observed that, likely

due to the viscoelasticity of the films and their bonding, the resistance measurements do

not immediately return to the at-rest values following the removal of the attachment. This

memory effect, which would cause false positives in the detection, is explicitly addressed in

the detection algorithm design.

5.1.3 Experimental Setup

As shown in Figure 5.1-a, a voltage divider with a 1k ohm reference resistor (Rref ) was

used to measure the resistance of the pressure sensors at each pixel. An Arduino Mega 2560

micro-controller board provided a 5 V voltage supply (Vcc) for the pressure sensing circuits,

and generated digital output signals for channel selection. Two analog/digital multiplexer

breakout boards (SparkFun CD74HC4067, 16 channels) were used to choose the circuits

between one column and one row of the perpendicular address lines. The output voltage
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Figure 5.1: Hardware of the soft pressure sensor array-based sea lamprey detection system
[1]. (a) Experimental setup, and (b) circuit model of the resistor network formed by the
pressure sensor array.

(Vout) on the selected resistor network circuits was measured by a 10-bit Analog-to-Digital

Converter (ADC) through the analog input. The two-point resistance measurement Rk
j

between the selected j-th row and k-th column can be calculated as:

Rk
j =

Vout
Vcc − Vout

Rref (5.1)

The pressure sensing panel was placed vertically along a glass wall of a 200 L water tank,

while the micro-controller board and all other circuits were outside of the tank. The water

level in the tank was about 5 cm higher than the top row electrode of the pressure sensing

panel, submerging all the sensing area.
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In each round of measurement, the pressure sensing system scanned the sensor array from

the top left corner to the bottom right corner. Resistance was measured consecutively for

20 times at each pressure sensor, and then the average was taken as the measured two-point

resistance at that pixel for that sampling cycle. The Arduino program repeated the scanning

and measurement process every one second (1 Hz) in loops by means of timer interrupt. The

resistance measurement data were transferred to a Python program on a computer via serial

communication, and then the data would be stored as matrices in a spreadsheet file in the

hard drive. Meanwhile, the relative change (in %) in the resistance matrix between the

current sampling time and the initial value were calculated and converted to a mapping

contour plot, which was also stored in the hard drive. Once the Arduino program started to

run and measure the resistance periodically, an adult sea lamprey was transferred to the tank

and introduced to attach onto the sensing area for a certain time (e.g., > 20 s). Resistance

measurement lasted until the lamprey detached from the panel by itself or until the first 2

minutes of attachment elapsed.

5.2 Training Models on Sea Lamprey Datasets

This section first introduces the dataset collected from the sea lamprey experiments on the

soft pressure sensor array, which are mapping contour plots converted from the resistance

measurements. They can be categorized into either a “compression” pattern or a “suction”

pattern. We present the image annotation formats for three object detection models: SSD,

RetinaNet and YOLOv5, and further implement the training and validation processes on

each machine learning model in order to find the best sea lamprey detector.
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5.2.1 Mapping Contour Patterns

In this work, a total of 3,094 colored mapping contour plots generated during the sea lamprey

attachment periods were collected from 120 groups of sea lamprey experiments, which were

annotated with bounding box labels for training and validating the neural networks. Each of

these selected mapping contours had a resolution of 640×640 pixels, and could be categorized

into either “compression” pattern or “suction” pattern based on its overall appearance and

contour levels. There were 623 compression plots and 2,471 suction plots, and eight typical

mapping contour plots are shown in Figure 5.2, including four compression patterns (Figure

5.2-a-d) and four suction patterns (Figure 5.2-e-h). For instance, the compression pattern can

be partial edges or discrete points in blue (Figure 5.2-a) reflecting non-uniform compression

of the lamprey’s suction disc on the sensor array, a full circular pattern in blue (Figure 5.2-b),

an arc in blue on the boundary (Figure 5.2-c), or a corrupted circular pattern connected to

adjacent rows or columns (Figure 5.2-d) due to crosstalk of the sensor array. Similarly, the

suction patterns are typically complementary to the compression patterns, which appear in

red or orange blobs.

Note that, when a mapping contour plot displayed both a compression pattern and a

suction pattern, such as Figure 5.2-a, it would still be categorized into only one pattern with

the higher magnitude in absolute relative change in resistance. The annotated mapping

contour dataset was then split into training and validation subsets with a ratio of 8 : 2.

On the other hand, a total of 3,875 mapping contours obtained from the remaining 20

groups out of the whole 140 sea lamprey experiments were used to test the trained model

with a postprocessing filter in order to decide the optimal confidence thresholds for the

compression pattern and suction pattern, respectively.
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Figure 5.2: Typical mapping contour plots of the 10-by-10 soft pressure sensor array with
attachment of an adult sea lamprey. Typical compression patterns: (a) with partial edges or
points shown in blue reflecting compression of the lamprey’s suction disc, (b) with an intact
circular pattern shown in blue, (c) with the compression area on the boundary of the sensing
area, and (d) with a corrupted circular pattern connected to adjacent rows or columns due
to circuit crosstalk and mechanical stress of the sensor array. Typical suction patterns: (e)
with a triangular blob shown in red reflecting the suction area, (f) with an intact round
(or octagon) blob shown in red, (g) with the suction area on the boundary of the sensing
area, and (h) with a corrupted polygon pattern extended to adjacent rows or columns due
to circuit crosstalk and mechanical stress of the sensor array.

5.2.2 Image Annotation

Figure 5.3 shows an example of the annotation of the ground truth bounding box on a

suction pattern mapping contour. The coordinates of the ground truth bounding box was

obtained from the experimental videos synchronized with the pressure sensor measurements

as follows. During the experiments, a cellphone camera was used to record activities on

the whole sensor array. The mapping contour plots in a time sequence from a lamprey

experiment were converted to an animation video. The animation contour video was then

synchronized with the recorded experimental video. The video frames were extracted from
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Figure 5.3: Illustration of the ground truth bounding box annotation. (a) image of the
10-by-10 soft pressure sensor array under suction of an adult sea lamprey (as shown in the
inset), with the bounding box shown in yellow dashed lines covering the attachment area,
and with the row and column axis labelled for dataset annotation. (b) The corresponding
mapping contour plot of relative change in measured two-point resistance, with the ground
truth bounding box in red solid lines depicted on it.

the synchronized experimental video every one second, same frame rate as that for the

mapping contour animation video. Finally, the coordinates of the top left vertex (Colmin,

Rowmin) and the bottom right vertex (Colmax, Rowmax) of the ground truth bounding box

were estimated with one decimal point between the boundary limits of 1.0 and 10.0.

Different object detectors may accept different formats of bounding box labels. The

RetinaNet framework uses (class, xmin, ymin, xmax, ymax) as its label format, where class

is either 0 or 1, which represents “compression” or “suction” pattern, respectively; (xmin,

ymin) denotes the pixel coordinates of the top left vertex, and (xmax, ymax) denotes those

of the bottom right vertex, which can be obtained from the row and column coordinates:
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Table 5.1: Parameters for generating the mapping contour plots.

Name Variable Value
Figure width Figw 640
Figure height Figh 640

Ratio of contour width to figure width rw 0.9
Ratio of contour height to figure height rh 0.9

Ratio of contour left margin to figure width rlm 0.05
Ratio of contour top margin to figure height rtm 0.05

Colormap style cmap ‘jet’
Number of contour levels Nlevel 100

Colorbar min limit vmin -100
Colorbar max limit vmax 100

xmin = (
Colmin − 1

10− 1
· rw + rlm) · Figw (5.2)

xmax = (
Colmax − 1

10− 1
· rw + rlm) · Figw (5.3)

ymin = (
Rowmin − 1

10− 1
· rh + rtm) · Figh (5.4)

ymax = (
Rowmax − 1

10− 1
· rh + rtm) · Figh (5.5)

where the meanings of the parameters can be found in Table 5.1.

On the other hand, in addition to the class label, the SSD and YOLOv5 object detection

models take the normalized coordinates of the bounding box center (xcenter, ycenter), and

the normalized width wbbox and height hbbox of the bounding box as accepted labels, and

the formulas are given below:
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xcenter = (

Colmin + Colmax

2
− 1

10− 1
· rw + rlm) (5.6)

ycenter = (

Rowmin +Rowmax

2
− 1

10− 1
· rh + rtm) (5.7)

wbbox =
Colmax − Colmin − 1

10− 1
· rw (5.8)

hbbox =
Rowmax −Rowmin − 1

10− 1
· rh (5.9)

5.2.3 Assessment of Three Object Detectors

The object detection frameworks, SSD, RetinaNet, and YOLOv5s, were evaluated for sea

lamprey attachment pattern detection using the same training and validation datasets. The

network hyperparameters for the training process, including the initial learning rate, momen-

tum, weight decay, a minimum score threshold, and the non-maximum suppression (NMS)

[117] threshold, are listed in Table 5.2. Here, the score threshold is a first filtering step to

remove the very unlikely bounding boxes, while the NMS threshold is an evaluation metric

to compare one candidate bounding box with multiple other bounding box candidates. The

NMS is realized in this way: if they mutually share an IoU larger than the NMS threshold,

then these bounding boxes could be merged into only one box with the maximum confidence

score.

The training and validation process was implemented on the desktop PC with a GPU

of NVIDIA GeForce RTX 3060 Ti (1.69 GHz boost clock) and a 32.0 GB RAM. The input
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Table 5.2: Hyperparameters for training the sea lamprey detection networks.

Parameter Value
Learning rate 0.005
Momentum 0.9
Weight decay 0.0005
Score threshold 0.05
NMS threshold 0.5

image of the mapping contours has a size of 640×640, without colorbar plotted in it.

To quantitatively evaluate the validation performance, mean average precision (mAP ) is

used, which is related to other performance metrics such as true positive (TP), false positive

(FP), true negative (TN), false negative (FN), precision (P ), recall (R), and average precision

(AP ). To decide whether a prediction is a TP or FP, the IoU between the predicted and

ground-truth bounding boxes, IoU
g−t
pred, was calculated. If IoU

g−t
pred ⩾ IoU , then it is a

TP, which means that the prediction as positive is correct; otherwise, it is regarded as an

FP, meaning there was no object at that predicted place. Besides, FN means failing to

predict an object that was actually there, and TN means the prediction as negative was true

and there was indeed no object there. The corresponding true positive rate, false positive

rate, true negative rate, and false negative rate are denoted as TPR, FPR, TNR, and

FNR, respectively. The precision P represents the accuracy of the true positive prediction

among all the positive predictions, while the recall R depicts the percentage of true positive

prediction over all actual positives. They are calculated from the following formulas:

P =
TPR

TPR + FPR
(5.10)

R =
TPR

TPR + FNR
(5.11)
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Once the confidence scores of all predicted bounding boxes were obtained, the predictions

were sorted in a descent order according to the confidence value. A few additional rounds

of performance evaluation were conducted. Specifically, each score was iteratively assigned

as the IoU threshold to decide whether each prediction was a TP, FP, TN, or FN. And each

new confidence-assigned IoU threshold resulted in a new precision value and a recall value,

P and R, which could be used to plot the precision-recall curve. The average precision (AP )

was then calculated as the area underneath the precision-recall curve.

AP =

∫ 1

0
P (R)dR, (5.12)

And the mean average precision (mAP ) would be calculated by taking the mean AP

over all classes and/or overall IoU thresholds. For instance, mAP@0.5 represents the mean

average precision over all classes with an IoU threshold of 0.5 in the first round of deciding

the prediction’s performance, while mAP@0.5 : 0.95 has a similar meaning but it is further

averaged over 10 consecutive IoU thresholds from 0.5 to 0.95 with a step of 0.05.

The mAP curves are shown in Figure 5.4 for SSD and RetinaNet after training for

100 epochs, and for YOLOv5s models after 200 epochs. The epoch numbers were selected

differently in order to achieve the best and stable performance for each model. Particularly,

the maximum values of mAP@0.5 and mAP@0.5 : 0.95 as well as the averaged GPU speed

for image inference, are listed in Table 5.3. As can be seen, RetinaNet achieved the highest

mAP@0.5 among all three models, 93.68 %, compared to SSD’s 90.79 % and YOLOv5s’ 92.11

%. However, its maximum mAP@0.5 : 0.95 value was 66.63 %, which was smaller than that

of YOLOv5s, 69.77 %. Basically, mAP@0.5 : 0.95 is a more comprehensive evaluation metric

for object detection algorithms, as it takes multiple scales of IoU into consideration, which
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Figure 5.4: The plots of mean average precision (mAP) curves of different approaches in the
training and validation process. (a) SSD, (b) RetinaNet, and (c) YOLOv5s.

Table 5.3: Comparison of validation results of different algorithms for sea lamprey detection.

Framework mAP(val)@0.5 mAP(val)@0.5:0.95 GPU Speed [ms / img]
SSD 90.79 % 56.81 % 11.4

RetinaNet 93.68 % 66.63 % 55.0
YOLOv5s 92.11 % 69.77 % 8.4

usually generates a more precise prediction. On the other hand, YOLOv5s cost the least

inference time for each image, 8.4 ms on this GPU, which is qualified for future real-time

sea lamprey detection applications. Therefore, YOLOv5s would be the best detector for this

study.

5.3 Filtered YOLOv5s For Mitigation of The Sensor

Memory Effect

This section presents a real-time automated sea lamprey detection approach using an object

detection method. As shown in Figure 5.5, the proposed YOLOv5s model-based sea lam-
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Figure 5.5: Diagram of the soft pressure sensor and YOLOv5s model-based sea lamprey
detection approach.

prey detection neural networks consists of three parts: a deep convolutional neural network

backbone extracting feature maps from the input mapping contour image, a top-down archi-

tecture network neck constructing multi-scale feature maps, and a confidence score filter end.

The backbone and the neck can directly learn features from the measurements of a soft pres-

sure sensor array and then predict bounding box, class, and confidence of the input contour

image. Meanwhile, due to the soft pressure sensor’s memory effect, the detection network

will view the leftover patterns following the detachment as a normal compression or suction

pattern, which could cause false positives in prediction. In order to mitigate such mem-

ory effect-induced faulty detection, a postprocessing head that filters the confidence of the

compression pattern and suction pattern separately is added to the sea lamprey detection

network. Each of three aforementioned elements is elaborated next.
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5.3.1 Feature Learning Backbone and Neck of YOLOv5

As shown in the detailed diagram in Figure 5.5, the feature learning networks of YOLOv5s

mainly use three Bottleneck Cross Stage Partial (BottleneckCSP) Networks [118] as its back-

bone. The backbone firstly adopts a Focus layer [106] to slice the input images and reshape

the dimensions, then four ConvBNLeaky modules are deployed interdigitatedly between the

BottleneckCSP modules, each of which contains a convolution layer that is connected with a

batch normalization (BN) layer and a LeakyReLU activation layer. After the last ConvBN-

Leaky layer, an Spatial Pyramid Pooling (SPP) [119] module is used to remove the fixed-size

constraint of the networks. The feature maps extracted from three levels of the backbone

will be merged to the following neck part at three corresponding levels.

The feature fusion neck of YOLOv5s is constructed in a top-down Feature Pyramid

Network (FPN) [120] for building high-level semantic feature maps at all scales. These

features are then enhanced with the features from the previous bottom-up pathway via

lateral connections by concatenation, and the fused feature maps will be transferred to a

ConvBNLeaky layer followed by another BottleneckCSP network and a basic 2D convolution

layer. The inference output will be sent to a sigmoid activation layer to regress the normalized

bounding box center coordinates and the normalized widths and heights. Finally, a non-

maximum suppression (NMS) technique is applied to select the best bounding boxes from

multiple candidates.

5.3.2 Postprocessing with Confidence Thresholds

After the feature fusion block, bounding box candidates of predicted sea lamprey attachment

are obtained. Each of the valid candidate contains a pair of normalized center coordinates,
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a pair of normalized width and height, a class label, and a final confidence score. The

confidence score is a probability that an object belongs to one class, which means the product

of the object confidence Confobj and the class confidence Confcls. The object confidence is

calculated from the intersection over union (IoU) between the predicted bounding box and

the ground-truth bounding box.

IoU
g−t
pred =

Area of Intersection

Area of Union
(5.13)

Probj =


0, if IoU

g−t
pred = 0

1, otherwise

(5.14)

Confobj = Probj · IoU
g−t
pred (5.15)

The class confidence is a conditional probability of the class when there is an object being

predicted at that cell:

Confcls = Prcls|obj (5.16)

So the final confidence score can be written as

Conf = Confcls · Confobj = Prcls|obj · Probj · IoU
g−t
pred (5.17)

The trained YOLOv5s model achieved a good performance for the sea lamprey compres-

sion or suction pattern detection. Nevertheless, faulty prediction of sea lamprey attachment

was found on many lamprey experiments in the testing dataset. As discussed in Section
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III.B, the soft pressure sensor had some inherent memory effect when the compression was

removed or when the suction pressure was released. Such a memory effect often lasted for

more than 10 seconds after the lamprey detached from the sensor array. The overall memory

effect showed a relatively low confidence score, thus it is promising to mitigate the false pre-

diction by setting an additional postprocessing module with a higher threshold. Note that

in most cases, the memory effect was more pronounced when the suction was removed than

when the compression was removed from the sensor, which inspired us to set two different

confidence thresholds for the compression pattern and the suction pattern, respectively.

The final confidence scores are fed into a confidence filter to remove all the bound box

predictions with a confidence score less than a designed threshold. This filtering process

proves to be effective for suppressing the sensor’s memory effect as it only outputs the

bounding box information in the beginning of the hardware’s memory stage, and prevents

false detection in the remaining time. Two separate confidence thresholds (θC and θS) for

the compression pattern and the suction pattern, respectively, are optimally selected, which

will be discussed in the next section. The output will be given according to the confidence

value and the confidence threshold of that class:

Output =



BBoxcompression, if class = 0 and Conf ⩾ θC

BBoxsuction, if class = 1 and Conf ⩾ θS

None, otherwise

(5.18)
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5.4 Results and Discussion

The testing dataset from the remaining 20 groups of sea lamprey experiments was used

for testing the trained YOLOv5s model and getting class and confidence scores. Then the

results with the ground-truth labels were investigated in depth to find the optimal confi-

dence thresholds that could not only improve the positive predictions but also suppress false

positive predictions. We first split the testing output dataset into four groups: the true com-

pression subset, the false compression subset, the true suction subset, and the false suction

subset. For the compression subsets, a confidence threshold (θC) was set as a variable, chang-

ing from 0.05 to 1.0. According to this compression confidence threshold, the compression

prediction dataset could be divided into four categories: true positive compression (TPC),

false positive compression (FPC), true negative compression (TNC), and false negative com-

pression (FNC). The corresponding true positive rate, false positive rate, true negative rate,

and false negative rate for the compression pattern are noted as TPRC, FPRC, TNRC,

FNRC, respectively. In this way, the precision (PC), recall (RC), and the F-1 Score (F1C)

of the compression pattern could be evaluated as follows.

PC(θC) =
TPRC(θC)

TPRC(θC) + FPRC(θC)
(5.19)

RC(θC) =
TPRC(θC)

TPRC(θC) + FNRC(θC)
(5.20)

F1C(θC) =
2 · PC(θC) ·RC(θC)

PC(θC) +RC(θC)
(5.21)

Here F-1 score is a metric that balances the precision and the recall using their harmonic
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mean. The performance evaluation metrics for the suction pattern can be obtained similarly

from the suction dataset. Then, the F-1 score curves of both compression and suction

patterns can be drawn, as shown in Figure 5.6-a. The maximum F-1 score is achieved as

0.88359 and 0.51842, when the confidence threshold is 0.1309 for the compression pattern,

and 0.344 for the suction pattern, respectively.

Figure 5.6: Postprocessing results on the sea lamprey testing dataset with the confidence
threshold as the variable. (a) The F1-score curves, and (b) the false positive rate curves, for
both compression and suction patterns.

In the meantime, the corresponding false positive rate curves are shown in Figure 5.6-b,

which are directly related to the faulty detection due to the memory effect. As depicted

in the figure, when the maximum F-1 score is achieved for the compression pattern and

the suction pattern, respectively, the corresponding false positive rate reaches 0.51923 and

0.65431, separately. Moreover, the higher the confidence threshold is, the lower the false

positive rate for both compression and suction patterns. However, this affects the F-1 score

117



as well, and would possibly reduce it when the threshold is too high. Therefore, we propose

to take both the F-1 score and the FPR into consideration in order to determine a “trade-off”

between high positive prediction and low false prediction. This was realized by introducing

a regularization co-efficient to the following cost function:

LC(θC) = F1C(θC)− λ · FPRC(θC) (5.22)

where λ ⩾ 0 is the regularization (or penalty) parameter, which controls the relative im-

portance of the F-1 score with regard to the regularization FPR term, and the subtract

operation is used since higher F-1 score and lower FPR are desirable. The choice of the

value of the regularization parameter λ can be determined by the specific purpose or focus

of that application.

And the optimal confidence threshold θ̂C for the compression pattern was selected in

order to maximize this cost function:

θ̂C = argmax
θC

LC(θC) (5.23)

The cost function and the optimal confidence threshold for the suction pattern can be

achieved similarly.

As an illustration, Figure 5.7-a shows a sequence of images from the recorded experimen-

tal video with ground-truth bounding box annotation, Figure 5.7-b shows the corresponding

mapping contours with the original predictions from the YOLOv5s model, and Figure 5.7-c

shows the corresponding mapping contours with the filtered predictions from the YOLOv5s

model with two designed confidence thresholds. The corresponding predicted information

for this time period is also listed in Table 5.4. At the first second (t = 231 s), a sea lamprey’s
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Figure 5.7: Illustration of the faulty detection problem due to the sensor’s memory effect.
(a) Image sequence of the pressure sensor array with ground truth bounding boxes. (b)
Corresponding mapping contour plots with bounding box predictions from the YOLOv5s
detection model without postprocessing (which means the confidence thresholds are both 0.05
for compression and suction patterns). (c) The filtered prediction results with a confidence
threshold of 0.131 for the compression pattern, and 0.344 for the suction pattern, respectively.
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Table 5.4: Predicted information during an interval of the soft piezoresistive pressure sensor
array’s memory effect.

Time (s) Class Confidence True or False
231 Compression 0.80 True
232 Suction 0.46 True
233 Suction 0.18 False
234 Suction 0.27 False
235 Suction 0.33 False
236 Suction 0.16 False
237 Suction 0.27 False
238 Suction 0.31 False

mouth was attached on the right side of the sensor array while the original prediction showed

a correct compression pattern in Figure 5.7-b. Then in the next second, the sea lamprey slid

to the right boundary and disengaged from the sensor array. The original predicted bound-

ing box in Figure 5.7-b at this time instant did not track the sliding of the suction pattern

to the right side. Moreover, in the following time interval (231–238 s), the lamprey had been

completely away from the sensor array, but there were still suction patterns shown in the

following mapping contours, and consequently, the original YOLOv5s detection network still

plotted predicted bounding boxes on each contour in Figure 5.7-b. On the contrary, when

the confidence threshold was set as 0.131 for the compression pattern, and 0.344 for the suc-

tion pattern in the postprocessing unit (in this case, λ = 0), the filtered predictions turned

to be correct with most of the false prediction bounding boxes not displayed on the results.

This filtering process with a pair of selected confidence thresholds proves to be simple but

effective to the soft pressure sensor array-based sea lamprey detection.
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5.5 Conclusion

This work introduced an automated soft pressure sensor array-based sea lamprey detection

approach using object detection neural networks, with a designed confidence threshold to

mitigate the sensor’s memory effect before final prediction outputs. We first collected a

comprehensive sea lamprey dataset of attachment mapping contours with two major pat-

terns: “compression” and “suction” patterns, and annotated the dataset with ground-truth

bounding box and class estimated from the synchronized experimental videos. Then three

different object detection models were trained and validated on this sea lamprey dataset. By

evaluating their overall performance, the YOLOv5s model was selected as our sea lamprey

detection approach. More importantly, in order to achieve the best precision and suppress

false prediction due to the sensor’s memory effect, a postprocessing unit was added to the

YOLOv5s model with two different confidence thresholds for the two categories of patterns.

The trade-off between higher precision and lower false positive rate could be achieved by a

regularization method.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This work aims to explore soft pressure sensing system for sea lamprey detection within the

bigger context of controlling the sea lamprey invasion and restoring the fish community in

the Great Lakes. It tackles the challenges that most soft sensing research facing. The novel

and compact solutions explored in this work accompanied by the case studies provide new

ways to build smart underwater sea lamprey detection systems.

First, we developed an effective pressure sensing panel, comprised of arrays of commercial

vacuum pressure sensors, to characterize suction dynamics of sea lampreys in static and

flowing water. For adult sea lampreys, suction pressures ranged from –0.6 kPa to –26 kPa

with 20 s to 200 s between pumps at rest, and increased to –8 kPa to –70 kPa when lampreys

were manually disengaged. An array of sensors indicated that suction pressure distribution

was largely uniform across the mouths of both juvenile and adult lampreys. Suction pressure

did not differ between static and flowing water when water velocity was lower than 0.45

m/s. Such information benefits design of new systems to monitor behavior, distribution and

abundance of lampreys.

Then we reported the design of a soft capacitive sensor that is capable of measuring

both positive and negative pressures. The ability to detect negative pressure, which is
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rarely reported in the literature, was achieved in our work by designing air gap channels

in the dielectric layer between the crossbar electrodes. The air gap channels enhance the

deformation of the sensor and lead to significantly improved sensitivity especially for negative

pressure. The influence of the air gap geometry on the sensitivity was also systematically

studied through both single-pixel measurements and finite element simulation. Based on

the experimental and simulation analysis of single pixel sensors, a 12-by-12 sensor array for

spatial mapping of both positive and negative pressures was also demonstrated. However,

this soft capacitive pressure sensor could not work well underwater unless we find a good

way to shield the interference of the water from the sensor itself.

We further developed a low-cost and efficient discrete piezoresistive pressure sensor array

and new algorithms for properly processing the measured data to reconstruct the pressure

pattern. In particular, in order to recover the cell resistance from the measured two-point

resistance, we introduced several inverse algorithms based on the least-squares minimization

and Tikhonov regularization. The approaches were validated with results from experiments

with live sea lampreys underwater. The pros and cons of the different reconstruction methods

were discussed in depth.

Finally, we developed an automated soft pressure sensor array-based sea lamprey de-

tection approach using object detection neural networks, with mapping contour images con-

verted from the sensor array’s measurements as input, and with a designed confidence thresh-

old to mitigate the sensor’s memory effect before final prediction outputs. Three different

object detection models, including SSD, RetinaNet, and YOLOv5s, were trained and vali-

dated on a comprehensive sea lamprey dataset of “compression” and “suction”” mapping

contours, and the YOLOv5s model was selected as our sea lamprey detection approach due

to its best mean average precision and fast inference speed. More importantly, a postprocess-
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ing unit was added to the YOLOv5s model with two designed confidence thresholds for the

compression and suction patterns, respectively, and the trade-off between higher precision

and lower false positive rate could be achieved by a regularization method.

6.2 Future Work

For the soft capacitive pressure sensors, as discussed in Chapter 3.5, there are some challenges

in detecting sea lampreys underwater due to the electromagnetic interference (EMI) of water

and sea lampreys, thus more investigation will be conducted with regard to EMI shielding.

Thin conductive silicone layers or conductive tapes or fabrics could be tested for shielding

the EMI interference from the soft capacitive pressure sensor device.

For the automated sea lamprey detection system proposed in Chapter 5, it is worth

noting that, although the image-based strategy which converts measurement data to mapping

contour images as the input is a novelty for this work and has advantage in visualization

and interpretation, the data-based strategy is still promising and of merit, and it can be

achieved by developing some multilayer perceptron (MLP) neural networks to learn features

directly from the data. Moreover, both the data-based strategy and the image-based strategy

are actually processing the same set of original raw data, the difference is that the image-

based method generates more data into the 2D colored images by adding RGB channels and

interpolating data between the original raw data with multiple contour levels. Such data-

to-image conversion should maintain the features of the original data, but it may become

slower for the image-based neural networks to detect patterns as there are more data to be

processed in the input image. In order to have a better understanding of both methods, the

data-based method will be implemented and compared with the image-based method in our
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future work.

In addition, for the image-based method proposed in Chapter 5.3, although the filter unit

added to the sea lamprey detection system has been proven to be simple but efficient for

mitigation of the sensor’s memory effect, the mapping contour images are processed frame

by frame individually according to the output confidence, while the suction dynamics of the

sea lamprey’s attachment and the evolution of the historical data have not been taken into

consideration at all. Therefore, an alternative way to mitigate the sensor’s memory effect

might be looking into the time sequential data of the output class and confidence or even the

bounding box information. By learning from these time sequential data, the sea lamprey’s

suction dynamics such as the changing trend of the mapping contour patterns between the

time of attachment and that of detachment is possible to be captured, thus a more robust

detection might be achieved.

For other future work, it will be of interest to develop soft pressure sensor arrays with

larger sensing area and higher spatial resolution on soft and non-flat substrates, and test

our automated sea lamprey detection approach on these sensors. The developed automated

lamprey detection system needs to be experimentally tested in the field environment, to

evaluate its performance and robustness in the presence of practical challenges such as flow

disturbances and variations in ambient temperatures. Finally, the proposed smart sensing

system could be used in a number of ways, such as selective fishway operation, where the

sensing panel could be integrated with an electric field-based deterrence mechanism. In

particular, once the smart panel detects an attachment of a sea lamprey, it will locally

activate high electric fields to stun or deter the animal.

While the smart pressure sensing system was motivated by the sea lamprey detection

problem, it is applicable to other applications in soft robotics, wearable electronics, bio-
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monitoring, human-robot interaction, underwater exploration and virtual reality.
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