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ABSTRACT

We propose an adaptive servocompensator utilizing frequency estimation and slow adaptation for
systems subject to inputs of unknown frequencies. We show that the proposed controller can achieve zero
tracking error for a class of periodic references and disturbances, including scenarios specifically relevant
to piezo-actuated nanopositioning systems. In particular, for the case of a sinusoidal reference input, we
establish the exponential stability of the closed-loop system in the presence of harmonic disturbances,
under certain conditions on the amplitudes of the reference and disturbances. We also prove exponential
stability in the case of sinusoidal reference and disturbance with two distinct frequencies. Additionally,
we show that the proposed method, in conjunction with approximate hysteresis inversion, can attenuate
the effect of hysteresis nonlinearity preceding linear dynamics and ensure the boundedness of the closed-
loop system. Experiments conducted on a commercially available nanopositioner confirm our theoretical
analysis and demonstrate the effectiveness of the proposed method as compared to Iterative Learning

micro-technologies
Hysteresis

Control, a competitive technique in nanopositioning for tracking periodic references.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The tracking problem for both linear and nonlinear systems has
been a commonly explored topic in the control literature. Among
the variety of techniques employed for solving such problems
are servocompensators, also known as internal model controllers,
which were developed for linear systems in the 1970’s (Davison,
1972; Francis & Wonham, 1975). The most appealing feature of
servocompensators is that, in the presence of plant uncertainty,
they can completely cancel disturbances whose internal models
are contained in the controller as long as the system remains
stable. Isidori and Byrnes extended the internal model technique to
nonlinear systems in Isidori and Byrnes (1990), and many authors
have coupled servocompensators with adaptive controllers to
address unknown internal models (Elliott & Goodwin, 1984;
Nikiforov, 1998; Serrani, Isidori, & Marconi, 2001). The applications
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of internal model controllers are also diverse. For example, Isidori,
Marconi, and Serrani applied an adaptive servocompensator to
an altitude tracking problem in helicopters (Isidori, Marconi, &
Serrani, 2003), and Singh and Schy utilized a servocompensator to
control an elastic robotic arm (Singh & Schy, 1986).

Another popular topic in the literature over the past two
decades has been the control of smart materials and other systems
with hysteresis (Cavallo, Natale, Pirozzi, & Visone, 2003; Iyer, Tan,
& Krishnaprasad, 2005; Tan & Baras, 2004; Tan & Iyer, 2009).
Piezoelectric-actuated systems in particular have generated a great
deal of interest due to their use in nanopositioner applications,
such as Scanning Probe Microscopy (SPM) (Devasia, Eleftheriou, &
Moheimani, 2007). From a theoretical perspective, an intriguing
element in the control of piezo-actuated systems is dealing with
the strong coupling between uncertain vibrational dynamics and
the hysteresis nonlinearity (Devasia et al., 2007). In such devices,
hysteresis is caused by the existence of multiple stable equilibria
of the polarization state for any applied electric field (Smith, 2005),
and, along with vibration and creep, it is a major obstacle impeding
high-accuracy, high-speed tracking (Croft, Shed, & Devasia, 2001).
Due to high performance demands in SPM applications, there
are many ongoing efforts to apply advanced control techniques
to nanopositioning systems. H,, control (Salapaka, Sebastian,
Cleveland, & Salapaka, 2002) and 2-degree-of-freedom control (Lee
& Salapaka, 2009) have been shown to provide robustness to plant
uncertainty and facilitate tracking in the presence of hysteresis.
In the work of Zhong and Yao (2008), the hysteresis effect was
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modeled by a combination of a linear gain and an unstructured
exogenous disturbance, which was attenuated by an adaptive
robust controller. Sliding mode control (Bashash & Jalili, 2009) and
disturbance observers (Yang, Hara, Kanae, Wada, & Su, 2010; Yi,
Chang, & Shen, 2009) have also been used to compensate for the
effect of hysteresis.

An interesting approach to the control of systems with hystere-
sis utilizes the aforementioned servocompensators, due to their
ability to facilitate high-frequency tracking while attenuating the
impact of hysteresis (Esbrook, Tan, & Khalil, 2013). It is often of
interest to adapt the servocompensator, so that the controller de-
sign does not require exact knowledge of the internal model and no
manual modification to the controller is needed should the internal
model change. However, traditional adaptive servocompensators,
which adapt directly all internal model parameters, can strug-
gle in systems with hysteresis. In Esbrook, Tan, and Khalil (2010)
we implemented an adaptive servocompensator, based on the de-
sign described in Serrani et al. (2001), on a nanopositioning stage.
Despite some initial success, the controller failed to respond prop-
erly when we attempted to compensate for harmonics of the
reference. In this example, there were four parameters in the inter-
nal model, intended to compensate for the fundamental frequency
and the second harmonic. After a lengthy period of slow drift, a
series of peaking events occurred in the first and third adaptation
variables. These issues were caused by the fact that the harmon-
ics introduced by hysteresis are small compared to the reference;
therefore, the corresponding variables have difficulty converging
during adaptation.

To overcome the problems observed above, in this paper we
propose augmenting an internal model regulator with a frequency-
estimation-based slow adaptation law, a combination which we
refer to as an indirect adaptive servocompensator. In this paper, the
term frequency refers to the fundamental frequency of a periodic
signal. For example, a sinusoid, a triangular wave, or a square wave
will all be referred to as having one frequency although the latter
two clearly have harmonic frequency components. Similarly, when
we say two or more frequencies, we mean specifically frequencies
that are not known a priori to be multiples of each other (thus
cannot be simply treated as harmonics). When sinusoidal or
sawtooth waves (a.k.a. raster or triangular waves) are passed
through a hysteresis operator, the output signal possesses a
spectrum with frequency components at multiples of the reference
frequency (Esbrook & Tan, 2012). We can use this knowledge to
design a more efficient adaptive controller. In particular, by using
multiples of the estimated frequency, we are able to facilitate
tracking while simultaneously attenuating the effect of hysteresis
without increasing the number of adaptation variables.

In this paper, we investigate the performance and stability of
the indirect adaptive servocompensator in a variety of situations.
We first establish local exponential stability for the general case
of n unknown frequencies. Our main theoretical results focus first
on the case where the plant is subjected to a sinusoidal reference
input with unknown frequency and to a disturbance consisting
of the harmonics of that frequency, and we present a condition
on the amplitude of the fundamental frequency component with
respect to those of the harmonics that guarantee exponential
stability and zero tracking error. Second, we prove exponential sta-
bility for systems subjected to a sinusoidal reference and a sinu-
soidal disturbance that have distinct, unknown frequencies, using
a phase-portrait based approach. Based on our exponential stabil-
ity results, we then extend our work to systems with hysteresis,
and establish the boundedness of the closed-loop system when the
adaptive servocompensator is used in conjunction with a hystere-
sis compensator. We finally present simulation and experimental
results, which confirm our theoretical analysis and demonstrate
the effectiveness of the proposed controller in nanopositioning ap-
plications. While it is not feasible to compare our proposed method

with all reported approaches in nanopositioning (which are many),
we have implemented an Iterative Learning Controller (ILC) (Wu &
Zou, 2007), as this method is among the most competitive control
schemes in nanopositioning literature, and is similarly specialized
to periodic signals. We observe that the proposed method outper-
forms ILC for sinusoidal signals at 5, 25, 50, 100 and 200 Hz, and is
competitive with ILC for a sawtooth signal of 5 Hz.

Several related problems have been addressed in the literature.
In particular, both Bodson and Douglas (1997) and Brown and
Zhang (2004) utilize estimation of an unknown frequency and an
internal model controller to reject an unknown disturbance. Lu and
Brown extended the work of Brown and Zhang (2004) to the case
where the disturbance is an exponentially damped sinusoid (Lu
& Brown, 2010). Wang et al. dealt with this problem in a noisy
discrete-time setting, where an additional adaptive controller was
included to combat the noise and minimize the output variance
(Wang, Chu, & Tsao, 2009). However, each of these works focuses
on the case where there is only one unknown frequency, and
furthermore, do not analytically explore the case where harmonic
disturbances are present.

The paper is organized as follows. In Section 2, we introduce
the class of plants and signals to be considered, and also present
the controller design. Stability of the system in a variety of
scenarios is shown in Section 3. The performance of the closed-loop
system when hysteresis inversion error is present is discussed in
Section 4. Simulation and experimental results on tracking control
of a nanopositioner are presented and discussed in Section 5, and
concluding remarks are given in Section 6.

2. Problem formulation and controller design

We will consider systems comprised of a linear plant G,(s),
represented in state-space as

x(t) = Ax(t) + B(u(t) + a(t))

y(©) = (1) (1)
where u(t) is the control signal, and «(t) is a matched disturbance.
The control objective is to regulate the tracking errore(t) = y, (t)—
y(t) to zero, where y, (t) denotes the reference signal to be tracked.

We will deal with a variety of reference and disturbance signals in
this paper, and the general form we consider is

yr(®) =) Rusin(Gent + ) (2)
k=1
a(t) = Z Z Tk Sin(Grwit + Pi) (3)

i=1 k=1

where the frequencies w;, phases @1, and ¢j, and the amplitudes
Ry; and ry, are unknown. The constant vector £ = [{q, ..., {n] 1S
assumed to be known a priori and is used in the control design.
We assume that each ¢ is a natural number, and that ¢; = 1.
Note that this class of reference signals also covers T = 27 /w1-
periodic waveforms approximated by a finite Fourier series. We
will then focus on two special cases of (2) and (3). First, we consider
a sinusoidal reference and a harmonic disturbance, which follows
from the general setup by lettingn = 1, Ry, = 0,Vk # 1, and
¢]] =0:

Yr(6) = Ry sin(wst) (4)
a(t) =) rysin(Gent + pu). 5)
k=1

This particular choice of reference and disturbance is motivated
by applications such as nanopositioning (Esbrook et al., 2013),
where at the steady state an input nonlinearity (e.g., hysteresis)
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Fig. 1. Block diagram of the closed-loop system.

introduces a matched disturbance with harmonics at multiples
of the frequency of a sinusoidal reference (Esbrook & Tan, 2012).
The second special case of (2) and (3) we consider consists of a
sinusoidal reference and sinusoidal disturbance with unknown and
unrelated frequencies, i.e., m = 1,n = 2, ®y; = 0,and r;; = 0:

Vi (t) = Ryy sin(w1t) (6)
a(t) = ry sin(wat + ¢a1). (7)

This choice of reference and disturbance is indicative of a system
perturbed by an external source, which is often considered in
tracking problems (Isidori et al., 2003). The following assumption is
typical in the servocompensator literature (Davison, 1972; Elliott &
Goodwin, 1984; Francis & Wonham, 1975; Isidori & Byrnes, 1990;
Nikiforov, 1998; Serrani et al., 2001).

Assumption 1. The plant G,(s) has no zero at jQrw;, i =1, ..., 1,
k=1,...,m.

Fig. 1 illustrates the design of the controller. First, based on
the internal model principle (Davison, 1972; Francis & Wonham,
1975), we design a servocompensator for the aforementioned
system. We define the servocompensator Ci(s), with state n' =

[}, mb .., 1] € R¥™, input e(t), and output y. € R, as
7'(t) = C*(o0)n' (t) + Be(t) (8)
Ye(t) =k, (0)n'(t) + D (op)e(t)
where
€ (o) - 0 k1B
C(o) = : . Br=|
0 &nC (o) KmB*

C'(o) = |:—Ooi ((TJii| ’ B* = [?] :

o; is the estimate of the frequency w;, and k = [k1, k2, ..., km] €
R™, k; > 0 Vi, ki () € R™™ and D(0;) € R are design pa-
rameters used to stabilize the system. In particular, we will select
the design parameters k; (0;), D.(07), and « such that each C'(s)
behaves like a notch filter, similar to what was done in Mojiri and
Bakhshai (2004). For example, if n = m = 1, then

Cl(s) = s2 +2¢.5101s + (§101)?
52 4+ (5101)?

where . < 1 is the notch parameter. This reduces the effect the
compensator has on the overall phase margin of the system, which
will allow us to stabilize the system over all possible frequency es-
timates. We have also left {; in the above equations despite our
assumption that it is equal to 1, in order to make the effect of ¢;
more clear when n, m # 1. We then utilize n such servocompen-
sators connected in parallel to realize the compensator C(s) shown
in Fig. 1. The i superscript is used to denote which frequency esti-
mate C'(s) uses. Note that if there is only one unknown frequency,
C(s) = C'(s). To clarify the notation, we denote the combined

state of the n parallel servocompensators C(s) as 7. We also de-
note the vectors of unknown frequencies and their estimates as
w=[wi,...,on] and o = [0o1, ..., 0,], respectively.

We will also require a stabilizing controller D, (s), given in the
state-space as

E(t) = Adk () + Bu (Z yi(t)) 9)
i=1

u(t) = Go€(t) + Da (Zyé(r)) : (10)
i=1

The output of the stabilizing controller D,(s) is u(t), the control
signal to the plant (1). We will also define the state vector y =
[x, 1, €] for later use. Since the frequencies are unknown, the vec-
toro € R" will be updated by an adaptation law, the goal of which
is to drive the parameter error & = o — w to zero. The estima-
tion of the ith frequency o; will be governed by the adaptation
law,

Gi = —yioi(t)e(®); (1) (11)

where 1 > y > 0 is the adaptation gain, and 77'{ represents
the first component of the state vector ' of the servocompensator
Ci(s). The smallness of y; is required to facilitate two-time-scale
averaging analysis on the system, which will be discussed in Sec-
tion 3. Furthermore, we will select the initial condition of o to be
positive and bounded away from zero. The form of the adapta-
tion law was originally derived from a formal gradient approach,
then modified into that in (11) to guarantee stability. A very sim-
ilar adaptation law was proposed by Brown and Zhang in Brown
and Zhang (2004).

3. Analysis of the closed-loop system

We shall analyze the closed-loop system using two-time-scale
averaging theory (Sastry & Bodson, 1989; Teel, Moreau, & Nesic,
2003). Two-time-scale averaging allows us to separate the anal-
ysis of the closed-loop system into the analysis of two separate
subsystems, a fast or boundary-layer system, and a slow or aver-
age system. We first establish the stability of the boundary-layer
system in Section 3.1. In the following subsections, we investigate
the stability for the average system, and subsequently for the full
closed-loop system, for different cases of the reference and distur-
bance input. Specifically, in Section 3.2 we prove local exponen-
tial stability for the general n-frequency case. In Sections 3.3 and
3.4, we establish stronger, global exponential stability results for
more specialized cases of one frequency (4)-(5), and two frequen-
cies (6)-(7), respectively.

3.1. Stability of the boundary-layer system

First define the matrices
C*(0) = diag(C*(a1), C*(02), . . . , C*(0))

k(o) = [k)(01)' k2(02)' ... K (on)']
Dc(0) =) Di(oy)
i=1

and B* as an n-high stack of vectors B*. We now define the
boundary-layer system for the general closed-loop system (1)-(3),
(8)-(11), by setting y; = 0,Vi = 1,2, ...,nin(11). This freezes
the value of o at oy,;. Denoting the state variables of the boundary-
layer system as xp =[xy, 0, &1, we write the closed-loop
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boundary-layer system as

xo1(t) = for(Xb1, o1, t)
(A — BD4D(0)C)  BDgky (o)  BCq
= -B*C C*(om) 0 | Xub
—ByD.(op)C Bak,(on)  Ag

BD4Dc(op1)yr (t) + Bex ()
+ B*y, () . (12)
BaDc (o) (t)

Using frequency-domain techniques, we can use the stabilizing
controller (9)-(10) to establish input-to-state stability (ISS) of the
boundary-layer system. Recall that we have selected the output
matrices of C(s) to guarantee that it behaves like a notch filter.
Therefore, we can design D, (s) to stabilize the transfer function

Hy(s) = M_ (13)
1+ Dy (s)Gp(s)

Using this controller structure, it can be shown that the system will
be ISS-stable for a small enough ¢, provided the gain crossover
frequency g of Hy(s) is sufficiently far away from oy. Note
that since the boundary-layer system is linear, ISS implies that
the closed-loop system states will converge to the steady-state
trajectories exponentially fast for any periodic reference y, (t) and
disturbance «(t). In addition, note that if 0, = w, the tracking
error e(t) will converge to zero.

3.2. Averaging analysis for the case of n unknown frequencies: local
exponential stability

We now shift our attention to the slow or average system.
This analysis is based on the two-time-scale averaging framework
presented in Sastry and Bodson (1989), and we will utilize
this framework to analyze the closed-loop system for different
reference trajectories in Sections 3.2-3.4. We begin by considering
the case where there are n unknown frequencies, shown in (2) and
(3). We first define 6; as the average of oj, as well as the vector

6 = [61, ...0,]. The dynamics of 6; obey
b = FaOmi(0, 1), 6;, 1)
I A i
= — lim = Gie(t)n; (t) dt (14)
=00 T Jy

where e(t) and nil(t) represent the steady-state trajectories of e
and 7 resulting from the boundary-layer system (12) with o, = 6.
We will make the following assumption to simplify the form of the
equation for the average dynamics 6.

Assumption 2. The combinations {;w; are unique, ie., {fo; #
gy foralli,k = 1,...,n;,f,g = 1,...,m, unless f = g and
i=k

This assumption implies that no two unknown frequencies share
a harmonic of order below max(¢), and is primarily made to keep
the following equations manageable. Define G,(s) £ G,(s)/Gqa(s),
and let

Gi(s) = H H(s + (@60 - H(s + (6. (15)

k=1,k#i 1=1
We also define
Fi(G1, x) = yi67 11 |Gi(igioon) | /2 (16)
D(jgiwx) = Ga(jGior) Ca (o) + Gr(iG1e01) Cu (jG1con) Dy (jEicor) - (17)

where C(s) = C,(s)/Cq(s). We also will require following defini-
tion,

Hi(jox) = [R%,md(iwk)ﬁ + 151Ga @) |* — 2Ryl Ga (o) |

X [Ga(Geo)| - cos(£Gy(jen) + P+ g1 |- (18)

Note that H; > (Ry — |Gp|r1,)2 > 0. Using Assumption 2 and the
above definitions, we can calculate the form of 6; (derivation de-
tails omitted in the interest of brevity):

. " —Fi(g1, o)H(jw1) (07 — ¢fo?)
0; = -
; ID(jgiwq)|?

—Fi(@, 00 |Gn a0 Prg 07 — ¢Pwp)
+
Z; ,Z ID(igin) 2

Note that, foreveryi,k = 1,...,nand [ = 1, ..., m there exists
a combination 6; and ¢;wy, such that G;(j¢jwy) is zero if 6; = wy, ex-
cept for the case wherei = k and | = 1. This fact can be seen by
looking at the final product grouping in (15), [T%,[(s* + (5i6:)?)].
In addition, notice that |C(i§,a)k)| always appears squared. There-
fore, using the product rule of differentiation, we can see that any
partial derivative of the right-hand side of (19) with respect to
6, ¥l = 1,...,n and evaluated at the equilibrium point 0 = w
will be zero, except the partial derivative with respect to 6;. In addi-
tion, this guarantees that when this partial derivative is evaluated
at 6 = w, only the portion of the derivative taken with respect to
the term (9 — ¢ ;) will be non-zero. This can be calculated as

(19)

30| _ Ny~ —Fil o0Hio) Qo)
Wi lo=y 4= IDGgi1)
- —Fi(&1, i) |Gn0€lwk)|2rkl(2wi)
+ 20
kZZ ID(Gi1cor) 12 (20)

which is always negative over the adaptation variable range.
Therefore, the resulting Jacobian of the average system is com-
prised of negative terms in the diagonal, and zeros everywhere
else; thus the average system is exponentially stable for suffi-
ciently small initial conditions (6(0) — w). We also note that if
0 = w, the closed-loop system (1)-(3), (8)-(11) transformed into
error coordinates possesses an equilibrium where e(t) = 0. Let
x denote the steady-state solution of the aforementioned closed-
loop system when o (t) = w. Then by Theorem 4.4.3 of Sastry and
Bodson (1989), the origin of the closed-loop system with coordi-
nates (x (t) — x (t), o (t) — w) is locally exponentially stable.

3.3. Averaging analysis for the case of one unknown frequency:
exponential stability

In this subsection, we will focus on the case where there is
one unknown frequency, and present a sufficient condition for the
exponential stability of the closed-loop system. We will assume
that y, and o obey (4)-(5).

Assumption 3. The plant G,(s) has no poles at s = jw;.

Theorem 1. Consider the closed-loop system (1), (4)-(5), and (8)-
(11). Let Assumptions 1 and 3 hold. Let x denote the steady-state
solution of the aforementioned closed-loop system when o (t) = w;.
Then, for all bounded initial conditions (x (0), o (0)) where o (0) > 0,
there exist constants R, > 0 (dependent on {ry;};’,)and €, > 0, such
that, if Ryy > R, and y < €, all states of the closed-loop system are
bounded. In addition, the origin of the closed-loop system expressed in
the error coordinates (x (t) — x (t), o (t) —w1) is exponentially stable,
and the tracking error e(t) converges to zero exponentially fast.
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Proof. To prove Theorem 1, we will require exponential stability of
both the boundary layer system, established through the controller
design in the previous subsection, and exponential stability of the
average system. Note that we will be removing the i super and
subscripts from signals in this subsection, since there is only one
frequency to estimate. Now let

Ces) =16+ @o)”. (1)

k=2
We can then calculate @ as,

_ _F(]vwl)H(iCW) 22
= T Dlwpp 0TV

—F (g1, 0)T1Gr(iG101) |2 (0% —
* Z DGz

where F and H are defined by suppressing the subscripts in
(16) and (18) respectively. Note that H(jw;) is guaranteed to be
non-negative, and is positive (due to Assumptions 1 and 3) if
Ri1 > 111G, (jwy) |, which we will assume for the remainder of our
analysis. In addition, notice that 0 is positive for w; > 6 > 0,
and negative for & > ¢pw;; therefore the initial condition of 0
defines an invariant set X in which 6 resides for all time. We now
use Lyapunov analysis to show exponential stability of the average
system. We start with the Lyapunov function candidate V = 62 /2,
where 8 = 0 — w1. Using (22) and the definition of H (jw1), we can
evaluate V as

—F(, w)H(jo) (0 + 1) ~,
ID(w1) 2

—F (&, 013G (iGi01) 2 (0% —
" Z DG 2

It can be easily seen from (23) that if ry; = 0, V] > 1, there will
exist a constant k > 0 such that V < —kV. This proves exponential
stability of the system if a(t) = 0.

We now focus on the case where ry; # 0. It is important to
note that |C(1§1a)1)| and thus F (¢, w1), possesses a term of the
form |50 — Gwi| = &|6)|. Also note that (62 — (Gw:)?) and 6
possess the same sign when 6 < wq or 6 > {pw;. This implies
that there exists a constant ¢; > 0 such that V < —c;V when

Q’ [0, {mw — w1]. We can therefore focus our attention on the
set @ € [0, &y — 1]. We notice that within this set, |6 = 6.
Therefore, when | # 1, we can find a constant ¢; > 0 to bound

F(¢, 1) inthe set 6 € [0, Lmw1 — w1] as

2
(Giw1)?) (22)

V:

2
(Grw1) )é (23)

F(g, @1) < ¢f.

Finally, from (22) and the condition Ry; > r11|G(jw1)|, H is strictly
increasing with the reference amplitude Rq;, while F(-) is inde-
pendent of Rq;. This allows us to write, for positive constants k;
and k,,

V < —R2, k167 + crky0? (24)

where the existence of k; and k;, are guaranteed by the bound-
edness of & within the set of interest. Therefore, for a sufficiently
large R;1, there exists a constant ¢c; > 0 such that when 0 € [0,
{mw1 — w1,

V < —c,V. (25)

Since both ¢ and c; are greater than zero, we can use the minimum
of these two constants to bound V for all #, and conclude the expo-
nential stability of the average system. Since we have now shown

exponential stability of both the average and boundary layer tra-
jectories, we can apply Theorem 4.4.3 of Sastry and Bodson (1989),
and conclude exponential stability of the trajectory (x, w;) for a
sufficiently small adaptation gain y, which also implies the bound-
edness of the state trajectory and the convergence of the tracking
error to zero. [

Remark 1. Assumption 3 is not typically found in the adaptive
control literature; however, it is required in our proof since
Theorem 1 shows both the tracking error e and adaptation error
o converge to zero. If this assumption is not satisfied, stability
can still be shown for sufficiently large ry; by using r;; in the
same manner Ry; was used in the above proof. This is because if
Ga(jorr) = 0, from (18), H(jw) becomes 2, |G, (jw1)|.

Remark 2. The required size of R1; > R; is determined by the sizes
of the constants k; and k; in (24). These constants vary with the
frequency w1, plant transfer function G,(s), stabilizing controller
D, (s), and the size of the disturbance.

3.4. Averaging analysis for the case of two unknown frequencies:
exponential stability

We now present results on the stability of the closed-loop
system in the case of two unknown frequencies, (6)-(7). Without
loss of generality, we will assume for our analysis that w; < w,. We
willalsoset y; = y, = y, which will create a very useful symmetry
in the dynamics of the average system. As there are now multiple
frequency estimates, we will reintroduce the i subscript in order to
differentiate between the first and second frequency estimates and
frequencies. Using the symmetry of the system, we can compute
the dynamics of the average system as

= f(61,6,)
02 = f(62,01) (26)
where
_ —F(a, b, )R} |Ga(jn) > (@® — w?)

fla.b) = ID(a, b, wn)

—F(a, b, wy)r3,|Gy(jw2) |* (@* — w3) (27)

|D(a’ ba w2)|2

F(a, b, w;) = ya*k;(b* — w?)?/2 (28)

D(a, b, wy) = Gyjw)(a® — w?)(b* — &?)
+ [Gn (i) Dy (jeoi) (@® — wf + 2 wiaj)
- (b? — 0 + 2¢wibj)] (29)

where due to the symmetry of the system, we note that D(a, b,
w;) = D(b, a, w;). We will analyze the system (26) using a phase
portrait approach. Based on the terms (a® — wZ) and (a® — a)z) in
(27), we know that the system possesses equilibrium points atd =
(w1, wy) and 8 = (w,, w1). Because of the symmetric structure of
the controller, either of these equilibrium points is desirable from
a tracking perspective, as the boundary layer system at either point
possess zero tracking error. A second consequence of the terms
(a*—®?) and (a® —w3) is that, from any positive initial condition 6y,
the state 6 enters the invariant set (61, 6;) € [w1, W] X [w1, W] &
£2.This follows from the inequalities F(a, b, w;) > 0,Va < wq,i =
1,2andF(a, b, w;) < 0,Va > w,, i = 1, 2. Within £2, we have the
following result.

Lemma 1. Let Assumptions 1 and 3 hold. For any 6 € £2, the inner
product

(][]
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is positive if 6, > 61, negative if 6, < 61, and zero if 6, = 6, except
for the cases 0 = (w1, wy) or 8 = (w3, w1), where the inner product
is zero.

Proof. The inner product can be directly calculated as

<|:z;:| ’ |:_11:|> = f(bh, 62) — f(62, 61)

yk1R2, Galjon) 2 (602 — w3) (62 — w?)
2|D(6y, 65, w1)|?

16763 — ) — 6367 — )]

Y1} |G (j02) |2 (0 — @3) (03 — w3)
2|D(6y, 6, w)|?

(0705 — w3) — 05(07 — w))]. (30)

+

The bracketed terms can be simplified to [w;(6; — 67)] and
[wr (922 —912)] respectively, which together with Assumptions 1 and
3 completes the proof. O

There are several consequences of this lemma. The first conse-
quence is that there are no equilibrium points within the interior of
£2, except for on the line 8; = 6,. However, any equilibrium points
on the line must be unstable, since the vector field always points
away from the 6; = 6, line inside £2. Second, there are no possi-
ble limit cycles within £2, as the existence of a limit cycle would
require the above inner product to be zero on locations other than
the 6; = 6, line. These facts, together with the forward invari-
ance of £2, imply that from any initial condition 6y, the trajectory
6(t) converges to either (w1, ;) or (w,, w,). Furthermore, it can
be shown that the points (w1, w;) or (w,, w1) are locally exponen-
tially stable. We start from the Lyapunov function candidate

61 —w1)? (62— w)? N ﬁ n éj

V(®) = .

®) 2 + 2 2 2

Consider the set

A2{0:101] < &, |02 < €} (31)

We will now show exponential stability of the point (w;, w;)
within A. Exponential stability of the point (w,, @) can be shown
by redefining 6; = 6; — w, and 6, = 6, — w4, and altering the
following equations accordingly. We seek to find an €. such that V
is negative definite within A. Assuming that the system is currently
within the set A, we substitute 6; = w; + 6, and 0, = w, + 6,
where 6, 0, € [—¢, €]. Using these substitutions together with
(26), we can then bound V by

V< _912R%1K1

< W[V1912|Gd0w1)|2 - V2922|2C01 + eclec]

Lt
D61, 62, w2) |?
Using Assumptions 1and 3, we can see that for a sufficiently small
€., there exists a cg > 0 such that V < —cyV. Combining the
asymptotic stability and local exponential stability, we imply from
Theorem 4.4.3 of Sastry and Bodson (1989) that the origin of the
closed-loop system with coordinates (x(t) — x(t),o(t) — w),
where w = (w1, w;) or = (w,, w1), is exponentially stable. We
have thus proved the following theorem.

[1205 Ga(j2) |* — 11071202 + €cléc]. (32)

Theorem 2. Consider the closed-loop system (1), (6)-(11). Let As-
sumptions 1 and 3 hold. Let x denote the steady state solution of the
aforementioned closed-loop system when o (t) = w, where ® =
(w1, wy) or @ = (wy, wy). Then, there exists a sufficiently small
y, such that, for all bounded initial conditions (x (0), o (0)) where
0 (0) > 0and 01(0) # 03(0), all states of the closed-loop system are

30

20 25 30

Fig. 2. Phase portrait of average system for a sample plant and controller. The zero
level curves of 6, (primarily vertical) and 6, (primarily horizontal) together with
the neutral axis 6; = 6, are also plotted.

bounded. In addition, the origin of the closed-loop system with coor-
dinates (x (t) — x (t), o (t) — w) is exponentially stable. Furthermore,
the tracking error e(t) converges to zero.

Remark 3. If the initial conditions and controller parameters of
each Ci(s) and g; are chosen to be equal, the system will behave as
if it is a single controller with a single adaptation law, as there will
then be identical compensators connected in parallel with identical
states. We refer to this as a degenerative state for the controller.
This can be prevented by choosing o1(0) # 0,(0).

Remark 4. For systems with non-equal adaptation gains, it can be
quickly shown that all possible equilibria in £2, other than (w1, @;)
and (w,, w1), must reside on the ; = 6, line, and the set of these
equilibria is the same as that for the case of identical adaptation
gains. In addition, it can be shown that the stability properties of
those equilibria are the same given different choices of adaptation
gains. In other words, no stable equilibria exist in £2 except the
desired points (w1, ;) and (w5, w1). However, the existence of
limit cycles in this system cannot be excluded as readily as in the
identical gain case, and this will be addressed in our future work.

Fig. 2 shows an example phase portrait of the average system
(26). In addition to the phase portrait, we have plotted the level
curves of the 6, and 6, equations. For this particular set of system
parameters, there are three unstable equilibria on the 6; = 6, axis
(two saddle points and one unstable node). For this special case
of equal adaptation gains, the regions of attraction for the stable
points can be explicitly calculated and are divided by the 6; = 6,
line. For cases where the adaptation gains are not equal, the form
of the regions of attraction are more complicated.

4. Analysis of the closed-loop system in the presence of
hysteresis

Of particular importance to our work is the case where the
matched disturbance « is the result of error in hysteresis inversion
and where the reference trajectory is a sinusoid, as was the case
in Esbrook et al. (2013). Consider a linear plant preceded by a
Preisach-like hysteresis operator such as the Prandtl-Ishlinskii (PI)
operator (Brokate & Sprekels, 1996), as illustrated in Fig. 3. Such
models have proven effective at capturing the dynamics of systems
with hysteresis, including piezoelectric systems (Croft et al., 2001;
Devasia et al., 2007; Wu & Zou, 2007). The output of such operators
are formed through a weighted superposition, i.e., u(t) = 9'W(t),
where the elements of the vector W(t) € 9" are the states of
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Hysteresis Dynamics

Qutput ‘;..

Input ; 7- N GP(S)

Fig. 3. Illustration of linear plant preceded by hysteresis operator, commonly used
to model piezoelectric-actuated nanopositioners.

Hysteresis Hysteresis
Inversion
/ 4
u,lt) S| v u(t)
— —
F
/

Fig. 4. Hysteresis inversion process. i is the desired input.

smaller hysteresis elements called hysterons, and ¢ € R" are the
weights. The weights are in general unknown, so controllers must
be designed based on an approximate output, 1§/W(t). A common
and effective technique in the control of such systems is to use
an inverse hysteresis operator to attenuate the effect of hysteresis
(Cavallo et al., 2003; Iyer & Tan, 2009; Tao & Kokotovic, 1995), a
process which is illustrated in Fig. 4. For a Presiach-like operator,
one can calculate the difference between the desired input uy(t)
and actual input to the linear plant u(t) as (Esbrook et al., 2013)

ug(t) — u(t) = W) (33)

where & = & — . For a sinusoidal reference, we can then describe
the resulting closed-loop system via equations (1), (4), (8)-(11),
and (33), where we set u4(t) equal to u(t) in (10). Such a system
can, under suitable conditions, be shown to possess a unique,
asymptotically stable T-periodic solution (Pokrovskii & Brokate,
1998; Tan & Khalil, 2009).

Once we have established that the solutions of closed-loop sys-
tem are periodic at the steady state, we can use the properties of
the servocompensator to analyze its disturbance attenuation prop-
erties. Since all signals in the closed-loop system are T-periodic,
we can rewrite %'W (t) using Fourier series expansion as two sig-
nals; o, which has the form of the disturbance (5), and «g, which
has the form

aq(t) = Y rusinClont + ¢y).
Llgt

Here ¢ € R™ will be considered as a design parameter to determine
how many harmonics of the reference are compensated by the
servocompensator. Therefore, we can treat the closed-loop system
with hysteresis as the closed-loop system considered in Section 3.3
perturbed by the additional matched disturbance «4. Define X =
[(x — x),0 — w] as the state vector of the nominal closed-
loop system (1), (4), (8)-(11), transformed into error coordinates.
We have already shown that this system is exponentially stable;
therefore, from the converse Lyapunov theorem (Khalil, 2002), we
have that

allXl? < VX) < allX|?

V < —cs|IX|I?,

= cllX]|

for a positive definite function V and positive constants cy, . . ., C4.
Now consider the closed-loop system with the disturbance oy.
Taking a time derivative of V (X), we arrive at,

V < —csllXI? + call Xl

X Y 1C ($)SOIG(S)IS()Gy(5) I,

k.kd¢

S=jku)1

The RHS of (34) is negative definite for

[o0)

C4/k2¢ 1Cyy ($)S(8)Gp()]IS(5)Gp ($) |1,
k, k&

X1 >
C3

S=jka)1

Since ry, Vk ¢ ¢ is proportional to ||1§/||, for a sufficiently small
||z~9/|| and y, there exists a constant ks such that ||X| < ks. By
varying the analysis above slightly, we can arrive at a similar bound
for the system without hysteresis (i.e. «(t) = 0), but the reference
signal is an infinite summation of sinusoids, such as a raster or
triangle wave. In such a case,

o0
V< —aslIXI?+ clXI Y 1C,, (5)S(S)IIS(5)IRY,
kkec s=jkor

for some positive constants ¢s and cg, and Ry, represents the
amplitude of the kth harmonic component in the reference.

5. Simulation and experimental results

In this section, we present simulation and experimental results
that illustrate and support the analytical results in Sections 3
and 4. Specifically, in Section 5.1, we show simulation results
that demonstrate the influence of reference amplitude on the
convergence for the case of one unknown frequency. Sections 5.2
and 5.3 contain experimental results that deal with the cases of one
and two unknown frequencies, respectively. These experimental
results also provide direct support for the analysis in Section 4,
because of the presence of hysteresis compensation error in the
experimental system.

5.1. Simulation results for the case of one unknown frequency

We begin by verifying the analysis presented in Section 3.3, in
particular the restriction on the size of Ry;. Recall that in order to
prove stability of the closed-loop system (1), (4)-(5), and (8)-(11),
we required the reference amplitude Ry; to be sufficiently large
relative to the size of the harmonic disturbances present in the
system. In order to verify this, we present Fig. 5, which shows the
results of a pair of simulations conducted on the vibrational model
of our piezoelectric nanopositioner,

0014 1700 0.095 —0.050
o .| =1.700 —0241 —0672 0.170
X)) = 10x10° o095 0672 —1.066 1.617 |*©
0050 0170 —1.617 —0.305
278
111.3
+ | Z1165 [ 4O
—441
yt) =[27.8 —1113 —1165 44.1]x(t) (35)

where

Vi (t) = Ryy sin(wqt)
o (t) = 5sin(2wqt)
wi; = 2m100, and Rq; is a constant variable. The servocompen-
sator was designed accordingly with { = [1, 2]. The stabilizing
controller D(s) was designed using frequency-domain techniques
based on the frequency response of the plant, and was chosen as

1.3(3.5 x 10%)?
s2 + 1.6(3.5 x 10%)s + (3.5 x 10%)2°

Dy(s) = (36)
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Fig. 5. Simulation results on the model of the piezoelectric plant. Two simulations
are presented, with Ry; = 10 and Ry; = 11.
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Fig. 6. Output spectrum for nanopositioner used in experimental studies. Input
to power supply is 3sin(2z5) + 4V. Primary harmonic is not shown, but has an
amplitude of 25.2 pm.

This controller was verified to stabilize the boundary layer system
(12) over the working range of our adaptation variable . When the
reference amplitude R;; = 11, we notice that the frequency esti-
mate converges to the desired value of w{. However, when the ref-
erence amplitude R;; = 10, the frequency estimate settles slightly
below 2w1. This also results in a very large difference in tracking er-
ror, with essentially zero tracking error (0(10~1°)) whenRy; = 11,
but 2.45 when Ry; = 10; thus our results from Section 3.3 are con-
firmed, with the value of R, lying somewhere between 10 and 11.

5.2. Experimental results for the case of one unknown frequency

We will now experimentally demonstrate the effectiveness
of the proposed controller on a commercial piezo-actuated
nanopositioner (Nano OP-65, from Mad City Labs), whose vibration
dynamics are given by (35) with a primary resonance of 3 kHz.
The hysteresis nonlinearity of the plant was identified using a
quasi-static waveform of decreasing amplitude. A least-squares
optimization routine was used to identify optimal weights for a
modified PI operator (Kuhnen, 2003) with 9 deadzone elements
and 8 play operators, which was then used to calculate an
approximate hysteresis inversion. Fig. 6 shows the magnitude
spectrum of the positioner output with a sinusoidal input. Note
that the amplitude of the harmonic terms is significantly lower
than that of the primary term. After inversion is implemented in
the closed-loop system, these harmonic terms will be smaller;
therefore we can expect the controller to stabilize the system
according to Theorem 1.

Table 1
Tracking error results for proposed controllers (MHASC, ASC) and ILC. Results are
presented as a percentage of the reference amplitude (20 jum).

Hz MHASC (%) ASC (%) ILC (%)
Mean Peak Mean Peak Mean Peak
5 0.12 0.64 0.31 0.92 0.17 0.78
25 0.14 0.71 0.37 1.01 0.19 0.58
50 0.21 0.93 0.46 1.14 0.53 1.01
100 0.39 1.61 0.56 1.76 0.53 1.25
200 0.94 3.12 0.79 3.33 1.36 3.49

We tested the regulation performance of the proposed method
through tracking experiments, using sinusoidal references from 5
to 200 Hz, along with a 5 Hz sawtooth signal. In order to understand
the effectiveness of the proposed controller, we will compare the
tracking results with an established method in nanopositioning
tracking problems, Iterative Learning Control (Wu & Zou, 2007),
which, like the servocompensator, is specifically suited for periodic
references and effective at compensating for hysteresis effects as
well as uncertain dynamics. Our performance metrics will be the
mean tracking error, defined as the mean of |e(t)| at steady state,
and the peak tracking error, defined by computing max |e(t)| over
one period of the reference, then taking an average of this value
over many periods.

For the sinusoidal references, we will employ two versions of
our proposed controller; an indirect adaptive servocompensator
(ASC) with the design vector ¢ = [1], and a multi-harmonic
indirect adaptive servocompensator (MHASC) with ¢ = [1, 2, 3].
Both controllers are based on the analysis of Section 3.3. The
adaptation gains used were y = 0.003 for the 5 and 25 Hz cases,
y = 0.001 for 50 Hz, and y = 0.0005 for the 100 and 200 Hz
experiments, where we have adjusted the adaptation gains to get
similar settling times for each test.

The tracking results are presented in Table 1. We notice that
the MHASC enjoys a consistent advantage over both the ILC
controller and ASC controller. As the frequency of the reference
trajectory increases, the ASC begins to overtake the ILC controller
in performance, but is significantly behind at low frequency,
indicating that the proposed controller’s tracking performance is
less sensitive to model uncertainties than ILC. At 200 Hz, we notice
that the ASC has better mean-error performance than the MHASC,
which is highly counter-intuitive. However, this can be explained
by the design of the stabilizing controller. With a frequency of
200 Hz, the successive harmonics used in the MHASC mean that
the servocompensator has a great effect on the stability margin
of the system. For the ASC, with 0 = 2200, the closed-loop
system possesses a phase margin of around 70°. However, the
phase margin of the MHASC at this frequency is 25°. This causes
the other harmonics of the hysteresis being amplified, and results
in the higher tracking error.

Figs. 7 and 8 offer a closer look at the performance of the
different methods at high and low frequencies. As the system
approaches the gain crossover frequency near the resonant
frequency of the plant, the effect of the hysteresis harmonics are
amplified, resulting in the effect of the hysteresis becoming more
pronounced. We can clearly observe the more prominent presence
of higher harmonics in the 100 Hz signal as compared to the 5 Hz
signal.

The second reference we test is a 5 Hz sawtooth signal, with
the results shown in Fig. 9. We set the design parameter { =
[1,3,5,7,9, 11] in order to approximate for the sawtooth signal,
as well as compensate hysteresis. The frequency of the sawtooth
wave was limited to 5 Hz, due to concerns with the stabilizing
controller. The ILC controller’s wide bandwidth nature makes it
much better suited to compensating a sawtooth signal than our
proposed method, and this results in an mean tracking error of
0.17% for ILC versus 0.28% for our proposed controller. However,
the proposed method is still able to effectively compensate the
sawtooth signal.
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Fig. 7. Experimental results for a 5 Hz sinusoidal signal.
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Fig. 8. Experimental results for a 100 Hz sinusoidal signal.
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Fig. 9. Experimental results for a 5 Hz sawtooth signal.

5.3. Experimental results for the case of two unknown frequencies

We now present our experimental results on the performance
of the proposed controller when y, and « obey (6)-(7), as
considered in Section 3.4. In order to simulate disturbances of the
formin (7), we inject a disturbance of 10 sin(27r 75t + /2) into our
Simulink block diagram just before the hysteresis inversion. The
reference trajectory is 10 sin(2 25t). For the purposes of control
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Fig. 10. Phase portrait of o4 and o>, for various initial conditions. Desired equilibria
are marked by the stars (red, in the lower right and top left), and initial conditions
are marked by squares.
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Fig. 11. Plot of tracking error and adaptation variables vs. time. Adaptation is
enabled at 2's.

design, it is assumed that both frequencies are unknown, and in
particular are not treated as known multiples of each other. The
adaptation gains used were y; = y, = 0.001.

Fig. 10 shows the phase portrait of the adaptation variables for
a number of initial conditions. Notice that the neutral line oy =
0, is not crossed in any of the experiments. The trajectories of
the adaptation variables seem to indicate the presence of three
unstable equilibria on the neutral line; two saddles points near
the top right and lower left of the figure, and an unstable node
in the center of the figure. The trajectories of the system tend to
initially converge to a manifold on which one variable is close to
a desired frequency, seen in Fig. 10 as the horizontal and vertical
lines. The system then evolves along this manifold to the stable
equilibria. The time evolution of the tracking error and adaptation
variables for one set of initial conditions is shown in Fig. 11. After
the adaptation is enabled at 2 s, the adaptation variables converge
shortly after 7 s, which correlates with a rapid decrease in the
tracking error. These experiments show the robustness of the
proposed method to the error in hysteresis compensation.

6. Concluding remarks

We have presented a series of results on an indirect adaptive
servocompensator motivated by nanopositioning applications.
Novel analysis has been used to show that under certain
conditions, exponential stability can be established for the cases
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where there are one unknown frequency with a finite number
of harmonics, as well when there are two unknown frequencies
without harmonics. Local stability was also shown for cases with n
unknown frequencies. Ultimate boundedness has been shown for
the case where a linear plant cascaded with hysteresis is preceded
by an inexact hysteresis inversion. In particular, we are able to
show that the proposed controller can directly reduce the effect
of hysteresis by compensating for the harmonics generated by
hysteresis. Theoretical results are confirmed experimentally, and
the controller is shown to be effective when compared to Iterative
Learning Control.

Preliminary simulations seem to indicate that it is possible to
extend the results for an n frequency case to include stability in the
large. Analysis of this case will be addressed in future work. In ad-
dition, we plan on investigating alternative stabilizing controllers
to improve the performance of the MHASC at high frequencies.
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