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Approximate Inversion of the Preisach Hysteresis
Operator With Application to Control of

Smart Actuators
Ram Venkataraman Iyer, Member, IEEE, Xiaobo Tan, Member, IEEE, and P. S. Krishnaprasad, Fellow, IEEE

Abstract—Hysteresis poses a challenge for control of smart
actuators. A fundamental approach to hysteresis control is inverse
compensation. For practical implementation, it is desirable for
the input function generated via inversion to have regularity
properties stronger than continuity. In this paper, we consider the
problem of constructing right inverses for the Preisach model for
hysteresis. Under mild conditions on the density function, we show
the existence and weak-star continuity of the right-inverse, when
the Preisach operator is considered to act on Hölder continuous
functions. Next, we introduce the concept of regularization to study
the properties of approximate inverse schemes for the Preisach
operator. Then, we present the fixed point and closest-match
algorithms for approximately inverting the Preisach operator.
The convergence and continuity properties of these two numerical
schemes are studied. Finally, we present the results of an open-loop
trajectory tracking experiment for a magnetostrictive actuator.

Index Terms—Approximate inversion, closest-match algorithm,
electro-active polymers, fixed point iteration algorithm, hysteresis,
magnetostriction, piezoelectricity, Preisach operator, regulariza-
tion, shape memory alloys, smart actuators.

I. INTRODUCTION

SMART materials, e.g., magnetostrictives, piezoceramics,
and shape memory alloys (SMAs), exhibit strong coupling

between applied electromagnetic/thermal fields and strains
that can be exploited for actuation and sensing. Hysteresis in
smart materials, however, poses a significant challenge in smart
material actuators (also called smart actuators). Models for
hysteresis in smart materials can be classified into those that
are physics-based and those that are phenomenology-based.
Physics-based models use principles of thermodynamics to
obtain constitutive relationships between conjugate variables.
Such examples include the Jiles–Atherton model [1] and the
ferromagnetic hysteresis model [2], [3], where hysteresis is
considered to arise from pinning of domain walls on defect
sites. The most popular hysteresis model used for magnetic ma-
terials has been the Preisach operator [4], and it has been used
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lately to model the hysteresis phenomenon in piezoelectrics
[5], magnetostrictive materials [6], [7], shape-memory alloys
[8], [9], and electro-active polymers [7]. The Preisach operator
is a model of the phenomenological type. Although in general,
the Preisach operator does not provide physical insight into
the problem, it is capable of producing behaviors similar to
those of physical systems [4]. It is of great interest to the smart
structures and controls community because of its utility in
developing low-order models that can be used for designing
real-time controllers.

A fundamental idea in coping with hysteresis is inverse com-
pensation (see, e.g., [5] and [10]–[12]), as illustrated in Fig. 1. If
one can construct an approximate right inverse of the hys-
teresis operator , then the output of will approximately
equal the reference trajectory .

This paper deals with approximate inversion of the Preisach
operator , where is required to be a Hölder continuous func-
tion. It contains five contributions: a) the proof of weak-star con-
tinuity of the inverse acting on the space of Hölder continuous
functions, under a mild and easily verifiable condition on the
Preisach density function; b) the formulation of regularization
for the inversion problem; c) the development of a fixed point
iteration algorithm and its convergence analysis; d) the develop-
ment of the closest-match algorithm and its convergence anal-
ysis; and e) experimental validation of the closest-match algo-
rithm. These contributions are briefly discussed next.

Brokate and Sprekels [13] prove the existence and continuity
of the inverse of the Preisach operator when the domain is the
space of continuous functions, under very mild conditions on the
density function. Visintin [14] proves a theorem on the weak-
star continuity of the inverse, when the domain is the space of
Hölder continuous functions, under very strong sufficient condi-
tions on the density function that are not easily verifiable. Fig. 7
shows an identified (in a nonparametric manner) density func-
tion for a magnetostrictive actuator [7]. The density function
has a value zero on a large area of the Preisach domain and this
implies that Visintin’s condition will not be satisfied for this ac-
tuator. We need a theorem for the weak-star continuity of the
inverse operator acting on spaces of Hölder continuous func-
tions that only depends on the density conditions close to the
diagonal on the Preisach plane. Such a theorem would be in the
same spirit as [13, Cor. 2.11.21] for the continuity of the in-
verse operator acting on the space of continuous functions. We
present a theorem in Section II that concludes the results of Vis-
intin’s theorem under mild conditions on the density function
(these conditions are still stronger than Brokate and Sprekels’
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Fig. 1. Illustration of inverse compensation.

conditions, as expected). The utility of this theorem to control
engineers is that the conditions can be easily verified.

In [15], we showed that the approximate inverse to an in-
crementally strictly increasing (ISI) Preisach operator can be
computed numerically. For , consider the or-
dering if and only if for all .
Then the Preisach operator is said to be incrementally strictly in-
creasing [16] (ISI) if there exist constants such that

. This definition
is different from the piecewise strictly increasing operator (PSI)
defined by Brokate and Sprekels. A Preisach operator is said to
be piecewise strictly increasing if

for a monotone input . Under the mild
condition that the density function is integrable and nonzero al-
most everywhere on a strip of positive width along the diag-
onal on the Preisach plane, it is easy to show that the corre-
sponding Preisach operator is PSI. The ISI condition requires
very stringent conditions on the density function. For example,
if the density function took a constant positive value on the set

in the Preisach plane, then it is ISI.
We have shown in [15] and [17] that the Fixed Point iteration:

converges to a function
that satisfies via a contraction. Leang and Devasia
[18] apply this result to the positioning of piezoelectric actua-
tors. In this paper, under the (significantly) milder condition of
PSI Preisach operators, we show the convergence of the same
scheme without using a contraction argument.

We are led to the space of Lipschitz continuous functions as
we would like the solution of the inverse problem, to have reg-
ularity properties stronger than just continuity. For example, in
the case of inductors or transformers with a ferromagnetic core,
the Preisach operator is usually considered to map the axial
magnetic field function to the axial magnetization
(see [4])

(1)

The electro-motive force across the terminals of the in-
ductor is then proportional to the time-derivative of

, where is the permittivity
of free-space. Therefore, it is desirable for which is
the solution to (1) to be a differentiable function of time.
Similar considerations apply to other situations where one
uses the Preisach operator, for example, piezoelectricity. Now,
Rademacher’s Theorem states that a function that is Lipschitz
on an open subset of is almost everywhere differentiable
on that subset in the sense of the Lebesgue measure [19], and
so it is reasonable to seek Lipschitz continuous functions as
solutions to the inverse problem. Consideration of Lipschitz
functions is also motivated by constraints on implementation of
control signals often encountered in practice.

Our theorem (see Theorem 2.2) shows that the inverse maps
generic functions in the space of Hölder continuous functions

on denoted by to the space where
. This result implies that in general, even if

the desired output function is differentiable, the input function
does not need to be a Lipschitz continuous function. For engi-
neering reasons, if one wishes to obtain a Lipschitz continuous
function as the (approximate) inverse of a Hölder continuous
function, an operation called mollification [20] has to be car-
ried out. The natural question that arises then is the following:
If the desired output function is changed by a small amount ei-
ther due to noise or by design, then how “close” is the resulting
mollified solution to the original mollified solution (and in what
sense)? This is a question of enormous engineering importance,
and to discuss it, we develop the notion of regularization for
solving the inversion problem in Section III. Two approximate
inversion algorithms for the Preisach operator are then devel-
oped. Both algorithms use the PSI property of a Preisach oper-
ator. In Section IV, we present the fixed point algorithm to ap-
proximately invert the Preisach operator, and study its conver-
gence and continuity properties under the PSI condition. Next,
the closest-match algorithm is developed and analyzed in Sec-
tion V. The latter algorithm is applied to tracking control of a
magnetostrictive actuator, and experimental results are reported
to demonstrate its efficacy.

II. PREISACH OPERATOR AND ITS INVERSE

To fix the notation and the problem setup, the Preisach oper-
ator and some known results are reviewed first in Section II-A.
Section II-B then studies the weak-star continuity of in the
space of Hölder continuous functions under the weak condition.
Let be a closed interval, , and . The following
notation will be used to denote different function spaces:

• : space of continuous functions on ;
• : space of monotone, continuous functions on

;
• : space of piecewise monotone, continuous

functions on ;
• : space of continuous functions taking values

in , i.e., , , ;
• ;
• : space of Hölder continuous functions on

, i.e., ,

for some constant .

Other spaces such as are defined analogously to
the definition of from . In this paper, the fol-
lowing two norms are heavily used:

and

for .
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A. Preisach Operator

A detailed treatment on the Preisach operator can be found in
[4], [13], and [14]. For a pair of thresholds with ,
consider a delayed relay (called a Preisach hysteron), as
illustrated in Fig. 2. For and an initial configuration

, is defined as, for

if
if
if

where and .
Define the Preisach plane ,

where is identified with . For and
a Borel measurable configuration of all hysterons,

, the output of the Preisach operator is defined as

(2)

for some Borel measurable function , called the Preisach den-
sity function. It is assumed in this paper that ; has a com-
pact support ; and is an integrable function, that is .

For each , can be divided into two regions

output of at is

output of at is

so that . Equation (2) can be rewritten as

(3)
It can be easily shown [4], [13] that each of and is a
connected set, and that the output of the Preisach operator is
determined by the boundary between and . The boundary
is also called the memory curve, since it provides information
about the state of . Thus the initial state function can instead
be replaced by a memory curve in the Preisach plane. Using the
transform: and one can describe
the memory curve as a function defined on a compact
region . The set of admissible memory curves can then
be defined as [13]

where

The memory curve at is called the initial memory
curve and hereafter it will be put as the second argument of
the Preisach operator. Note that equals the last input
value of . The Preisach density will be denoted as in the

coordinates. In this paper, both coordinate systems,
and , are used depending on whichever is more convenient;
similarly, both and will be used for the Preisach
density.

Fig. 2. Illustration of an elementary Preisach hysteron.

Let the input signal take values in , that is,
, . Define the function on

The function is continuous and monotonically increasing
under our basic hypothesis on . It is easy to check that if

for all , then is PSI. Let be the smallest
interval that contains the output values of when the input
takes values in . It can be shown that if , ,
then is invertible and the in-
verse operator is also continuous [13], [14]. Furthermore, Vis-
intin [14] shows that, if

(4)

for , then the inverse of maps
into and it is weak-star continuous.

B. Milder Condition for the Weak-Star Continuity of the
Inverse

Condition (4) is strong since it needs to hold for all
. It is hard to verify directly also, as it is posed

in terms of . In this section, a weaker condition in terms
of the Preisach density function is shown to lead to the
weak-star continuity of the inverse.

Before proceeding, we sketch the construction of the
weak-star topology on , . A function
in the space , , can be expanded using a
Faber–Schauder basis as described in [21, p. 40]. Thus, we
have a map given by .
Its adjoint maps elements in that describe the weak-star
topology on to the dual of . These functionals

, , define the weak-star topology of . In
Section III, we will define a distance metric for the weak-star
topology of based on this construction. It is well
known that this topology is coarser than the norm topology on

defined using .
The following three lemmas will be used in proving the main

result of this section.
Lemma 2.1: Let , . If the Preisach density

, for some , for almost every
, then for

, for some .
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Proof: Let . For

Lemma 2.2: [14] Let , , , be metric spaces such
that and with continuous injections. Let

be continuous and such that it maps relatively com-
pact subsets of into relatively compact subsets of (with
respect to the topologies of and ). Then, is
continuous with respect to the topologies of and .

Lemma 2.3: Let be
a uniform partition of such that ;

, has length . Let , ,
, with and . Then,

the function obtained by concatenation , where
is the indicator function of , belongs in and

.
Proof: As , we have and

for . This implies ,
. Next, for and

We wish to find a constant such that the sum
where and .

Dividing by one obtains the following function
on the left-hand side: where

and . This function is maximized
by for all and the maximum value is

. Thus, and

For and in other intervals , one can proceed similarly and
arrive at the same inequality. Therefore

Before presenting our main theorem on , we summarize
the continuity properties of the operator under certain condi-
tions on . The utility of this theorem is that it combines results
in [13] and [14] under a common condition on the density func-
tion. These are the same conditions needed on for our main re-
sult. It must be noted that these conditions are slightly stronger
than those of [13, Prop. 2.4.11 and Cor. 2.11.21], and weaker
than [14, Th. 3.9].

Theorem 2.1: Let be a Preisach operator with do-
main , where . Assume that the
density function has compact support; is integrable; is
nonnegative; and for almost every

, where , , and .
Then

1) is Lipschitz contin-
uous;

2) is weak-star con-
tinuous, where ;

3) is invertible, and
its inverse can be extended to a continuous operator

.
Proof: By the conditions on the density, the Preisach op-

erator is PSI and is Lips-
chitz continuous (by [13, Th. 2.4.11]). They also show that
maps norm-bounded sets in to norm-bounded sets in

. As these sets are compact in the weak-star topology,
Lemma 2.2 yields the weak-star continuity of . To show the
last statement, note that by Lemma 2.1 for

. As is a continuous, increasing function of and
so for all , the proof of [13, Th. 2.11.20]
applies here.

Under the same conditions on as in the previous theorem,
we would like to show the existence and continuity of the in-
verse for the Preisach operator acting between spaces of Hölder
continuous functions. The following theorem is our main result.

Theorem 2.2: Assume that the Preisach density function
has compact support, , and for

almost every , where
, , . Then, for any ,

is weak-star continuous from to , where
and .

Proof: Let with . By The-
orem 2.1, is invertible and there exists
such that . We will show that belongs in

.
Partition uniformly such that
and where . The choice of will

be described shortly. Restrict to the intervals ;
, and obtain the functions . Similarly restricting

to one obtains . Define the function

for and . Note that

(5)

by [13, Lemma 2.11.18]. As , for

(6)

and, hence

(7)

which by (5) implies

(8)
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From Lemma 2.1

(9)

Now, choose small enough so that

This together with (8), (9), and the monotone increasing prop-
erty of , implies

Note that the choice of fixes the number of partitions .
Next, for ; , (5) and (9) yield

by (5) (10)

as

(11)
which leads to

(12)

Finally, using Lemma 2.3, one gets for some
. This implies that maps norm-bounded

sets in to norm-bounded sets in . As
these sets are compact in the respective weak-star topolo-
gies of , , we apply Lemma 2.2 to
with ; ; ; and

, to obtain the weak-star continuity of .
Let . As , the

linear functionals on are also linear functionals on
. As a result, the weak-star topology on

(denoted by ) is finer than the topology (denoted by ) in-
herited from the weak-star topology of . This im-
plies that weak-star compact sets of remain com-
pact in the topology [22]. Denote the weak-star topology of

by .
Corollary 2.1: Suppose that is a Preisach operator with a

density function that satisfies the conditions of Theorem 2.2.
Let and . Then, the

maps , and

are continuous maps.

Proof: By Theorem 2.2,

is continuous, as . To show the
second statement, observe that the map

is continuous by Theorem 2.1. But we

must have by the definition of . So

is continuous, by the definition
of .

Thus, the composition

is continuous, as is finer than . Note that we cannot infer
a similar statement had we considered the composition

. Thus, we are naturally led to the concept of right inverses
of Preisach operators and fortunately, that is what is needed in
applications.

III. REGULARIZATION

The objective of this section is to study approximate solution
methods for the operator equation

(13)

where . Since the condition for
guarantees the existence of a continuous inverse for

, theoretically there is no need for any reg-
ularization if one is looking for just a continuous input func-
tion. However, for implementation of the inverse in numerical
and physical experiments, it is desirable that the input gener-
ated via inversion has certain regularity properties, for example,
Lipschitz continuity. The two algorithms to be discussed later in
this paper result in Lipschitz continuous functions as approx-
imate solutions to (13) for . On the other hand, the
proof of Theorem 2.2 shows that a piecewise strictly increasing
Preisach operator has an inverse that maps generic functions in

to functions in with ,
which rules out the possibility of getting a Lipschitz continuous

in general. This raises the issue of how to evaluate an approx-
imate inversion scheme in terms of the convergence to the exact
inverse. For this purpose, it is useful to define a norm on approx-
imate inverses by the following procedure.

As , , is isomorphic to , the weak-star
topology on is defined by a countable family of semi-
norms. On the other hand, is isomorphic to and
so its weak-star topology is also defined by a countable family of
seminorms [21]. Using these seminorms, one can define equiv-
alent metrics on , such that convergence in
any of the metrics is equivalent to convergence in the weak-star
topology [23, page 14]. Denote any one of the metrics so ob-
tained on , where and , by

. A key observation is that these metrics are translation
invariant, that is, since they are de-
fined using seminorms.

One would like to define an (induced) norm for in
studying the convergence of approximation schemes. Putting
the inverse operator and various approximate inverses in a
vector space would facilitate the use of tools available to vector
spaces. This can be achieved by appropriately shifting the input
and the output of . To be specific, considering that the inputs
must have the initial condition and the outputs
must have the same initial value , we define
the sets , and ,
and the maps

(14)

(15)
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By translation invariance of , one has
and .

It can be verified that belongs in the vector space
(with field ) of maps that

satisfy , where are the zero-func-
tions in ; . The zero element on is simply
the element that maps all to . On , we can
define the norm

(16)

Convergence of approximate inverse schemes can be discussed
using this norm.

Definition 3.1: Let be defined by (14). A regularization
strategy for is a family of operators

such that

1)

(17)

2)

(18)

uniformly on bounded sets of .
In other words, one requires point-wise convergence for

and weak-star convergence for . Obvi-
ously, with domain restricted to functions in is in

. The following elementary lemmas hold for the family .
Lemma 3.1: If , as , then

uniformly on
bounded sets of .

Proof: Consider the bounded set
. Now

by the translation invariance of

by the definition of

So given an , there exists an such that: If ,
then for all .

This lemma shows that (18) is weaker than norm-conver-
gence. Since is weak-star
continuous, one would like the approximating family to have
a similar property. The next lemma studies the weak-star conti-
nuity properties of the family .

Lemma 3.2: Let be bounded and be a regular-
ization strategy for . Then given and a bounded set ,
there exists an and such that: If ;

; and , then
.

Proof: Let . Then, given
, there exists such that for all , we

have , for all .
Therefore, for

for

where is chosen as .
This lemma shows that verifying the boundedness is suf-

ficient to ensure weak-star continuity-like properties of the regu-
larization strategy. It also shows that one should not try to prove
the weak-star continuity of for any fixed , but rather
consider the family as a whole.

IV. FIXED-POINT ITERATION-BASED APPROXIMATE INVERSION

In this section, an approximate inversion algorithm is
proposed based on successive iteration. The point-wise con-
vergence condition for a regularization strategy (17) is proved
under the same conditions on the density function as in The-
orems 2.1 and 2.2. The second condition (18) is much more
difficult to prove, and we will consider it in future research.

First, consider the case that the desired output function
is monotone. Let denote the space of nonde-
creasing, continuous functions on taking values in , and

denote those functions in that are
Lipschitz continuous. We consider the equation
where and (and )
in Proposition 4.1. Analogous results are true if
and (the space of nonincreasing functions) are
considered.

Proposition 4.1: Assume that the Preisach density function
has compact support; is integrable; is nonnegative; and

for almost every
, where , , and . Let denote the

Lipschitz constant for . Let with the corresponding
output . For with , consider the
following algorithm:

(19)

Then, the following hold.

1) For any , ; and if
, .

2) As , converges pointwise to
with .

3) For , let be the smallest integer satisfying
. Then

4) As , we have uniformly on .
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Proof:

1) Under the hypothesis on the density function, it is clear
from Theorem 2.1 that
is Lipschitz continuous. We will first show

, . Then, we will show that is Lip-
schitz continuous provided .

Clearly, , . We use induction to
show . Since is a constant
function, it is nondecreasing. Now, suppose that for
some , is nondecreasing. This, together with
the Lipschitz continuity of , implies, for

(20)

Using (19), we have

and, therefore, is nondecreasing.
Next, we show that is Lipschitz continuous

for every , if , again by induc-
tion. Note that is Lipschitz continuous and

by Theorem 2.1. Hence
is Lipschitz continuous, and by (19)

is Lipschitz continuous. Furthermore, if we assume
to be Lipschitz continuous, the same arguments

imply that is Lipschitz continuous. Thus,
is Lipschitz continuous for every , by induction.

2) Consider the sequence . As
, we have . In the pre-

ceding, the inequality is said to be true, if
and only if for all . Suppose

for some . From (19)

(21)

(22)

The Lipschitz continuity of the operator im-
plies

(23)

Subtracting (22) from (21), and using (23), we get
. Note that if

and only if by (19).
For each , as is a monotone in-
creasing sequence bounded by , the sequence

as . Hence, converges

pointwise to some . By the continuity of ,
the sequence . By
(19), which implies

. Now, we have due
to the condition on the density function and item 3)
of Theorem 2.1, and because each

is monotone and the set is a closed
subspace of .

3) If for some ,
, then . Since

is nonincreasing with
, and is bounded by

, one concludes that after iterations,
for every .

4) By Lemma 2.1 and the assumption on , we have
for , for some .

Hence

(24)

From item 3), as . Equa-
tion (24) then implies the uniform convergence of to .

Based on Proposition 4.1, the following algorithm (see illus-
tration in Fig. 3) can be used to generate an approximate inverse

for such that
.

Fixed Point Algorithm:
Step 1. Pick such that

, and the variation in each
monotone section of is at least .
Let
be the standard partition for . We will
shortly define the times .
Step 2. On , run the algo-

rithm (19) (at most times) until
. Set

for

Step 3. Let be the smallest time
instant such that .
is well defined considering Step 1. Set

on ;
Step 4. Run (19) times on with

, which defines on ;
Step 5. Continue Steps 3 and 4 until

is defined up to the final time .

As in Section III, for , define

and (25)

Define

(26)

where is the result of the fixed point algorithm. Let
and , be defined as in

(14) and (15).
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Fig. 3. Illustration of the fixed-point iteration-based inverse algorithm.

One can establish the following regularization-type proper-
ties for the scheme .

Theorem 4.1: Assume that the density function of the
Preisach operator satisfies the conditions of Proposition 4.1.
Let . Then

1) ,

(27)

2)

(28)

uniformly for on bounded sets of .
Proof: Given , choose

according to step 1). By Proposition 4.1, on the time-intervals
where , we have:

. On the time intervals
where , is simply a constant, and by step 3) of
the fixed point algorithm: .
Thus, , and then

Hence, the scheme satisfies the first condition (17) for a
regularization strategy.

Next, let , and be given by (25). Let
. Pick such that . Then,

. The finest partition
needed for all such functions is one with intervals of length

. Therefore, the upper bound on the number of it-
erations needed for convergence (to within in the sup-norm)
is . Thus, we have uniform convergence on
bounded sets in .

By Theorem 2.2, where
. This implies that belongs

in , even though . As
, we have , where

denotes the weak-star dual of . Let be an element
of . Since as , we have

as (29)

The previous result falls slightly short of showing that is
a regularization scheme. In order to show is a regularization
scheme, (29) must hold for all . This is a ques-
tion that needs to be further investigated in the future.

V. DISCRETIZATION-BASED APPROXIMATE INVERSION

In this section, a discretization-based approximate inversion
scheme is discussed. The discretization results in a discretized
Preisach operator, an approximate inverse of which can be ef-
ficiently constructed by the so called closest-match algorithm.
Experimental results on trajectory tracking of a magnetostric-
tive actuator based on this algorithm will also be presented.

A. The Closest-Match Algorithm

There are two discretization steps involved, discretization of
the input range and discretization of the time
interval . Discretize uniformly into
levels and denote the resulting set of discrete input values as

, where

and . As a consequence of input dis-
cretization, the Preisach plane is discretized into cells.

When restricted to inputs taking values in , the Preisach
operator becomes a weighted combination of a finite number of
hysterons, where the weight of each hysteron equals the integral
of the original Preisach density function over the corresponding
grid (see Fig. 4 for illustration). Denote this discretized Preisach
operator as and its set of memory curves as . Note that
an element of consists of vertical or horizontal segments,
each with length .

Discretization of time is performed similarly. Given ,
the time interval is uniformly divided into sub-intervals
with consecutive end-points denoted as , where

with .
Let denote the set of sequences of length taking

values in , i.e., , , for . For
the discretized Preisach operator , an approximate inversion
problem can be formulated as follows: Given and

, find (set of sequences taking values in
), such that

(30)

Since is not “onto”, only an approximate
inverse is sought in (30).

Dynamic programming can be used to solve (30) [24]. How-
ever, as and get large, this approach becomes prohibitive in
terms of computational and storage costs. A sub-optimal scheme
is to sequentially generate an input sequence of length so
that at time , is minimized. This de-
composes the original (approximate) inverse problem of length

into successive problems of length 1. To be precise,
at each time instant, given the current memory curve (from
which the current input and output can be derived) and
a desired output value , find , such that

(31)
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Fig. 4. Illustration of the discretization scheme (L = 4), where weighting
masses are located at the centers of cells.

Also, the resulting memory curve should be returned for use
at the next time instant.

The following algorithm can be used to efficiently solve (31)
(see Fig. 5 for an illustration). As the fixed-point algorithm, it
is also based on the piecewise strictly increasing property of the
Preisach operator, and it fully utilizes the discrete structure of
the problem. Consider the case (the other case
is dealt with analogously). Intuitively, in this algorithm we keep
increasing the input by one level in each iteration, until either:
a) the input reaches the maximum , or b) exceeds .
For case a), take ; for case b), take to be or

whichever yields smaller output error. In both cases,
so obtained solves (31).

Closest-Match Algorithm
Step 0. Set .
Step 1. If , let ,
, go to Step 4; otherwise
, [backup the memory curve],
, go to Step 2;

Step 2. Evaluate , and
(at the same time) update the memory curve
to . Compare with : if ,
let , , go to Step 4; if

, go to Step 1; otherwise go to Step
3;
Step 3. If , let

, , go to Step 4; other-
wise , [restore the memory
curve], go to Step 4;
Step 4. Exit.

It is not hard to see that this algorithm yields in at most
iterations.

B. Approximate Inversion Based on the Closest-Match
Algorithm

An algorithm to approximately solve is pro-
posed as follows: Pick , .

• Step 1): Construct from based
on the input discretization rules (i.e., approximating
the given by an element in ).

• Step 2): For , construct via
.

• Step 3): Obtain by applying the closest-
match algorithm described previously.

Fig. 5. Illustration of the convergence of the closest-match algorithm.

• Step 4): Construct using linear
splines based on , i.e.,

if , , and .
Analogous to (25) and (26), denote

, , and define

(32)

Similar to Proposition 4.1, for , we have the
following convergence results for the closest-match algorithm-
based inversion scheme:

Proposition 5.1: Assume that the density function of the
Preisach operator satisfies the conditions of Proposition
4.1. Let denote the Lipschitz constant for . Then for any

,

1) for any , ;
2) as

(33)

3) as , we have uni-
formly on , where , and

.
Proof:

1) As is constructed using linear splines, it is clear
that . As is monotone nonde-
creasing, is also monotone and nondecreasing by
the nonnegativity condition on the density function.

2) Note that by the construction of , it is also Lips-
chitz continuous with the same Lipschitz constant
for . Hence, if the input at any instant is increased
(or decreased) by , the output of at time is in-
creased (or decreased) by no more than . From
the closest-match algorithm

(34)

where . By the construction of ,
it is within the -neighborhood of (see [14, p.
113], for the definition of neighborhood of a memory
curve), and hence by the Lipschitz continuity of ,

(35)
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Noting , we get
from (34) and (35), for

Since both and are monotone,
nondecreasing on , for ;

, if , one
has

(36)

where is the continuity modulus of . Same in-
equality can be obtained if .
Therefore, for each

As , is uniformly continuous on .
Thus, the right hand side of (36) is independent of .
Therefore

(37)

Equation (33) follows, since as .
3) Let . Then, as

. The function is also mono-
tone, by the nonnegativity condition on the density
function and by .

From item 3 of Theorem 2.1, is
continuous and, hence, we get from (33) that

as .
Again let and be defined by (14) and

(15), and defined by (25). The following theorem shows a
continuity property of similar to that for the Fixed Point
iteration method.

Theorem 5.1: Assume that the density function of the
Preisach operator satisfies the conditions of Proposition 4.1.
Then

1)

(38)

2)

(39)

uniformly for on bounded sets of .

Proof: The first item follows by simply repeating the proof
of Proposition 5.1. Other than the monotonicity of (defined
to be ), the rest of the proof applies to this case.

Fig. 6. Typical hysteresis curve of the Terfenol-D actuator.

The proof of the second statement is exactly analogous to that
of Theorem 4.1, and utilizes the convergence in the norm
of the functions to .

C. Experimental Results on Tracking Control

The above inversion algorithm is applied to tracking con-
trol of a magnetostrictive actuator (made of Terfenol-D). Mag-
netostriction is the phenomenon of strong coupling between
magnetic properties and mechanical properties of some ferro-
magnetic materials: strains are generated in response to an ap-
plied magnetic field, while conversely, mechanical stresses in
the materials produce measurable changes in magnetization. By
varying the current in the coil surrounding the Terfenol-D rod,
one can vary the magnetic field inside the rod and thus control
the displacement output of the actuator. The actuator used in
this study is an AA-050H series Terfenol-D actuator manufac-
tured by Etrema. The displacement of the actuator is measured
with a LVDT sensor (Schaevitz 025MHR). Fig. 6 shows the hys-
teretic relationship between the current input and the displace-
ment output.

When the input current is quasi-static, the hysteretic behavior
of the magnetostrictive actuator can be modeled as [17]

(40)

where and are the magnetic field and the bulk magnetiza-
tion along the rod direction, respectively, is the current input,

is the displacement output, is the coil factor, is the rod
length, is the saturation magnetostriction, and is the sat-
uration magnetization. In (40), the magnetostrictive hysteresis
is essentially captured by the ferromagnetic hysteresis between

and , which is modeled by the Preisach operator .
For a discretization level of , the weighting masses for

can be identified through a constrained least squares algorithm
[7], [25]. Here has been chosen to be 25, and

. Fig. 7 shows the identified density function. As can be
observed, the density function is nonzero along the line,



808 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 6, JUNE 2005

Fig. 7. Identified Preisach density function for a commercial magnetostrictive actuator.

Fig. 8. Trajectory tracking of a magnetostrictive actuator based on the approximate inversion.

which is the same as the line in coordinates (recall
that the variables and are related according to

and ). Therefore, the key condition of
Theorem 2.2 and Proposition 4.1 is satisfied, and both Theorems
4.1 and 5.1 can be applied to this actuator to find an approximate
right-inverse.

An open-loop tracking experiment has been conducted based
on the closest-match inversion algorithm. Fig. 8 shows the com-
parison of the desired trajectory and the actual trajectory, to-
gether with the tracking error. The desired trajectory is chosen

to vary in both amplitude frequency. The tracking error is small
(under 3 ), which shows that the inversion algorithm is effec-
tive. An extension of this approach to the closed-loop control
of the magnetostrictive actuator over a 0–200 Hz range can be
found in [26].

VI. CONCLUSION

The Preisach operator is a popular tool for hysteresis mod-
eling in various smart materials. Inversion of the Preisach oper-
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ator plays a fundamental role in effective control of these mate-
rials. This paper dealt with approximately inverting the Preisach
operator, in such a way that the resulting functions have some
regularity properties. We first presented a weak and easily veri-
fiable condition that guarantees the weak-star continuity of the
inverse operator. Motivated by this result, the notion of a regu-
larization strategy was proposed for the inversion problem.

In practice, exact inversion of the Preisach operator is gen-
erally not possible due to numerical limitations. Two inversion
schemes were developed in this paper, both of which fully uti-
lized the piecewise strictly increasing property of the Preisach
operator (under some mild conditions on the density function).
Both algorithms yield Lipschitz continuous inputs. They were
shown to satisfy the first condition for a regularization strategy.
Both schemes also enjoy a continuity property that is similar
to but weaker than that of a regularization strategy. An inter-
esting direction for future work is to investigate whether the two
schemes satisfy the second condition (18) for a regularization
strategy.
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