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 O
ver millions of years of evolution, fish have 
developed a flow-sensing system to detect 
the surrounding fluid motion, which consists of 
hundreds of receptor organs distributed on – 
and under – the skin [1]. Flow sensing serves an 
important role in swimming behaviors such as 

rheotaxis (orientation into or against the flow direction), 
station holding, predation, and schooling. 

Advanced underwater vehicles that are biologically inspired 
attract scientific attention because of their potential for en-
ergy efficiency and maneuverability [2,3,4,5]. A flow-sensing 
capability enables robotic fish to navigate in unknown, murky, 
and cluttered environments. To demonstrate bio-inspired 
flow sensing and control using distributed pressure and 
velocity sensors, a rigid airfoil-shaped robotic fish [6,7] and a 
flexible, self-propelled robotic fish [8] have been developed 
at the University of Maryland. The robots are capable of 
rheotaxis, station holding, and speed control using a recursive 
Bayesian algorithm to assimilate measurements of the flow. 
A closed-loop control strategy that comprises feedback and 
feedforward designs has been validated in experiments.

THE LATERAL-LINE SYSTEM

The lateral line is the fish’s sensory system for flow movement and vibration 
(Figure 1). It consists of two types of sensing organs: canal neuromasts, 

which approximate the pressure gradient, and superficial neuromasts, which 
measure local flow speed [1]. A variety of artificial lateral-line systems [9,10] 
have been proposed for detecting flow movement, with the majority inspired 
by canal neuromasts due to the advantages in availability and performance of 
pressure sensors as compared to velocity sensors. There exists some research 
on flow estimation by underwater robots using artificial lateral-line systems 
[11,12], mostly based on empirical flow models generated from training data 
and/or applied to a towed rigid-body underwater robot. However, we have 
found very little prior work in the area of flow sensing for a flexible, self-
propelled underwater robot using an analytical flow model and no prior work 
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FIGURE 1  The lateral-line sensing organ 
in zebrafish; (a) Superficial neuromasts 
in larval fish; (b) canal neuromasts in 
adult fish; (c) structure of a superficial 
neuromast; (d) development of a canal 
neuromast; (e) structure of a canal 

neuromaast.
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cambered Joukowski airfoil using the relative flow speed, the angle of attack, 
and the camber ratio of the fish robot, which reflects the degree of the body 
bending. The velocity vector field is calculated from a complex potential func-
tion that depends on the three flow parameters. The vortex-shedding model 
captures the unsteady effect of fish flapping by introducing a point vortex into 
the flow field at each time step. However, the resulting increase in the system 
dimension leads to an unaffordable computational burden for real-time appli-
cation. Thus, the quasi-steady flow model is used in the estimation algorithm 
and the vortex-shedding model is used only in simulation. 

From the Bernoulli equation, the pressure difference between two sen-
sors is a nonlinear function of the local flow speed at the locations of those 
two sensors. The nonlinearity in the measurement function led us to adopt 
a Bayesian filter [17] to assimilate sensor measurements for flow sensing. A 
Bayesian filter is a general probabilistic approach for estimating an unknown 
probability density function (pdf) from incoming measurements. It permits a 
nonlinear measurement function and non-Gaussian measurement noise. The 
flow-sensing measurements obtained from the robotic fish are the pressure 
differences between each pressure sensor pair and the local flow velocity at 
each IPMC sensor (when available). The estimation states may include the 
relative flow speed, the angle of attack, and the camber ratio, which is zero in 
the case of the rigid robot. The Bayesian filter recursively updates the pdf of 

for this type of robot executing closed-loop 
behaviors based on an estimated flow field.

ROBOTIC-FISH DESIGN

The Collective Dynamics and Control 
Laboratory at the University of Mary-

land has constructed two robotic fish to 
study bio-inspired flow sensing and control 
of underwater vehicles. Figure 2 shows a 
rigid, airfoil-shaped robotic fish made from 
composite polymer using a 3D printer. 
Mikro-Tip Catheter pressure sensors SPR-524 
from Millar Instruments and ionic polymer 
metal composite (IPMC) sensors fabricated at 
Michigan State University [7,13] are embedded 
to measure local water pressure and veloc-
ity, respectively. The shape of the robot is a 
Joukowski airfoil, which is the output image 
of a conformal mapping of a circle [14] and is 
conducive to modeling the fluid analytically. 
This robotic fish measures 9.9 cm long, 2.2 
cm wide, and 6 cm tall. A stepper motor with 
high-precision position control regulates its 
orientation and cross-stream position in a flow 
channel (185 L, Loligo). 

The second robot is a flexible, self-propelled 
robotic fish (Figure 3) fabricated using a soft 
material, Ecoflex silicone rubber from Smooth-
On with Shore 00-30 hardness. A mold was 
designed in Solidworks with the Joukowski 
airfoil shape and manufactured using a high-
precision 3D printer; the mold holds the mixed 
compound of the soft material until cured. Em-
bedded in the robot during the molding pro-
cess are MEMS-based pressure sensors from 
Servoflo (MS5401-BM), which output analog 
voltage in proportion to the local pressure. The 
flexible robotic fish measures 20 cm long, 3.6 
cm wide, and 12 cm tall. A shaft from Maker-
Beam was inserted at the one-quarter-point of 
the chord behind the leading edge to serve as 
the actuation-axis pivot. When rotated, the fish 
robot body deforms in a continuous way with 
the largest displacement at the trailing edge, 
mimicking fish swimming motion.

FLOW-SENSING ALGORITHM

Fish sense pressure differences (resp. local 
flow velocities) using canal (resp. superfi-

cial) neuromasts. Robotic flow sensing relies 
on mathematical modeling that relates pres-
sure and velocity measurements to flow states 
such as the angle of attack and flow speed. 
Our research leverages two flow models: a 
quasi-steady potential-flow model [14] and an 
unsteady vortex-shedding model [15,16]. The 
quasi-steady model describes the flow past a 

FIGURE 4  
Block diagram 
of the closed-
loop control 
system, 
combining 
feedforward 
and feedback 
control. 
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FIGURE 2  Rigid robotic-fish design with eight IPMC sensors and four pressure 
sensors [7]. (a) Modular 3D-printed parts; (b) sensor configuration; and (c) full 

assembly of robotic fish with artificial lateral line. 

FIGURE 3  Flexible robotic-fish design 
with molding techniques [8]. (a) Mold 
interior; (b) mold assembly; and (c) the 

flexible robotic fish with embedded sensors.
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the estimated states that describe the flow field in order to provide real-time 
flow parameter estimates to the controller.

FLOW-RELATIVE CONTROL

A closed-loop control strategy that comprises feedforward and feedback 
designs achieves flow-relative behavior in the flexible robotic fish. 

Figure 4 illustrates the control design in block-diagram form. The objective 
is to drive various states of the robotic fish to track desired reference signals 
by regulating the flapping amplitude and frequency. The feedforward 
controller is the inverse mapping of the dynamic model [18] of the robotic 
fish averaged over a single flapping period. The feedback controller includes 
proportional and integral terms based on information from the flow estimate. 
The feedforward term accelerates the convergence of the tracking control, 
and the feedback term improves the tracking performance by reducing the 
steady-state error.
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FIGURE 5  Rheotaxis experiment using the 
rigid airfoil-shaped robotic fish. (a) Schematic 

of the testbed; (b) experiment snapshot.

FIGURE 6
Trajectories 
of actual 
(solid green), 
estimated 
(solid blue), 
and reference 
(dashed black) 
angle of attack 
in rheotaxis 
experiment [7].

RHEOTAXIS CONTROL 

Rheotaxis is a form of taxis observed in fish in which they generally orient 
into (or against) an oncoming current. The rheotaxis behavior requires 

sensing the flow direction. The rigid airfoil-shaped robotic fish (Figure 2) 
experimentally demonstrated rheotaxis behavior using a 185 L Loligo flow 
tank that generates approximately laminar flow (Figure 5). A real-time, 
recursive Bayesian filter assimilated the pressure and IPMC sensor data in 
order to estimate the flow speed and angle of attack. A servomotor used these 
estimated quantities to regulate the orientation of the robotic fish by tracking 
the desired angle of attack, e.g., zero degrees, which is the upstream direc-
tion. Figure 6 illustrates the trajectories of the actual and estimated angle 
of attack plotted versus time for a 75-second experiment under step inputs of 
the desired angle of attack. As the Bayesian filter estimation converges to the 
actual value, the servomotor steers the robotic fish to the desired orientation 
with a steady-state tracking error of less than 5 degrees.
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FIGURE 7  Schematic of the speed-control 
experimental testbed.

Joukowski foil was modeled using quasi-steady 
potential flow theory and unsteady vortex-
shedding techniques. The closed-loop control 
of the flexible robot comprised feedforward and 
feedback controls. Rheotaxis and speed-control 
experiments demonstrated the effectiveness 
of the flow sensing and control algorithms. 
In ongoing work, we are investigating a novel 
actuation approach using an internal reaction-
wheel for flexible fish propulsion. n

SWIMMING-SPEED CONTROL

Closed-loop control of the flow-relative swimming speed plays an impor-
tant role in fish predation and schooling behavior. We used the flex-

ible, self-propelled robotic fish (Figure 3) to implement the speed-control 
behavior based on distributed flow estimation. A one-dimensional swimming 
testbed (Figures 7 and 8) includes air bearings to support the linear motion 
of the robotic fish in the along-stream direction. A servomotor driven in a 
periodic sinusoidal waveform controls the flapping motion, where the flapping 
amplitude and frequency are the control variables. The pressure measurement 
data is acquired using National Instruments DAQ 6225. The data is transmit-
ted via USB to a laptop that runs the Bayesian filter for data 
assimilation and the closed-loop control, coded in Matlab 
2013b. The control commands for the angle of attack are sent 
via serial communication to an Arduino UNO that drives 
the servo. The robotic fish demonstrated satisfactory control 
performance at a forward speed between 10 and 25 cm/s when 
actuated at a flapping frequency of 0.75 Hz. The steady-state 
speed tracking error was less than 5% and the convergence 
time less than two flapping periods (Figure 9).

CONCLUSION AND ONGOING WORK

Bio-inspired flow sensing and flow-relative control using 
distributed sensor measurements were described and 

demonstrated with two underwater robots. Prototypes of the 
robotic fish were designed for experiments to include a rigid air-
foil-shaped robot and a flexible, self-propelled robot. Flow past a 

FIGURE 9  The moving average of flow-relative speed calcu-
lated using a time window equal to a single flapping period [8].

   FIGURE 8  Speed-control experimental 
testbed. (a) Side view; and (b) front view.
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