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ABSTRACT

MODELING, DESIGN AND CONTROL OF GLIDING ROBOTIC FISH

By

Feitian Zhang

Autonomous underwater robots have been studied by researchers for the past half century. In

particular, for the past two decades, due to the increasing demand for environmental sustainability,

significant attention has been paid to aquatic environmental monitoring using autonomous under-

water robots. In this dissertation, a new type of underwaterrobots, gliding robotic fish, is proposed

for mobile sensing in versatile aquatic environments. Sucha robot combines buoyancy-driven

gliding and fin-actuated swimming, inspired by underwater gliders and robotic fish, to realize both

energy-efficient locomotion and high maneuverability. Twoprototypes, a preliminary miniature

underwater glider and a fully functioning gliding robotic fish, are presented. The actuation system

and the sensing system are introduced. Dynamic model of a gliding robotic fish is derived by in-

tegrating the dynamics of miniature underwater glider and the influence of an actively-controlled

tail. Hydrodynamic model is established where hydrodynamic forces and moments are dependent

on the angle of attack and the sideslip angle. Using the technique of computational fluid dynamics

(CFD) water-tunnel simulation is carried out for evaluating the hydrodynamic coefficients. Scaling

analysis is provided to shed light on the dimension design.

Two operational modes of gliding robotic fish, steady gliding in the sagittal plane and tail-

enabled spiraling in the three-dimensional space, are discussed. Steady-state equations for both

motions are derived and solved numerically. In particular,for spiral motion, recursive Newton’s

method is adopted and the region of convergence for this method is numerically examined. The

local asymptotic stability of the computed equilibria is established through checking the Jacobian



matrix, and the basins of attraction are further numerically explored. Simulation and experiments

are conducted to validate steady-state models and calculated equilibria for both motions.

Tail-enabled feedback control strategies are studied in both sagittal-plane glide stabilization

and three-dimensional heading maintenance. A passivity-based controller and a sliding mode con-

troller are designed and tested in experiments for those twoproblems, respectively. In sagittal-

plane glide stabilization, a nonlinear observer is designed and implemented to estimate velocity-

related states. A three-dimensional curve tracking problem is also discussed and a two-degree-of-

freedom control scheme is proposed by integrating static inverse mapping andH∞ control tech-

nique. The differential geometric features, such as the torsion and curvature, are explored for

planning the trajectory.

Finally, the field tests with the lab-developed prototype ofgliding robotic fish are conducted

in the Kalamazoo River, Michigan and the Wintergreen Lake, Michigan for detecting oil spill and

sampling harmful algal blooms, respectively. Both glidingand spiraling motions are tested in the

experiments as well as the fish-like swimming. The field test results are presented to show the

effectiveness of the designed robot in environmental monitoring tasks.
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Chapter 1

Introduction

Gliding robotic fish, a new type of underwater robots, is proposed for monitoring aquatic environ-

ment in this dissertation. Such a robot combines the advantages of both underwater gliders and

robotic fish, and features long operation duration and high maneuverability.

In this introduction, I will first discuss the existing methods in aquatic environmental moni-

toring, and conduct a brief literature review on two important underwater robots, the underwater

glider and robotic fish. Afterwards, gliding robotic fish is introduced as a new type of underwater

robots, inspired by the above two well-known classes of robots. Locomotion mechanism and ad-

vantages of the gliding robotic fish are briefly discussed. The structure of this dissertation is then

clarified. At last, an overview of the contributions is presented.

1.1 Technology in Aquatic Environmental Monitoring

There is a growing interest in monitoring aquatic environments, due to the emerging problems

of environmental pollution and expanding demand for sustainable development. Such pollutions

involve various types contaminants, including industrialwaste, chemicals, and bacteria, etc. The

pollution could happen in different aquatic environments,such as ponds, rivers, lakes, and even

the ocean. Due to ongoing industrialization and expanding exploration of aquatic resources, water

pollution problems have become increasingly frequent and severe, which has drawn a global atten-

tion [5–7]. In particular, the massive 2010 oil spill in the Gulf of Mexico has brought world-wide
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attention and attracted intensive research into this urgent issue. The cleanup and recovery will take

many years and millions of dollars. Throughout this process, monitoring the water quality and de-

tecting the remaining contaminants in the water are an essential task [8,9]. Similar contamination

incidents include the 2010 oil spill in Kalamazoo River, Michigan, [10], 2010 Xingang Port oil

spill in China Yellow Sea [11], 2011 Nigeria oil spill [12], and 2012 Arthur Kill storage tank spill

in New Jersey [13].

Throughout the development in technology for aquatic environmental monitoring, a variety of

different water sampling methods have been studied and employed. Manual sampling, via boat/-

ship or with handheld devices, is still a common practice in aquatic environmental monitoring.

This approach is labor-intensive and has difficulty capturing dynamic and spatially distributed

phenomena of interest. An alternative is in-situ sensing with fixed or buoyed/moored sensors [14],

including vertical profilers that can move up and down along awater column [15–19]. However,

since buoyed sensors have little or no freedom to move around, it could take a prohibitive number

of them to capture spatially inhomogeneous information. The past decade or so has seen great

progress in the use of robotic technology in aquatic environmental sensing [20–36]. Predominant

examples of these technologies include remotely operated vehicles (ROVs) [20, 24, 27, 33], au-

tonomous surface vehicles (ASVs) [22, 23, 25, 31, 35], propeller-powered autonomous underwater

vehicles (AUVs) [24, 30, 34, 36–39], and underwater gliders[1–3]. ROVs typically have limited

spatial access and autonomy due to their tethered nature, while the sampling space of ASVs is

limited to the two-dimensional (2D) water surface. AUVs, onthe other hand, can operate freely

and autonomously in the 3D water body, but their high price tags (upward of $150K per vehicle)

presents a huge barrier to their deployment in large numbersfor high-resolution spatiotemporal

coverage. Besides, there has been a growing interest in bio-inspired underwater robots [40–46],

such as robotic fish, which holds great potential in wide application in water monitoring. The
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shortcoming of this kind of robots is the limited operational duration and thus area coverage, due

to the energy constraints and the requirement of constant actuation for propulsion..

1.2 Gliding Robotic Fish

1.2.1 Design Concept

The design concept of a gliding robotic fish comes from energy-efficient underwater gliders and

highly-maneuverable robotic fish.

Underwater seagliders are known for their great energy-efficiency and long-duration operation

in oceanographic applications [47]. An underwater glider utilizes its buoyancy and gravity to

enable motion without any additional propulsion, and adjusts its center of gravity to achieve certain

attitude, which results in glide and thus horizontal travel. Since energy is needed only for buoyancy

and center-of-gravity adjustment when switching the glideprofile, underwater gliders are very

energy-efficient, as proven by the great success of the Seaglider [1], Spray [2] and Slocum [3]

(Fig. 1.1). The maneuverability of underwater gliders, however, is quite limited. The large size

(1– 2 m long), heavy weight (50 kg and above), and high cost [47] of these vehicles also impede

their adoption in the application of networked sensing and in versatile environments like ponds and

inland lakes.

On the other hand, over the past two decades, there has been significant interest in developing

robots that propel and maneuver themselves like real fish do.Often calledrobotic fish(Fig. 1.2),

they accomplish swimming by deforming the body and fin-like appendages [48–68]. In many

designs, a fish-like flapping tail is used to provide propulsion force and a biased tail angle is applied

to realize turning. Due to the similarity to the real fish and the fact that the rotation of the tail fin

is usually enabled by a motor that is easy to control and fast in response, robotic fish typically
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(a) (b)

(c)

Figure 1.1: Classic underwater gliders. (a) Seaglider [1];(b) Spray [2]; (c) Slocum [3].
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(a)

(b)

Figure 1.2: Examples of robotic fish. (a) From Mechatronics Research laboratory at Massachusetts
Institute of Technology [4]; (b) From Smart Microsystems Lab at Michigan State University.
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have high maneuverability (e.g., small turning radius); However, as the forward propelling force is

generated from the flapping motion of the fins, such robots require constant actuation for swimming

and cannot work for extended periods of time without batteryrecharge.

In this dissertation, inspired by the design and merits of both underwater gliders and robotic

fish, a new type of underwater robots,gliding robotic fish, is proposed. Gliding robotic fish com-

bines both mechanisms of gliding and swimming and features energy efficiency and high maneu-

verability at the same time. Such a robot would realize most of its locomotion through gliding like

underwater gliders, by utilizing its buoyancy and gravity to enable motion without any additional

propulsion, and adjusting its center of gravity to achieve acertain attitude. It would use actively

controlled fins to achieve high maneuverability, during turning and orientation maintenance. Of

course, fins can also provide additional propulsive power during locomotion, if needed.

The dimension of the gliding robotic fish is supposed to be smaller than traditional underwater

gliders, and one use of such a robot is to provide a mobile sensing platform in relatively shallow

waters, such as lakes, rivers, and even ponds, where larger gliders are not quite suitable due to

their large size and high cost. The small size and low cost of gliding robotic fish also facilitate the

research of networked sensing and operative control.

1.2.2 Motion and Control

For gliding robotic fish, there could be various interestingmotions generated by integrating the

gliding and swimming mechanisms. In this dissertation, twomain steady motion profiles are dis-

cussed as the regular working patterns for sampling water. One is steady-state gliding in the sagittal

plane, and the other is steady-state spiraling in the three-dimensional (3D) space.

The steady-state gliding is also the common operating mode for traditional underwater glid-

ers, used for sampling the water field 1.3. In the zig-zag trajectory, the gliding robotic fish only
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Figure 1.3: Schematics of working pattern “gliding in sagittal plane”.
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Figure 1.4: Schematics of working pattern “spiraling in 3D space”.
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consumes energy during the transition between descending and ascending. In the phase of steady

glide, balances of forces and moments are achieved. If we interpret the motion intuitively, the

net buoyancy of the robot enables a propelling force to counteract the hydrodynamic resistance.

Zero energy consumption in the steady gliding period makes the gliding robotic fish highly energy-

efficient.

The other motion, steady spiral in the three-dimentional space, is proposed as a novel method

of sampling a water column for gliding robotic fish 1.4. A water column is a conceptual narrow

volume (like a narrow cylinder) of water stretching vertically from the surface to the bottom. Water

column sampling is a routine surveying method in environmental studies to evaluate the stratifica-

tion or mixing of water layers [69]. This motion is achieved by incorporating the steady gliding

with a deflected fish-like tail. The non-zero angled tail fin will introduce a turning moment to the

steady gliding robot and lead to a 3D spiraling motion. With the actively-controlled tail, the gliding

robotic fish is capable of spiral motions with tight turning radius. If needed, a gradually changing

tail angle will form spiral-in or spiral-out 3D trajectories.

For most of its operation time, a gliding robotic fish holds a preset steady gliding path without

any energy consumption. The gliding angle is calculated before deployment so that the robot will

follow a designed trajectory, which either minimizes the energy cost, or maximizes the field map-

ping capability [70]. However, a gliding robot fish is subject to many non-negligible uncertainties

from the aquatic environment (e.g. current disturbance), which results in additional energy cost be-

cause counteracting the deviation from the preset course requires re-calibration and control effort

to keep the robot on or bring it back to the designed path [71] [29] [72]. The stability property of

the steady gliding path and fast convergence to the path, arevery important for the gliding robotic

fish to reduce the energy expenditure on path correction. Thestabilization involves both sagittal

and lateral dynamics, corresponding to sagittal and lateral disturbances.
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For the gliding angle stabilization in the sagittal plane, there are several related results in liter-

ature for underwater gliders. Most of them use the net buoyancy and internal mass displacement

as control variables. For instance, in [73] and [74] the authors presented an LQR (linear quadratic

regulator) controller and a PID controller, respectively,but both based on a linearized model. Al-

though in the LQR method energy is used as a cost function, theapproach does not consider the

additional cost for the course correction and guidance. Both LQR and PID controller can not

fully address the nonlinear gliding characteristics. Nonlinear controllers involving torque control

and buoyancy control are proposed by Bhatta [75], but those methods ignore the dynamics of the

control surface and also require full state feedback for thecontroller implementation, which will

increase the complexity of the software and hardware. A Lyapunov-based control design is re-

ported in [76]; however, for the elevator control, it only deals with a fixed-value control input to

achieve a certain equilibrium gliding path. In this dissertation, a novel, passivity-based nonlinear

controller is proposed for the sagittal-plane stabilization problem using only a whale-like tail fin of

the gliding robotic fish. The singular perturbation resultsfrom [76] are utilized to reduce the full-

order system to a slow-mode second-order system. A passivity-based controller is designed based

on the approximated reduced system, and the controller is applied back into the original full-order

system. Through checking the Jacobian matrix, the local stability of the full-order closed-loop sys-

tem is established given sufficient time-scale separation.Furthermore, a nonlinear observer is also

proposed to estimate velocity-related system states, which are used in controller implementation.

Both open-loop and closed-loop experiments are carried outto illustrate the effectiveness of the

designed controller and observer.

For the lateral motion, attitude stabilization is of great importance to underwater robots, which

are subjected to various environmental disturbances. There has been extensive work on pitch

motion stabilization in the longitudinal plane for underwater gliders as discussed in the previous
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paragraph, where typically the absence of lateral motion isassumed [73, 76–78]. There has also

been some limited research into three-dimensional glidinginvolving lateral motion, most of which

focuses on the steady-state turning or spiraling [79–81]. However, little work has been reported on

the yaw angle stabilization where ambient flow disturbancescould easily push the robot away from

its desired heading orientation. In this dissertation, therelative degree of the system dynamics is

first identified and error dynamics is then derived based on the system normal form. A sliding mode

controller is designed for the error dynamics to achieve attitude stabilization. Both simulation and

experiments are conducted to evaluate the effectiveness ofthe proposed control scheme.

Three-dimensional curve tracking is also crucial for underwater robots, including in particu-

lar, gliding robotic fish. For example, it is critical in sampling water columns, seeking pollutant

sources, and mapping the whole aquatic environment. Precise tracking control is very challenging

due to dynamic nonlinearity and strong coupling among multiple control inputs. As stated previ-

ously, there has been some limited literature that covers three-dimensional gliding involving lateral

motion, most of which focuses on the steady-state turning orspiraling [79–81]. However, it is still

an unexplored area of three-dimensional curve tracking control for buoyancy-driven underwater

robots. In this dissertation, I propose a novel two degree-of-freedom (DOF) control strategy for

gliding robotic fish to track three-dimensional curves based on the differential geometric features

of steady spirals. The control strategy includes a feedforward controller that is designed through

inverse mapping of steady spiral motion, and a feedback controller designed using the robustH∞

framework based on local, linearized dynamics. The effectiveness of the proposed 2-DOF control

scheme is demonstrated in simulation, where PI control and open-loop inverse mapping control

are also conducted for the purpose of comparison.

There are a number of challenges in aquatic environmental monitoring, especially in field ex-

periments using autonomous underwater robots. Gliding robotic fish is proposed to carry out the
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water sampling work with great energy efficiency, high maneuverability and adaptability to versa-

tile environments. As the final test of the design concept androbot development, the gliding robotic

fish prototype is taken to Kalamazoo River, Michigan, to detect oil spill, and Wintergreen Lake,

Michigan, to sample harmful algal blooms. The external swappable environmental sensor reads

the field data of interest and the on-board micro-controllersends back the information wirelessly

to the base station. The GPS-based positioning system facilitates the water sampling task with

precise location information, where the motions of swimming, gliding and spiraling are tested and

integrated. The field test results are presented to demonstrate the functionality and usefulness of

the proposed gliding robotic fish as a novel platform for solving the real-world problem of aquatic

environmental monitoring.

1.3 Overview of Contributions

The contributions of this research reside mainly on dynamics analysis and tail-enabled control of

a new type of underwater robot, the gliding robotic fish. The details are as follows.

First, the design idea of combining buoyancy-driven propulsion and tail-enabled maneuverabil-

ity is novel. The advantages of long operation duration and high maneuverability from underwater

gliders and robotic fish, make the gliding robotic fish a suitable underwater platform in shallow

water environmental sensing.

Second, the discussion about the two water-sampling working patterns, the sagittal-plane glide

and three-dimensional spiral, provides insights of the energy-efficient feature of gliding robotic

fish. Particularly, the tail-enabled steady spiral, is a novel motion proposed for sampling water

columns, and potential path planning tasks. The turning radius could be as tight as 0.5 m, providing

much higher sampling resolution compared to the 30-40 m radius from traditional underwater
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gliders.

Third, the steady glide stabilization is usually realized through buoyancy control or mass-

distribution control in literature. In this dissertation an actively-control tail fin is adopted as the

control input to stabilize the steady gliding motion. For the first time in literature of the sagittal-

plane motion of buoyancy-driven underwater robots, a passivity-based feedback controller is de-

signed to obtain a fast convergence speed with partial statefeedback, which is convenient for

implementation. For the heading maintenance in lateral dynamics, a sliding mode controller is

proposed with only a requirement on the yaw angle feedback information. Moreover, both simu-

lation and experimental results are presented to provide insight into the stabilization problem for

buoyancy-driven underwater robots.

Fourth, three-dimensional curve tracking for buoyancy-driven underwater robots is very chal-

lenging and little relevant work could be found. In this dissertation, A novel two-degree-of-

freedom control strategy, which consists of a feedforward controller designed through inverse map-

ping of steady spiral motion, and a feedback controller designed using the robustH∞ framework

based on local, linearized dynamics, is proposed for the curve tracking problem using the differen-

tial geometric features of steady spirals. The study of the geometric features of the spiral motion,

such as torsion and curvature, also shows a promising motionplanning and navigation method.

Finally, the successful development of gliding robotic fishprototype and the field tests in the

Kalamazoo River and the Wintergreen Lake, proves the concept of the design, and demonstrates

the functions of the robot as a platform for aquatic environmental monitoring. This leads to more

research directions, such as adaptive sampling, networkedcontrol and cooperative control with

multiple agents, and it opens the door to further collaboration with biologists and sociologists to

solve bigger real-world water-pollution problems.
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Chapter 2

Implementation of Gliding Robotic Fish

During the research of the gliding robotic fish, two prototypes have been developed. The first

one is a miniature underwater glider, reported in [82, 83], built to study the gliding component of

gliding robotic fish and help to evaluate the steady glide model in the sagittal plane (Fig. 2.1). The

second one is a fully functioning gliding robotic fish prototype, named “Grace” (Fig. 2.2) [84]. In

this section, I will focus on the implementation of the gliding robotic fish “Grace”, which naturally

explains the case for the miniature underwater glider.

2.1 Actuation System

Integrating an actively-controlled tail into the miniature underwater glider, the research team has

developed a fully functioning gliding robotic fish, named “Grace”. The robot has three actuation

systems for locomotion, including the buoyancy system, themass distribution system, and the

actively-controlled tail fin system.

In the buoyancy system, water is pumped in and out of the robot’s body to change the net

buoyancy. When the robot is heavier than the water it displaces (negatively buoyant), the robot

will descend (Fig. 2.2); and when it is lighter than the waterit displaces (positively buoyant), the

robot will ascend. The pumping system of “Grace” is enabled by a linear actuator with integrated

feedback, which allows the precise control of water volume despite the pressure differences at

different depths, while a DC pump is used for the miniature underwater glider prototype.
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Figure 2.1: Protoype I, the miniature underwater glider operating in the swimming pool.

Figure 2.2: Gliding robotic fish “Grace” gliding in the largeindoor tank in the Smart Microsystems
Lab.
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Figure 2.3: Gliding Rototic fish “Grace” swimming in Kalamazoo river.

For the mass distribution system, a linear actuator is used to push a mass (battery pack) back

and forth along a guiding rail to change the center of the mass, for the purpose of manipulating the

pitch angle, in both miniature underwater glider and “Grace”.

The fish-like tail fin system in “Grace” is driven by a servo motor through a chain transmis-

sion. In three-dimensional gliding, a deflected tail can be used to control the turning motion and

heading orientation. Like a real fish, the robot can also flap the tail to realize the swimming motion

(Fig. 2.3).

2.2 Gliding Robotic Fish Components

A schematic of selected components for the gliding robotic fish is shown in Fig. 2.4. In the figure,

the components of the three actuation systems can be identified. Besides, there are two physically

separated printed circuit boards (PCBs). One is thectrl PCB containing the micro-controller and

navigational sensors, such as gyroscopes, accelerometersand a digital compass; the other is the
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Figure 2.4: The schematic of internal configuration for gliding robotic fish.

driver PCB containing regulators and driver components for the actuators, including the linear

actuators and the servo motor. A pressure sensor is used to measure the depth of the current

location of the robot, with one port connecting to the ambient water.

There are some other components equipped on the shell of the gliding robotic fish, including

the wireless communication antenna, environmental sensors and the GPS receiver, as shown in

Fig. 2.5. “Grace” is equipped with a crude oil sensor and a temperature sensor, and has been

tested in the Kalamazoo River, Michigan, to sample the oil concentration near the site of a 2010 oil

spill (Fig. 2.3). The sensor can be easily swapped to measureother environmental processes, such

as chlorophyll, harmful algae, turbidity, rhodamine. The GPS unit is used to measure the global

position and provide the universal time, when the gliding robotic fish surfaces. Table 2.1 lists the

details of the used components mentioned above.
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Figure 2.5: Components on the outside of prototype “Grace”.

Table 2.1: Selected components used in “Grace”.

Component name Component model
1 Micro-controller Microchip dsPIC6014A
2 Battery Batteryspace 18.5V Polymer-Li-Ion battery pack
3 Linear actuator Firgelli L16-140-63-12-P
4 Pump 1 (miniature underwater glider) Flight Works Model 300C
5 Pump 2 (“Grace”) Servocity 180 lbs thrust linear actuator
6 Servo motor Hitec Servo HS-7980TH
7 Pressure sensor Honeywell 40PC100G2A
8 GPS Garmin GPS 18x LVC
9 Gyro ST LPY503AL
10 Accelerometer+Compass ST LSM303DLH
11 Wireless module XBee Pro 900 XSC RPSMA
12 Wireless antenna 900MHz Duck Antenna RP-SMA
13 Crude oil sensor Turner Designs Cyclops-7 Crude Oil Sensor
14 Temperature sensor TMP36
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2.3 Mechanical Design

The mechanical structure of the robot is designed considering the requirements of compactness,

low cost, and energy efficiency, and the limitation of havingto house all necessary electrical com-

ponents. The outer shell is designed to have a fish-like shapewith a streamline profile for the

purpose of energy efficiency. The pair of wings is designed toprovide enough hydrodynamic

forces and moments for a satisfactory glide. A guide rail is designed to help push the battery pack

using the linear actuator to change the mass distribution.

SolidWorks is used to draw schematics of most of the mechanical components. A computer

numerical control (CNC) machine is used to manufacture parts of the system, such as the mold of

the shell. 3D printer is used to print other parts of the system, such as the tail compartment.

The robot shell is made of carbon-fiber, which is strong enough to sustain the underwater

pressure. The tail compartment is made of composite polymervia 3D printing, which enables

rapid prototyping. The guide rail is made of stainless steel, which is rigid enough to provide a

straight traveling path for the battery pack.

Some physical parameters of “Grace” are as the follows. Length is 65 cm (body) / 90 cm

(total); width is 15 cm (body) / 75 cm (with wings); and heightis 18 cm (body) / 34 cm (including

tail). Here, the term “total” includes the body, the tail, the antenna and the environmental sensor.

The wings are in a trapezoidal shape with a wingspan of 30 cm (one side) and an aspect ratio of

1.45. The weight is 9 kg in total. The tail with the servo compartment weighs 0.8 kg itself.

The tail is special in the design in that it is the only moving part seen from the outside, so it

must be designed properly to be waterproof, robust, and reliable with respect to different flapping

amplitude and frequency. The tail flapping motion is transformed from the rotation of a servo by a

chain system, in which two identical gears are used as shown in Fig. 2.6.
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Figure 2.6: Components of the tail compartment for “Grace”.

Figure 2.7: Top cap interface of Grace to the outside when capcovered.
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Figure 2.8: Top cap interface of Grace to the outside when capopen.

The robot must be waterproofed for all electrical/electronic components. In “Grace”, all elec-

trical/electronic components are placed in the main body. In particular, the system switch, charging

port, and programming port are located under the top cap. A plunger-like cap covered by rubber is

used to seal the top interface, with two screw bolts to ensurethe sealing, as shown in Figs. 2.7 and

2.8.

In addition, the tail is detachable from the main body, enabling us to replace the tail if some-

thing goes wrong. The detachable tail enforces the reliability of the sealing of the main body with

double O-rings. Furthermore, the tail can be configured to flap sideways (like a shark) or up and

down (like a whale).
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Chapter 3

Dynamic Model of Gliding Robotic Fish

3.1 Full Dynamic Model

A gliding robotic fish is a hybrid of a miniature underwater glider and a robotic fish, and its mod-

eling will need to incorporate the effects of both. The tail of gliding robotic fish is used to control

the lateral motion for underwater gliding, and used to propel the robot for swimming. We treat

it as a control surface and a source for external forces and moments. The robot is modeled as a

rigid-body system, including an internal movable mass for center-of-mass control and a water tank

for buoyancy adjustment [73,82,83]. On the other hand, the deflected tail provides external thrust

force and side force as well as the yaw moment.

Fig. 3.1 shows the mass distribution within the robot. The stationary body massms (excluding

the movable mass) has three components: hull massmh (assumed to be uniformly distributed),

point massmw accounting for nonuniform hull mass distribution with displacementrrrwww with re-

spect to the geometry center (GC), and ballast massmb (water in the tank) at the GC, which is a

reasonable simplification since the effect on the center of gravity caused by the water in the tank

is negligible compared with the effect from the movable mass. The movable mass ¯m, which is

located atrrr ppp with respect to the GC, provides a moment to the robot. The motion of the movable

mass is restricted to the longitudinal axis. The robot hull displaces a volume of fluid of massm .

Let m0 = ms+ m̄−m represents the excess mass (negative net buoyancy). The robot will sink if

m0 > 0 and ascend ifm0 < 0.
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Figure 3.1: The mass distribution of the gliding robotic fish(side view).
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Figure 3.2: Illustration of the reference frame and hydrodynamic forces.
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The relevant coordinate reference frames are defined following the standard convention. The

body-fixed reference frame, denoted asOxbybzb and shown in Fig. 3.2, has its originO at the

geometry center, so the origin will be the point of application for the buoyancy force. TheOxb

axis is along the body’s longitudinal axis pointing to the head; theOzb axis is perpendicular toOxb

axis in the sagittal plane of the robot pointing downward, and Oyb axis is automatically formed by

the right-hand orthonormal principle. In the inertial frameAxyz, Azaxis is along gravity direction,

andAx/Ayare defined in the horizontal plane, while the originA is a fixed point in space.

As commonly used in the literature,RRR represents the rotation matrix from the body-fixed ref-

erence frame to the inertial frame.RRR is parameterized by three Euler angles: the roll angleφ , the

pitch angleθ , and the yaw angleψ. Here

RRR=















cθcφ sφsθcψ −cφsψ cφsθcψ +sφsψ

cθsψ cφcψ +sφsθsψ −sφcψ +cφsθsψ

−sθ sφcθ cφcθ















(3.1)

wheres(·) is short for sin(·) andc for cos(·). Letvvvbbb=

[

v1 v2 v3

]T
andωωωbbb=

[

ω1 ω2 ω3

]T

represent the translational velocity and angular velocity, respectively, expressed in the body-fixed

frame. The subscriptb indicates that the vector is expressed in the body-fixed frame, and this

notation is applied throughout this dissertation.

We assume that the tail fin is rigid and pivots at the junction between the body and the tail about

theOzb axis. The tail induces an external thrust forceFFFt on the robot when it flaps. There are also

other hydrodynamic forces and moments generated because ofthe relative movement between the

tail and the surrounding water, like the side force and the yaw moment.

By extending the previous modeling work for underwater gliders [81, 82], we obtain the dy-
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namic model for a gliding robotic fish with an actively-controlled tail fin as the following,

ḃbbiii = RRRvvvbbb (3.2)

ṘRR = RRRω̂ωωbbb (3.3)

v̇vvbbb = MMM−1
(

MMMvvvbbb×ωωωbbb+m0gRRRTTTkkk+FFFext

)

(3.4)

ω̇ωωbbb = JJJ−1(−J̇JJωωωbbb+JJJωωωbbb×ωωωbbb+MMMvvvb×vvvbbb+TTText

+mwgrrrwww×
(

RRRTTTkkk
)

+ m̄grrr ppp×
(

RRRTTTkkk
))

(3.5)

Here MMM = (ms+ m̄)III +++MMM fff = diag{m1,m2,m3}, whereIII is the 3× 3 identity matrix, andMMM fff

is the added-mass matrix, which can be calculated via strip theory [85]. JJJ = diag{J1,J2,J3} is

the sum of the inertia matrix due to the stationary mass distribution and the added inertia matrix

in water. In addition,kkk is the unit vector along theAz direction in the inertial frame,rrrwww is a

constant vector, andrrr ppp is the controllable movable mass position vector, which hasone degree of

freedom in theOxb direction,rrr ppp =

[

rp1 0 0

]T
. bbbiii =

[

x y z

]T
is the position vector of

the robot in the inertial reference frame,ω̂ωωbbb is the skew-symmetric matrix corresponding toωωωbbb.

FFFext stands for all external forces: the external thrust forceFFFttt induced by tail flapping, and the

external hydrodynamic forces (lift force, drag force and side force) acting on the gliding robotic

fish body, expressed in the body-fixed frame. Finally,TTText is the total hydrodynamic moment

caused byFFFext.
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3.2 Hydrodynamic Model

3.2.1 Hydrodynamic Equations

In order to model the hydrodynamics, we first introduce the velocity reference frameOxvyvzv.

Oxv axis is along the direction of the velocity, andOzv lies in the sagittal plane perpendicular to

Oxv. Rotation matrixRRRbv represents the rotation operation from the velocity reference frame to the

body-fixed frame:

RRRbv=















cαcβ −cαsβ −sα

sβ cβ 0

sαcβ −sαsβ cα















, (3.6)

where the angle of attackα = arctan(v3/v1) and the sideslip angleβ = arcsin(v2/‖vvvbbb‖)

The hydrodynamic forces include the lift forceL, the drag forceD, and the side forceFS; the

hydrodynamic moments include the roll momentM1, the pitch momentM2, and the yaw moment

M3. All of those forces and moments are defined in the velocity frame [86]. And if we further

assume that the tail is flapping relatively slowly and smoothly, usually true for the yaw control

motion during steady glide, the propelling force from the tail will be negligible compared to the

buoyancy-induced propelling force, which meansFFFttt = 000. Then we will have the following rela-

tionship:

FFFext= RRRbv

[

−D FS −L

]T
(3.7)

TTText= RRRbv

[

M1 M2 M3

]T
(3.8)

The hydrodynamic forces and moments are dependent on the angle of attackα, the sideslip
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angleβ , the velocity magnitudeV [87–90], and the tail angleδ :

D = 1/2ρV2S(CD0+Cα
Dα2+Cδ

Dδ2) (3.9)

FS = 1/2ρV2S(Cβ
FS

β +Cδ
FS

δ ) (3.10)

L = 1/2ρV2S(CL0+Cα
L α) (3.11)

M1 = 1/2ρV2S(Cβ
MR

β +Kq1ω1) (3.12)

M2 = 1/2ρV2S(CM0
+Cα

MP
α +Kq2ω2) (3.13)

M3 = 1/2ρV2S(Cβ
MY

β +Kq3ω3+Cδ
MY

δ ) (3.14)

whereρ is the density of water andS is the characteristic area of the gliding robotic fish. The tail

angleδ is defined as the angle between the longitudinal axisOxb and the center line of the tail

projected into theOxbyb plane, withOzb axis as the positive direction.Kq1,Kq2,Kq3 are rotation

damping coefficients. All other constants with ‘C’ in their notations are hydrodynamic coefficients,

whose values can be evaluated through CFD-based water tunnel simulation [82].

3.2.2 CFD-based Evaluation of Hydrodynamic Coefficients

In this dissertation we use CFD simulation to obtain the hydrodynamic coefficients for any given

gliding robotic fish body geometry. Experimental methods like towing experiments can be further

used to verify the CFD results [91], [92].

We first look into the influence of the angle of attack on the hydrodynamic forces and moments.

We simulate the steady gliding motion when the sideslip angle and the tail angle (no actively-

controlled tail for miniature underwater) are both zero in order to eliminate their influence. In the

simulation the gliding robotic fish model is created in SolidWorks 2009. We use Gambit 2.3.16 to
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Figure 3.3: The meshing used for the water tunnel simulationfor miniature underwater glider
prototype (generated with Gambit).
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Figure 3.4: An example contour of the static pressure with the angle of attack and the sideslip
angle set as zero for miniature underwater glider prototype.
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create a mesh file (Fig. 3.3), which contains the shape and size information of the gliding robotic

fish, and then use Fluent 6.2.16 to simulate the flow and pressure distribution around the robot

body (Fig. 3.4), which is placed in a water channel. With a virtual water tunnel as the simulation

workspace, the boundary conditions are set to different inlet velocities, and under such different

boundary conditions, CFD simulations are run with different angles of attack. With given values

for the characteristic area and length, we form a table for the convergent coefficients obtained from

CFD simulation for lift force, drag force and pitch moment. From the convergent results, lift, drag

and pitch moment functions are approximated with polynomials in α by curve fitting. When tail

angleδ and sideslip angleβ are fixed at zero, drag coefficientCD, lift coefficientCL, and pitch

moment coefficientCM2 can be expressed as

CD =CD0+Cα
Dα2,

CL =CL0
+Cα

L α,

CM2
=CM0

+Cα
MP

α,

Data fitting is conducted to compute the drag, lift, and pitchmoment coefficients, as a function

of the angle of attackα. For example, Fig. 3.5, Fig. 3.6 and Fig. 3.7 show the fitted function for the

drag, lift and pitch moment coefficients, respectively, forthe miniature underwater glider model.

The constants in the lift, drag, and pitch moment functions are estimated to be:

CD0 = 0.45275, Cα
D = 17.5948,

CL0 = 0.074606, Cα
L = 19.5777,

CM0
= 0.0075719, Cα

MP
= 0.5665.

As a comparative trial, another set of wings is used with the same wingspan but doubled aspect
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Figure 3.5: Data fitting for the drag force coefficient as a function of α.
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Figure 3.6: Data fitting for the lift force coefficient as a function of α.
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(a) larger wings (b) smaller wings

Figure 3.8: Illustration of the glider body with two different wing designs. Area of wings in (b) is
half of that in (a).

33



Figure 3.9: An example contour of the static pressure with the angle of attack and the sideslip
angle set as zero for gliding robotic fish prototype.

ratio (i.e., chord length is half), while the body is left unchanged. Fig. 3.8 illustrates the two models

created in SolidWorks that have different sets of wings. Thehydrodynamic coefficients relevant to

the angle of attack for the one with smaller wings are:

CD0
= 0.44724, Cα

D = 10.298,

CL0 = 0.054273, Cα
L = 11.5545,

CM0
= 0.0062683, Cα

MP
= 0.2903.

With similar CFD water-tunnel simulation, we can obtain thehydrodynamic coefficients re-
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garding the sideslip angle when we set the angle of attack andthe tail angle to zero. And the

hydrodynamic coefficients involving the tail angle can be obtained similarly by setting the other

two hydrodynamic angles to zero (3.9). Here we want to point out that in this dissertation we

ignore the coupling effect of those three angles (the sideslip angle, the angle of attack and the tail

angle) on the dynamics of the glider.
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Chapter 4

Steady Gliding in the Sagittal Plane

4.1 Reduced Model in the Sagittal Plane

Steady-state gliding in the sagittal plane is one of most important working patterns for the gliding

robotic fish. When the robot motion is restricted to the sagittal plane, we have

RRR===















cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ















, bbbiii =















x

0

z















, vvvbbb =















v1

0

v3















,

ωωωbbb =















0

ω2

0















, rrr ppp =















rp1

0

0















, rrrwww =















0

0

rw3















, δ = 0.

Here we assume the point massmw is just below the center of geometryO by rw3 as such bottom-

heavy design is desirable for stability concern and also achievable with manufacture. Plugging the
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hydrodynamic forces and moment into the robot dynamics equations, we get the following model:

v̇1 = (m1+ m̄)−1(− (m3+ m̄)v3ω2−m0gsinθ +Lsinα −Dcosα
)

(4.1)

v̇3 = (m3+ m̄)−1((m1+ m̄)v1ω2+m0gcosθ −Lcosα −sinα
)

(4.2)

ω̇2 = J−1
2

(

M2+(m3−m1)v1v3−mwgrw3sinθ − m̄grp1cosθ
)

(4.3)

ẋ = v1cosθ +v3sinθ (4.4)

ż = −v1sinθ +v3cosθ (4.5)

θ̇ = ω2 (4.6)

During steady glide, the angular velocity is zero, while thevelocity stays unchanged. The

control rp1 andm0 are constant, which means that the position of the movable mass is fixed with

respect to the originO and the pumping rate is zero. So the steady motion can be described by:

0 = −m0gsinθ +Lsinα −Dcosα (4.7)

0 = m0gcosθ −Lcosα −Dsinα (4.8)

0 = M2+(m3−m1)v1v3−mwgrw3sinθ − m̄grp1cosθ (4.9)

The solution to the above equation gives us the steady gliding path.

4.2 Computation of Steady Gliding Path in the Sagittal Plane

With the hydrodynamic parameters obtained from CFD simulation, let us take a look at the solution

of the steady gliding equations (4.7)–(4.9). These equations are highly nonlinear due to the terms

involving trigonometric functions and inverse trigonometric functions in the state. When the angle
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Table 4.1: Computed steady gliding path under different values of the center of gravityzCG, the
movable mass displacementrp1, and the excess massm0, for the two models shown in Fig. 3.8.

(a) larger wings

zCG (cm) rp1 (cm) m0 (g)
(

V,α,θg
)

(m/s,◦,◦)
0.1 0.3 10 (0.1129 3.0470 -29.5522)
0.1 0.5 10 (0.1366 1.6543 -43.0404)
0.1 0.7 10 (0.1485 1.0936 -52.7389)
0.1 0.3 30 (0.1766 3.9483 -25.0827)
0.1 0.5 30 (0.2245 2.0106 -38.4395)
0.1 0.7 30 (0.2495 1.3300 -48.7594)
0.1 0.3 50 (0.2245 4.0967 -24.5276)
0.1 0.5 50 (0.2846 2.1371 -37.0375)
0.1 0.7 50 (0.3174 1.3980 -47.0516)
0.2 0.3 10 (0.0856 5.8988 -20.2069)
0.2 0.5 10 (0.1084 3.3827 -27.6331)
0.2 0.7 10 (0.1240 2.3211 -35.1835)

(b) smaller wings

zCG (cm) rp1 (cm) m0 (g)
(

V,α,θg
)

(m/s,◦,◦)
0.1 0.3 10 (0.1221 4.0658 -37.0187)
0.1 0.5 10 (0.1396 2.4940 -48.3662)
0.1 0.7 10 (0.1486 1.7575 -56.4820)
0.1 0.3 30 (0.2260 3.2732 -41.9002)
0.1 0.5 30 (0.2477 2.2108 -51.2303)
0.1 0.7 30 (0.2598 1.6385 -58.0061)
0.1 0.3 50 (0.3105 2.5525 -47.8110)
0.1 0.5 50 (0.3290 1.8747 -55.0414)
0.1 0.7 50 (0.3401 1.4598 -60.4123)
0.2 0.3 10 (0.0949 7.7979 -26.1314)
0.2 0.5 10 (0.1136 5.0110 -32.7957)
0.2 0.7 10 (0.1265 3.6361 -39.4833)
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of attack is small enough, we can use the approximation sinα ≈ α and cosα ≈ 1, and derive an

approximate analytical solution for the desired controlrrr ppp andm0 in order to achieve some given

steady states [74]. However, here we are interested in the calculation of the steady gliding states

themselves under a fixed control. Unfortunately, there are no feasible analytical solutions for this

problem. So with Matlab commandsolve(), we numerically solve equations (4.7)–(4.9) to get the

velocity vvv, pitch angleθ , and glide angleθg for a given movable mass displacementrrr ppp and net

buoyancym0, under different conditions forrrrwww, the location of nonuniform stationary mass. There

is only one feasible solution for each pair of (rrr ppp, m0). Other solutions are rejected based on their

physical interpretations.

Table 4.1 shows scan results where the steady gliding path ispresented with different sets of

center of mass distribution, location of movable mass, and net buoyancy, for both wing designs

illustrated in Section 3.2.2. The gliding angleθg = θ −α is the angle betweenOxv andAx with

gliding up as positive.zCG stands for the center of gravity expressed in thez-axis coordinate of the

body-fixed frame and there is a bijective function fromrw3 to zCG:

zCG=
mw

m
rw3. (4.10)

Here we ignore the influence of the excess massm0 on zCG, which is really small compared to

that ofmw. For example,m0 is generally around 30 g whilemw is up to several kilograms. From

the results, we can see that different wing designs lead to different static gliding profiles. For

example, the larger wings result in shallower gliding paths(longer horizontal travel) but slower

total speed compared to the smaller wings, given the same setof control inputs. Since the wings

can be easily replaced in our design, we can potentially tailor the wing designs, while leaving the

glider body and its inside intact, to accommodate the requirements of different applications. On
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the other hand, the results in the table show that, for a fixed wing design, the speed is influenced by

both the excess massm0 and the pair (rrr ppp, zCG) while the pitch angle is affected mainly by the pair

(rrr ppp, zCG). Therefore, the center of mass plays an important role in determining the steady gliding

attitude. In particular, if we compare the cases where the values ofzCG are different but the other

parameters are the same, we find that smallerzCG results in higher speed and larger glide angle.

This observation has been used in our design – by makingzCG small, we can achieve desired glide

angle with very small displacement of the movable mass.

4.3 Scaling Analysis

We study the larger-wing glider model (Fig. 3.8a) at different scales and introduce a new cost

performance index, which reflects the horizontal travel distance per unit energy consumption. For

one dive (descent and ascent), the horizontal travel distanceDd is approximated as

Dd =Vhtd = 2
Vhh
Vv

, (4.11)

whereVh andVv are the steady-state horizontal speed and vertical speed, respectively,td is the

travel time for one dive, andh is the vertical travel depth. The energy consumption in one dive

comes from two sources, the pump actuation and the movable mass actuation, while the energy

consumed for the latter is negligible compared to that for pumping since the pump needs to over-

come large pressure when the glider switches to ascent from descent. So the energy consumption

per diveEd can be approximated as

Ed = ρgh0Splp+ρg(h0+h)Splp. (4.12)
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Table 4.2: Computed steady gliding path for the scaled models of the larger wing prototype. In
computation,rp = 5mm is used for the original scale model (1:1) while the valueis scaled linearly
with dimension for other models.

scale mass (kg) m0 (kg) Vh (m/s) Vv (m/s)
Vh

Vvm0
(kg-1) glide ratio

0.25:1 1 0.0075 0.063 0.018 488.35 3.5
0.5:1 2 0.015 0.11 0.039 203.25 2.82
1:1 4 0.03 0.19 0.094 74.55 2.02
2:1 8 0.06 0.28 0.207 28.30 1.35
4:1 16 0.12 0.39 0.377 12.01 1.03
8:1 32 0.24 0.54 0.574 5.72 0.94

Here,ρ is the water density,h0 is the equivalent water depth of the atmosphere pressure,Sp is

the cross-section area of the pump tank inlet (and outlet) and lp represents the length of the water

column if the water pumped in each cycle is placed in a cylindrical container with cross-section

areaSp. Noting the net buoyancym0 = 1
2ρSplp, we further simplify the energy consumption

per dive toEd = 2m0g(2h0+ h). Then we have the horizontal travel distance per unit energy

consumption

Dd
Ed

=
Vh

Vvm0

1

1+2
h0
h

. (4.13)

For a specific task, the depth is fixed and we have

Dd
Ed

∝
Vh

Vvm0
, (4.14)

which we define as the cost performance indexτ.

We now conduct scaling analysis to examine how the cost performance metric evolves with

the dimensions (and consequently the weight) of the glider.CFD simulation shows that the drag

coefficientCD and lift coefficientCL stay almost the same at different scales we considered (from

0.25:1 to 8:1), while the pitch moment coefficientCM scales linearly with the characteristic dimen-
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Figure 4.1: The glider cost performance index with respect to model scales.
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sion l of the glider. All related masses of the glider will scale asl3, including the movable mass

m̄ and the negative net buoyancym0. Taking the total length of the glider asl , the scale 1:1 would

imply l = 50 cm. By plugging those new parameter values into equations(4.7)–(4.9), we can solve

the glide path for the scaled model.

Table 4.2 shows the glide paths for glider models at different scales. Fig. 4.1 shows the rela-

tionship between the cost performance index
Vh

Vvm0
and the scale. The results show us that with a

larger body the glider has a smaller glide ratio and a smallercost performance index value, thus

consuming more energy for a given horizontal travel distance. This is consistent with the fact that

a larger glider needs to pump more water for a proper net buoyancy to provide the propelling force,

which is also the main energy consumption source. However, alarger-scale glider is able to achieve

faster horizontal speed as shown in Fig. 4.2. There is a trade-off between the achieved horizontal

speed and the horizontal distance coverage per unit energy cost, when selecting the optimal scale

for the glider. Other factors, like the dimension and the mass of the sensors and actuation devices,

should be also taken into account in the design process.

4.4 Experimental Results and Model Validation

With the developed miniature glider prototype, underwatergliding experiments are conducted in

order to validate the model. Most experiments are conductedin a large water tank that measures

15-foot long, 10-foot wide, and 4-foot deep.

For the steady gliding in the sagittal plane, we use the zero-angle tail. First, we set the initial

net buoyancy (negatively buoyant) and the linear actuator position to desired values. Then the

glider is released on the water surface with a stopwatch started, and the glider dives down until

it reaches the programmed depth indicated by the pressure sensor. Then it pumps water out and
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resets its attitude to glide up. Here we focus on the gliding-down section and record the whole

gliding process with an underwater video camera fixed insidethe water tank, pointing directly to

the glide motion plane (Fig. 4.3). Then we conduct video post-processing to extract the steady

gliding data, including the operating depth, horizontal travel distance and the time spent. We first

carry out one series of experiments with net buoyancy fixed at−20 g, and vary the linear actuator

positions. Then in another series of experiments, we vary the net buoyancy while holding linear

actuator position at 0.5 cm forward. For each setting of net buoyancy and linear actuator position,

we repeat the experiments 10 times and evaluate both the means and standard deviations for the

measured variables. Most experiments are conducted with the larger set of wings, but we have also

experimented with the smaller set of wings to further validate the model.

There are several things that must be given careful treatment. First, although the pressure

sensor can provide accurate depth measurement when the glider is at rest, the measurement is

subject to larger error when the glider is moving through thewater. Therefore, we have chosen

to measure the actual depth each time. Second, we need the value of the center of gravity of the

gliderzCG to obtain model-based predictions. We calculate it by hanging the glider up at different

points on the glider with strings and then taking the intersection of different hanging strings. This

value is further fine-tuned with collected tank test data. Third, to deal with the image distortion,

we have made a grid board for calibration. The board measures2.5 m by 1.5 m, with grid cell size

of 10 cm by 10 cm. We fix the grid board in the glide motion plane and take its images. Then with

post-processing techniques, those grid images are incorporated into the gliding videos, to facilitate

the extraction of glide paths. Fourth, there is a period of transients before the glider reaches steady

gliding. To minimize the error introduced by the transients, we have chosen to use only the data

from last three seconds of descent in each run to compute the steady glide parameters.

Fig. 4.4 and Fig. 4.5 show the comparison between model predictions and experiment results
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Figure 4.3: Superimposed snapshot of the gliding experiments in an indoor tank.
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Figure 4.4: Glide angle with respect to the movable mass displacement, with fixed net buoyancy
of -20 g, for the prototype with larger wings.
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Figure 4.5: Total glide speed with respect to the movable mass displacement, with fixed net buoy-
ancy of -20 g, for the prototype with larger wings.
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Figure 4.6: Glide angle with respect to the net buoyancy, with fixed movable mass displacement
of 0.5 cm, for the prototype with larger wings.
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Figure 4.7: Total glide speed with respect to the net buoyancy, with fixed movable mass displace-
ment of 0.5 cm, for the prototype with larger wings.
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when we vary the movable mass position while holding the net buoyancy fixed, and Fig. 4.6 and

Fig. 4.7 show the results when the net buoyancy is changing while the movable mass location is

fixed. From the comparison results, we can see that the velocity and glide angle calculated from

the model match the experimental data reasonably well. In particular, the model has predicted well

the trends of how glide speed and angle vary with the center ofthe gravity and the net buoyancy.

We note that there are some non-negligible factors contributing to errors in the measurement.

When the glider starts gliding from rest, it is acceleratingrather than steadily gliding for a few

seconds. We have already tried to remove the accelerating section from the data in the video pro-

cessing process; however, it is difficult to completely eliminate that effect, especially considering

the relatively shallowness of the test tank. This effect would be reduced with deeper gliding; how-

ever, conducting precise measurement in a deep water body itself presents challenges. In addition,

flow disturbances in the tank influence the experiment results as well. So with these uncertainties,

we consider the match between our experimental results and the model predictions in Figs. 4.4 –

4.7 satisfactory.

We have further compared the glide performance when the glider is equipped with the larger

and smaller wings, respectively. Fig. 4.8 and Fig. 4.9 show the glide angle and the glide speed,

respectively, as the movable mass displacement is varied while the net buoyancy is held fixed at

−20 g. Both model predictions and experimental measurement are shown in the figures, and they

match well for both sets of wings. From the results, we can seethat with smaller wings, the

glider tends to have a deeper gliding profile but higher speed, which matches our model predic-

tions. These results further validate our derived model, and prove the effectiveness of our design

method with CFD-based evaluation of hydrodynamic coefficients in Section 3.2.2. Meanwhile, the

results also indicate that we can realize various gliding performance and meet different mission

requirements by replacing the wings, which are designed to be easy to change.
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Figure 4.8: Glide angle of the miniature glider with respectto the movable mass displacement,
with fixed net buoyancy of -20 g, when using two different setsof wings.

52



2.5 3 3.5 4 4.5 5 5.5
0

2

4

6

8

10

12

14

16

18

20

 V
 (

cm
/s

)

 r
p
 (mm)

 

 

Experimental measurement (smaller wings)
Model prediction (smaller wings)
Experimental measurement (larger wings)
Model prediction (larger wings)

Figure 4.9: Total glide speed of the miniature glider with respect to the movable mass displace-
ment, with fixed net buoyancy of -20 g, when using two different sets of wings.
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Table 4.3: Comparison of our miniature glider with underwater gliders reported in the literature.
Velocity refers to the terminal velocity. The bottom row shows the metrics of the glider reported
in this dissertation (with the larger wings).

Name Length Weight NetBuoyancy Velocity
Slocum Electric Glider [47] 1.8 m 52 kg 520 g 0.4m/s

Spray Glider [47] 2 m 51 kg 900 g 0.45 m/s
Seaglider [47] 1.8 m 52 kg 840 g 0.45 m/s

ROGUE Lab Glider [73] – 11.2 kg 360 g –
ALBAC Glider [93] 1.4 m 45 kg – 0.51 m/s

USM Glider [93] 1.3 m – – –
ANT Littoral Glider [93] 2 m 120 kg – 1.03 m/s

Miniature Glider (this work) 0.5 m 4.2 kg 20 g 0.17 m/s

The size of our miniature underwater glider is much smaller compared to traditional underwater

gliders, since we expect the future gliding robotic fish to belightweight, easy to carry, and operate

in relatively shallow waters such as inland lakes and ponds.Table 4.3 shows some metrics of

existing gliders and our miniature glider prototype. From Table 4.3, we can see that the ratio

between net buoyancy and total weight of our miniature glider is similar to those of traditional

underwater gliders, at the order of 1 %, while the velocity magnitude is less than 1/3 of those typical

gliders. However, the cost performance index, the achievedhorizontal travel distance per unit

energy consumption, by our glider is over 18 times bigger than those of reported gliders, assuming

they have similar gliding angles. All the above unique features of our miniature underwater glider

are consistent with the scaling analysis in Section 4.3, which could be used to design the glider

based on the specific applications.
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Chapter 5

Steady Spiral in Three-Dimensional Space

5.1 Steady-State Spiraling Equations

If control inputs are fixed with nonzero tail angle, we can treat the influence of the tail on the

hydrodynamic forces and moments as the effects of increasedhydrodynamic angles (α, β ), and

we know that the gliding robotic fish will perform three-dimensional steady spiraling motion (

[94], [81]), where the yaw angleψ changes at constant rate while the roll angleφ and pitch angle

θ are constants. ThenRRRTTTkkk is constant since

RRRTTTkkk= RRRTTT















0

0

1















=















−sinθ

sinφ cosθ

cosφ cosθ















(5.1)

Taking time derivative ofRRRTTTkkk, we have

ωωωbbb× (RRRTTTkkk) = 0, (5.2)

so the angular velocity has only one degree of freedom withω3i in Ozaxis in the inertial frame.

Then

ωωωb = ω3i(RRR
TTTkkk) (5.3)
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The translational velocity in the body-fixed frame

vvvbbb = RRRbv

[

V 0 0

]T
(5.4)

There are two important parameters in the spiraling motion:the turning radiusR and the verti-

cal speedVvertical. By projecting the total velocity into the horizontal planeand vertical direction,

we have

Vvertical = RRRbv

(

V 0 0

)T (

RRRTkkk
)

(5.5)

R =

√

V2−V2
v /ω3i (5.6)

The steady-state spiraling equations are obtained by setting time derivatives to zero for the

robot’s dynamics:

000 = MMMvvvbbb×ωωωbbb+m0gRRRTTTkkk+FFFext (5.7)

000 = JJJωωωbbb×ωωωbbb+MMMvvvb×vvvbbb+TTText+mwgrrrwww×
(

RRRTTTkkk
)

+ m̄grrr ppp×
(

RRRTTTkkk
)

(5.8)

From equations (3.1), (3.6), (5.3), (5.4) and the above steady-state spiraling equations, we know

there are six independent states for describing the steady spiral motion:

[

θ φ ω3i V α β
]

with

[

m0 rp1 δ
]

as the three control inputs. Expanding equations (5.7) and (5.8), then trans-

forming the original states to the above six independent states, we can obtain the nonlinear steady-

56



state spiraling equations as in (5.9) - (5.14).

0 = m2sβVcφcθω3i −m3sαcβVsφcθω3i −m0gsθ −1/2ρV2S(CD0+Cα
Dα2+Cδ

Dδ2)cαcβ

−1/2ρV2S(Cβ
SFβ +Cδ

SFδ )cαsβ +1/2ρV2S(CL0+Cα
L α)sα (5.9)

0 = −m3sαcβVsθω3i −m1cαcβVcφcθω3i −1/2ρV2S(CD0+Cα
Dα2+Cδ

Dδ2)sβ

+1/2ρV2S(Cβ
SFβ +Cδ

SFδ )cβ +m0gsφcθ (5.10)

0 = m1cαcβVsφcθω3i +m2sβVsθω3i +m0gcφcθ −1/2ρV2S(CD0+Cα
Dα2+Cδ

Dδ2)sαcβ

−1/2ρV2S(Cβ
SFβ +Cδ

SFδ )sαsβ −1/2ρV2S(CL0+Cα
L α)cα (5.11)

0 = (J2−J3)sφcθcφcθω2
3i +(m2−m3)sβsαcβV2+1/2ρV2S(Cβ

MR
β −Kq1sθω3i)cαcβ

−1/2ρV2S(CM0
+Cα

MP
α +Kq2sφcθω3i)cαsβ −mwgrwsφcθ

−1/2ρV2S(Cβ
MY

β +Kq3cφcθω3i +Cδ
MY

δ )sα (5.12)

0 = (J1−J3)sθcφcθω2
3i +(m3−m1)cαcβsαcβV2−mwgrwsθ − m̄grp1cφcθ

+1/2ρV2S(Cβ
MR

β −Kq1sθω3i)sβ +1/2ρV2S(CM0
+Cα

MP
α +Kq2sφcθω3i)cβ (5.13)

0 = (J2−J1)sθsφcθω2
3i +(m1−m2)cαcβsβV2+1/2ρV2S(Cβ

MR
β −Kq1sθω3i)sαcβ

−1/2ρV2S(CM0
+Cα

MP
α +Kq2sφcθω3i)sαsβ + m̄grp1sφcθ

+1/2ρV2S(Cβ
MY

β +Kq3cφcθω3i +Cδ
MY

δ )cα (5.14)

Here, we assume the mass matrix and inertia matrix have the following form:

MMM =















m1 0 0

0 m2 0

0 0 m3















JJJ =















J1 0 0

0 J2 0

0 0 J3
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5.2 Computation of Spiral Path and Evaluation of Stability

5.2.1 Newton’s method for Solving the Steady-State Spiraling Equations

The steady-state spiraling equations are highly nonlineardue to the terms involving trigonometric

functions and inverse trigonometric functions. Given the angle of attackα, the sideslip angleβ ,

and the velocity magnitudeV, a recursive algorithm based on fixed-point iteration couldpotentially

be applied to solve the equations for the other system statesand control inputs [80]. However, we

are more interested in the converse problem of how to calculate steady-state solutions given fixed

control inputs, which are more useful for path planning and control purposes. Unfortunately, this

problem does not admit analytical solutions and the convergence condition for the corresponding

fixed-point problem is not satisfied. In the following we apply Newton’s method to solve the

problem.

Let xxx= [ θ φ ω3i V α β ]T be the six states that we want to solve for steady-state spiral

gliding equations. And letuuu = [ m0 rp1 δ ]T be the three control inputs. For convenience of

presentation, we write the governing equations in a compactform

0= fff (xxx,uuu) = [ fi(xxx,uuu)]i=1,··· ,6 (5.15)

For example,f1 is the right hand side of equation (5.9).

The iterative algorithm for Newton’s method reads [95]

x̂xxi+1 = x̂xxi −J−1(x̂xxi ,uuu) fff (x̂xxi ,uuu) (5.16)
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Herex̂xxi is theith-step iteration for the steady states, andJ(xxx,uuu) is the Jacobian matrix offff (xxx,uuu)

J(xxx,uuu) =
∂ fff
∂xxx

=

[

∂ fi
∂x j

]

6×6
(5.17)

The first row elements of the Jacobian matrix are given in equations (5.18) - (5.23) while the

others are omitted for succinct presentation, which can be calculated similarly.

∂ f1/∂x1 = −m2sβVcφsθω3i +m3sαcβVsφsθω3i −m0gcθ (5.18)

∂ f1/∂x2 = −m2sβVsφcθω3i −m3sαcβVcφcθω3i (5.19)

∂ f1/∂x3 = m2sβVcφcθ −m3sαcβVsφcθ (5.20)

∂ f1/∂x4 = m2sβcφcθω3i −m3sαcβsφcθω3i −m0gsθ −ρVS(CD0+Cα
Dα2+Cδ

Dδ2)cαcβ

−ρVS(Cβ
SFβ +Cδ

SFδ )cαsβ +ρVS(CL0+Cα
L α)sα (5.21)

∂ f1/∂x5 = −m3cαcβVsφcθω3i −ρV2SCα
Dαcαcβ +1/2ρV2S(CD0+Cα

Dα2+Cδ
Dδ2)sαcβ

+1/2ρV2S(Cβ
SFβ +Cδ

SFδ )sαsβ +1/2ρV2SCα
L sα

+1/2ρV2S(CL0+Cα
L α)cα (5.22)

∂ f1/∂x6 = m2cβVcφcθω3i +m3sαsβVsφcθω3i +1/2ρV2S(CD0+Cα
Dα2+Cδ

Dδ2)cαsβ

−1/2ρV2SCβ
SFcαsβ −1/2ρV2S(Cβ

SFβ +Cδ
SFδ )cαcβ (5.23)

Based on the parameters of the miniature underwater glider prototype as listed in Table 5.1,

Newton’s iterative formula is used to solve the steady-state spiraling equations. Characteristic

parameters for steady spiraling motion, including the turning radius and ascending/descending

speed, are obtained with different inputs as shown in Table 5.2. To apply Newton’s method, the
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Table 5.1: Parameters of the lab-developed underwater robot used in the steady-state spiraling
equations.

Parameter Value Parameter Value
m1 3.88 kg m2 9.9 kg
m3 5.32 kg m̄ 0.8 kg

CD0 0.45 Cα
D 17.59 rad−2

Cβ
FS

-2 rad−1 Cδ
FS

1.5 rad−1

CL0 0.075 Cα
L 19.58 rad−1

J1 0.8 kg·m2 J2 0.05 kg·m2

J3 0.08 kg·m2 CM0 0.0076 m

Cβ
MR

-0.3 m/rad Cα
MP

0.57 m/rad

Cβ
MY

5 m/rad Cδ
MY

-0.2 m/rad

Kq1 -0.1 m·s/rad Kq2 -0.5 m·s/rad
Kq3 -0.1 m·s/rad S 0.012 m2

initial values of states for iteration are chosen to beθ =−10◦, φ =−10◦, ω3i = 0.1 rad/s,V = 0.3

m/s,α = 0◦, β = 0◦. From the calculated results, we can see that a small turningradius requires

a large tail angle, a large displacement of movable mass, anda small net buoyancy, while a low

descending or ascending speed demands a small tail angle, a small displacement of movable mass,

and a medium net buoyancy.

5.2.2 Region of Convergence for Newton’s Method

For Newton’s method, the choice of the initial condition is important to the convergence of the

algorithm. Here, we numerically explore the region of convergence. For a fixed set of control

inputs, e.g.,rp1 = 5 mm,m0 = 30 g andδ = 30◦, we carry out the convergence test by running

the algorithm starting from different initial values of thestates, and record whether a given initial

condition leads to convergence. Fig. 5.1a shows the convergence test results for different initial

conditions of the roll angleφ , pitch angleθ and spiraling speedV while the initial values of the
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Table 5.2: Computed spiraling steady states through Newton’s method.

m0 (g) rp1 (cm) δ (◦) (θ ,φ ,ω3i ,V,α,β) (◦,◦,rad/s,m/s,◦,◦) (Vvertical,R) (m/s,m)
25 0.3 45 (-44.5, -31.0, 0.425, 0.264, -0.914, 4.10) (0.182, 0.450)
25 0.4 45 (-46.8, -36.6, 0.448, 0.267, -1.32, 4.52) (0.190, 0.417)
25 0.5 45 (-48.3, -40.6, 0.464, 0.268, -1.61, 4.87) (0.195, 0.396)
25 0.6 45 (-49.3, -43.8, 0.476, 0.267, -1.84, 5.18) (0.197, 0.380)
25 0.7 45 (-50.2, -46.5, 0.486, 0.267, -2.04, 5.48) (0.211, 0.338)
10 0.5 45 (-70.8, -49.3, 0.589, 0.184, -3.64, 7.36) (0.169, 0.121)
15 0.5 45 (-63.5, -52.7, 0.571, 0.218, -3.30, 6.98) (0.189, 0.190)
20 0.5 45 (-55.5, -47.8, 0.517, 0.247, -2.46, 5.85) (0.197, 0.287)
30 0.5 45 (-42.1, -34.3, 0.423, 0.281, -0.901, 4.24) (0.185, 0.500)
35 0.5 45 (-36.9, -29.3, 0.392, 0.289, -0.306, 3.85) (0.172, 0.591)
40 0.5 45 (-32.3, -25.3, 0.368, 0.293, 0.224, 3.60) (0.157, 0.670)
25 0.5 30 (-37.6, -11.9, 0.235, 0.242, 0.854, 2.19) (0.151, 0.806)
25 0.5 35 ( -43.4, -20.7, 0.311, 0.258, 0.0698, 2.87) (0.178, 0.602)
25 0.5 40 ( -46.8, -31.2, 0.389, 0.266, -0.761, 3.77) (0.192, 0.474)
25 0.5 50 ( -49.2, -48.8, 0.537, 0.264, -2.54, 6.19) (0.192, 0.337)
25 0.5 55 (-51.1, -56.4, 0.615, 0.257, -3.62, 7.86) (0.190, 0.283)
25 0.5 60 ( -55.0, -63.8, 0.705, 0.247, -4.95, 10.0) (0.189, 0.225)

other three states are set asα = 0◦,β = 0◦,ω3i = 0.1 rad/s; Fig. 5.1b shows the results for different

initial conditons of the angle of attackα, sideslip angleβ and the angular speedω3i with the initial

values of the other three states set asφ = −10◦,θ = −10◦,V = 0.3 m/s. From the results, we

see that a small roll angle, a small pitch angle and a large velocity in the reasonable range will

lead to convergence; and the signs of the angle of attack and sideslip angle are very important

to the convergence of the solution. These observations offer insight into how to properly choose

the initial conditions when running the Newton’s method to obtain the steady spiraling path; for

example, one may want to select zero degree for the initial values of the angle of attack and sideslip

angle when having no idea about the signs of those two variables.
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Figure 5.1: Convergence test results for Newton’s method with respect to initial conditions. Color
yellow (light) means that convergence to the steady-state spiraling equilibrium is achievable with
the corresponding initial values; color blue (dark) means that there is no convergent solution or
the convergent solution is not at the steady-state spiraling equilibrium. In the test, the used set
of control inputs isrp1 = 5 mm, m0 = 30 g, δ = 45◦; and the corresponding equilibrium state
values areθ =−42.1281◦, φ =−34.2830◦, ω3i = 0.4229 rad/s,V = 0.2809 m/s,α =−0.9014◦,
β = 4.2414◦.
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5.2.3 Stability Analysis of Spiraling Motion

It is of interest to understand the stability of the spiral motion under a given set of control inputs.

Global stability analysis, however, is very difficult if notimpossible due to the highly nonlinear

dynamics of the system. In this subsection we perform local stability analysis for the steady spiral-

ing motion obtained from (5.9)–(5.14). A solution to these equations can be considered a relative

equilibrium of the system since it is independent of the coordinates of the robot in the inertial

frame. We denote withJd(xxxddd,uuu) the Jacobian matrix for the dynamics (3.4) and (3.5), where in a

compact form the system state vector is represented asxxxddd = [ vvvbbb ωωωbbb
]T and the system dynamics

asẋxxddd = fff ddd(xxxddd,uuu). As the (relative) equilibrium point is computed using a different set of system

statesxxx = [ θ φ ω3i V α β ]T , and the Jacobian matrixJ(xxx,uuu) for the steady-state equa-

tions has been evaluated with those states (Section 5.2.1),we can evaluateJd through the chain

rule

Jd(xxxddd,uuu) =







MMM−1 0

0 JJJ−1






J(xxx,uuu)

(

dxxxddd
dxxx

)−1
(5.24)

where
dxxxddd
dxxx

= hspiral(xxx)6×6 =







































0 0 0 cαcβ −Vsαcβ −Vcαsβ

0 0 0 sβ 0 Vcβ

0 0 0 sαcβ Vcαcβ −Vsαsβ

−cθω3i 0 −sθ 0 0 0

−sφsθω3i cφcθω3i sφcθ 0 0 0

−cφsθω3i −sφcθω3i cφcθ 0 0 0







































So the value of linearization matrixJd at the equilibrium point can be obtained by just plugging

the steady state valuesxxxeee computed in Section 5.2.1 into the above equation, and by checking the
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Hurwitz property of the linearization matrixJd, we can understand the local stability property of

the steady-state spiraling motion.

We test the listed steady-state spiral motions in Table 5.2 for local stability. For example, for

the steady spiral corresponding to the control input setm0 = 25 g,rp1 = 0.3 cm, andδ = 45◦, the

eigenvalues of Jacobian matrixJd are−0.91±5.02i,−6.69,−2.09,−0.42,−0.090, which shows

exponential stability. We find that all spirals in Table 5.2 have a Hurwitz Jacobian matrix and thus

the equilibrium of each spiral is locally asymptotically stable.

5.2.4 Basins of Attraction for the Spiraling Dynamics

The analysis in the previous subsection suggests that the relative equilibria associated with steady

spiraling are locally stable. It is of interest to gain some insight into the sizes of basins of attraction

for those equilibria. In this subsection, we run the dynamics simulation starting from different

initial conditions for a given fixed control input, and then record whether each initial state con-

figuration will lead to convergence to steady spiraling, andif yes, what is the approximate time

it takes to converge. Since one cannot visualize a state space of more than three dimensions, we

have chosen to visualize the basin of attraction in three-dimensional subspaces of the original state

space.

Fig. 5.2 shows the simulation results of convergence time based on the parameters of our ex-

perimental prototype with respect to three statesφ ,θ ,v1. To obtain the results shown in this figure,

the control inputs are given asrp1 = 5 mm,m0 = 30 g andδ = 45◦. Following this simulation

method, we can get the basins of attraction with convergencetime for any other set of control

inputs. Similarly, we can obtain the convergence test results, shown in Fig. 5.3, when we vary

the initial conditions for the angular velocities in the body-fixed frame. From the results, it seems

that the basin of attractions for the spiraling dynamics is very large, which means that, starting
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Figure 5.2: Convergence time in seconds for spiraling dynamics with respect to different initial
values of states in roll angleφ , pitch angleθ , and translational velocityv1 along theOxb direction,
for the control inputs ofrp1 = 5 mm,m0 = 30 g andδ = 45◦. The corresponding equilibrium state
values areθ =−42.1281◦, φ =−34.2830◦, andv1 = 0.2801 m/s.
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Figure 5.4: Snap shots of the robot spiraling in the experiment tank.

from almost every state configuration in a reasonable state value range, the glider is able to achieve

the steady spiraling motion eventually. However, we also notice that the convergence time varies

significantly with the starting condition. When the pitch angle and roll angle are negative, and

the speed is neither too high nor too low, the convergence time is relatively short. This provides

us with some ideas about when to switch to a desired gliding profile and how long we expect for

the transient period. We also notice that among all three angular velocity states, only the initial

condition ofω1 takes a noticeable influence on the convergence time of the glider dynamics. This

is consistent with the slow dynamics of the rotation motion in Oxb direction due to the enhanced

inertia from the large wings.

5.3 Experimental Results

With the miniature underwater glider prototype featuring aswappable tail fin, experiments are

conducted in order to confirm the spiraling motion and validate the derived mathematical model.
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The experiments are performed in a large water tank that measures 15-foot long, 10-foot wide,

and 4-foot deep, as shown in Fig. 5.4. We set the net buoyancy (negatively buoyant), the linear

actuator position and the tail angle to fixed values. Then theglider is released on the water surface

and enters into the spiraling mode. Cameras are set to recordthe videos in both top view and

side view. The turning radii of the spirals are extracted after video processing. The comparison

between model predictions and experiment results on turning radius for different tail angles and

different excess masses are shown in Fig. 5.5 and Fig. 5.6, respectively. From the results, we can

see that the turning radius of the spiral is smaller with a larger deflected tail angle and a smaller

net buoyancy. The error bar in the figures shows the average value and standard deviation of the

turning radius out of ten repeated experiments. The model prediction shares the same trend with

the experimental results, and generally speaking, the match between those two are good.

There are some factors contributing to the measurement errors. First, the scales of camera

images are different at different distances. Here, an average scale is used in the information ac-

quisition during video processing. A grid board is used for calibration, captured with the camera

at the average distance. Second, there are some initial transient processes, which is difficult to

be completely separate from the steady spiraling period. Experimental environment with deeper

water will effectively reduce the influence of initial transient; however, the complexity of exper-

iments setup will be increased as a result. The environmental disturbances such as currents will

also affect the experimental results. So with these uncertainties, we consider the match between

our experimental results and the model predictions satisfactory.
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Figure 5.5: Spiraling radius with respect to the tail angle,with fixed movable mass displacement
of 0.5 cm and fixed excess mass of 30 g.
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Chapter 6

Passivity-based Stabilization with a

Whale-type Tail

In this chapter, the sagittal-plane stabilization problemof a gliding robotic fish with a whale-type

tail is discussed. The dynamics of an underwater glider in the sagittal plane is first reviewed and

separated into the slow dynamics and fast dynamics based on singular perturbation analysis. In

Section 6.2, a passivity-based nonlinear controller for the approximated reduced model is pro-

posed, and stability analysis for the full system is conducted via linearization. Simulation results

are presented to show the effectiveness of the designed controller. A nonlinear observer is then

proposed in Section 6.3 for the implementation of the control strategy. In Section 6.4, both open-

loop and closed-loop experimental results are presented using a gliding robotic fish to illustrate the

effectiveness of both the controller and the observer.

6.1 Model of a Gliding Robotic Fish with a Whale-type Tail

In this section, the effect of a whale-type tail of a gliding robotic fish is considered as a control

surface. A dynamic model for underwater gliders in the sagittal plane is first reviewed [76, 78],

which is an invariant plane for such robots. Then with singular perturbation analysis, the model is

separated into two subsystems, a fast-mode system and a slow-mode system, for controller design

in Section 6.2.
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Figure 6.1: The schematic of a gliding robotic fish with forces and moments defined in the corre-
sponding coordinate frames (side view).

6.1.1 Dynamic Model in the Sagittal Plane

This dissertation is focused on the motion in the robot’s invariant plane. As shown in Fig. 6.1, a

gliding robotic fish is modeled as a rigid-body system, with an ellipsoidal shape and fixed wings

as typically reported in the underwater glider literature.The relevant coordinate reference frames

are defined as follows: the body-fixed reference frame, denoted asOxbybzb, has its originO at

the geometric center. TheOxb axis is along the body’s longitudinal axis pointing to the head;

the Ozb axis is perpendicular toOxb axis in the sagittal plane of the robot pointing downwards,

andOyb axis will be automatically formed by the right-hand orthonormal principle. In the velocity

reference frameOxvyvzv, Oxv axis is along the direction of velocity whose magnitude isV, andOzv

lies in the sagittal plane perpendicular toOxv. In the inertial frameAxyz(not shown in Fig. 6.1),Az

axis points in the gravitational acceleration direction, andAx is defined in the same direction as the

intersection line of the horizontal plane and the sagittal plane, while the originA is a fixed point
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in space. There are three angles defined following the standard convention in marine applications,

based on the aforementioned reference frames. The pitch angle θ is the angle betweenOxb andAx

with nose up as positive; the gliding angleθg is the angle betweenOxv andAx with gliding up as

positive; the angle of attackα is the angle fromOxb axis toOxv axis with rotation axisOyb.

We define the sum of the mass of the gliding robotic fish,mg, and the added mass inOxb

direction asm1, and similarly, the sum ofmg and the added mass inOzb direction asm3. The robot

displaces a volume of water of massmw. Let m0 = mg−mw represent the excess mass (negative

buoyancy).

The forces acting on the robot body include gravitational force, buoyancy force, hydrodynamic

forces (lift and drag) and control force. Due to the symmetric shape of the robot, the center of

buoyancy will be through the originO. The assumptions in [76] are taken that the movable mass

is fixed at the originO (during steady gliding), with the stationary mass distributed uniformly, and

the added masses are equally valued (m1 = m3 = m). Then the center of gravity will coincide with

the center of buoyancy at the origin. The force pair, gravitational force and buoyancy force, act like

one force of excess massm0 at the originO in Azdirection. The hydrodynamic lift forceL is along

negativeOzv axis, while the drag forceD is along negativeOxv direction. The control forceFδ

is in Ozb direction, exerted by the control surface (e.g., a whale fluke-type tail) traveling through

the fluid medium, which is essentially another hydrodynamicforce. The control surface angleδ

is defined as the angle between the control surface plane and theOxbyb plane. The hydrodynamic
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forces are dependent on the angle of attack and the velocity as follows:

L = (KL0+KLα)V2 (6.1)

D =
(

KD0+KDα2
)

V2 (6.2)

Fδ = KFδ V2uδ (6.3)

whereKL0, KL are lift coefficients, andKD0, KD are drag coefficients.uδ is the effective angle of

attack that the control surface contributes to the gliding robotic fish. There is a linear relationship

betweenuδ and the control surface angleδ , uδ = Kuδ δ , whereKuδ is a scale constant.KFδ is the

coupling factor that describes the additional force that the control surface induces.

There are two moments about theOyb axis, which rotate the robot to a specific attitude. One is

the hydrodynamic pitch momentM2, and the other is the control momentMδ . They are modeled

as

M2 =
(

KM0+KMα +Kq2ω2
)

V2 (6.4)

Mδ =−KMuδV2 (6.5)

whereKM0 andKM are pitch moment coefficients,Kq is the pitching damping coefficient andω2

is the angular velocity for the pitch.

By applying Newton’s second law and the moment of momentum equation, the gliding robotic
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fish dynamics are obtained as

V̇ =−
1

m1

(

m0gsinθg+D−Fδ sinα
)

(6.6)

θ̇g =
1

m1V

(

−m0gcosθg+L+Fδ cosα
)

(6.7)

α̇ = ω2−
1

m1V

(

−m0gcosθg+L+Fδ cosα
)

(6.8)

ω̇2 =
1
J2

(

KM0+KMα +Kq2ω2−KMuδ
)

V2 (6.9)

whereJ2 is the total inertia aboutOyb axis, consisting of stationary mass inertia and added inertia

in water, andg represents the gravitational acceleration.

For the open-loop system (i.e.,uδ = 0), the steady gliding profile can be obtained from (6.6)-

(6.9). The state variables at the equilibrium have the following relationships

θge = arctan
−KDe
KLe

, αe=−
KM0
KM

, ω2e= 0, Ve=





|m0|g
√

K2
De

+K2
Le





1
2

whereKDe = KD0+KDα2
e,KLe = KL0+KLαe.

6.1.2 System Reduction via Singular Perturbation

Bhatta and Leonard [76] have shown with singular perturbation analysis that for the open-loop

system, the dynamic model can be reduced to a second-order system with good approximation,
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and the corresponding non-dimensional full state model is:

dV̄
dtn

=−
1

KDeV2
e

(

m0gsin
(

θ̄g+θge
)

+D−Fδ sin(ᾱ +αe)
)

(6.10)

dθ̄g

dtn
=

1

KDeV
2
e (1+V̄)

(

−m0gcos
(

θ̄g+θge
)

+L+Fδ cos(ᾱ +αe)
)

(6.11)

ε1
dᾱ
dtn

= ω̄2− ε1
1

KDeV
2
e (1+V̄)

(

−m0gcos
(

θ̄g+θge
)

+L+Fδ cos(ᾱ +αe)
)

(6.12)

ε2
dω̄2
dtn

=−(ᾱ + ω̄2−uδ )(1+V̄)2 (6.13)

where the new state variables are defined as

V̄ =
V −Ve

Ve
, θ̄g = θg−θge, ᾱ = α −αe, ω̄2 =

Kq

KM
ω2

the non-dimensional timetn and some related constants are defined as

τs=
m3

KDeVe
, ε2 =−

J2

KqV2
e

1
τs
, tn = t/τs, ε1 =

Kq

KM

1
τs

For the new state model, the hydrodynamic forces and moment can be described as

D =
(

KD0+KD (ᾱ +αe)
2
)

V2
e (1+V̄)2 (6.14)

L = (KL0+KL (ᾱ +αe))V
2
e (1+V̄)2 (6.15)

M2 =
(

KM0+KMα +Kqω̄2
)

V2
e (1+V̄)2 (6.16)

Fδ = KFδ uδV2
e (1+V̄)2 (6.17)
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The system can be further written in a compact form

dξ
dtn

= f (ξ ,η,uδ ) (6.18)

µ
dη
dtn

= Ag(ξ ,η,ε,uδ ) (6.19)

where,

ξ =







V̄

θ̄g






, η =







ᾱ

ω̄2






, f =







f1

f2






, g=







g1

g2






,

A=







µ
ε1

0

0 µ
ε2






, ε =







ε1

ε2






, µ = max(ε1,ε2),

and f andg are defined accordingly based on (6.10) - (6.13).

From singular perturbation analysis, by settingµ =0, we arrive atω̄2=0 andᾱ =uδ . Plugging

those two fast-mode states into the other two state equations, the reduced model for the full system

is obtained. Now we further set̄α = 0 in the reduced model for design convenience, sinceᾱ is

relatively small in value. Then the approximation of the reduced model can be expressed as

dξ
dtn

= f (ξ ,0,uδ ) (6.20)

and this second-order system will be used in the controller design. The effectiveness of design-

ing the controller based on the approximated reduced systemfor the original full system, will be

demonstrated in next section.
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6.2 Passivity-based Controller Design

6.2.1 Passivity-based Controller for the Approximated Reduced Model

The open-loop reduced model (6.20) withuδ = 0 has an exponentially stable equilibrium point

at the origin, which can be proven by Lyapunov analysis with the following positive definite Lya-

punov function [76]

Φ =
2
3
− (1+V̄)cosθ̄g+

1
3
(1+V̄)3 (6.21)

and ∂Φ
∂ξ f (ξ ,0,0)≤−b1‖ξ‖ with b1 > 0.

Now the objective is to design a feedback controller to stabilize the origin of the approximated

reduced model, which also provides a faster convergence speed. The approximated reduced system

is linear in control

dξ
dtn

= f (ξ ,0,0)+gr (ξ )uδ (6.22)

where

gr (ξ ) =







KFδ (1+V̄)2sinαe/KDe

KFδ (1+V̄)cosαe/KDe






(6.23)

For passivity-based controller design, an outputyr needs to be defined for the approximated

reduced system, to make the system passive [96]. The output is chosen as

yr =
∂Φ
∂ξ

gr (ξ ) (6.24)
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where

∂Φ
∂ξ

=

[

∂Φ
∂V̄

∂Φ
∂ θ̄g

]

=

[

−cosθ̄g+(1+V̄)2 (1+V̄)sinθ̄g

]

(6.25)

We check the following expression for the approximated reduced model,

dΦ
dtn

=
∂Φ
∂ξ

( f (ξ ,0,0)+gr (ξ )uδ )

It is known that

∂Φ
∂ξ

f (ξ ,0,0)≤ 0

So

dΦ
dtn

≤ uδ yr

Then by the definition of a passive system, the following system















dξ
dtn

= f (ξ ,0,uδ )

yr =
∂Φ
∂ξ

gr(ξ )
(6.26)

is passive. Let controluδ for system (6.22) be

uδ =−φ (yr) (6.27)

for some functionφ , whereyruδ =−yrφ (yr)≤ 0.
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Now we takeΦ in (6.21) as the Lyapunov function for the closed-loop system (6.26). Then

dΦ
dtn

=
∂Φ
∂ξ

( f (ξ ,0,0)+gr (ξ )uδ )

=
∂Φ
∂ξ

f (ξ ,0,0)+
∂Φ
∂ξ

gr (ξ )uδ

≤−b1‖ξ‖+yruδ

For the robot controller design, there is limitation on the magnitude of the control variableuδ ,

so in this dissertation, we take

φ(yr) =
1
Kc

arctan(yr) (6.28)

whereKc is the control parameter that is used to limit the control output magnitude. We then have

dΦ
dtn

≤−b1‖ξ‖−
1
Kc

yr arctan(yr) (6.29)

which proves the asymptotic stability of the origin. Furthermore, the additional negative term

−
1

Kc
yr arctan(yr) in the derivative of Lyapunov function provides an extra stabilization advantage.

With that term, the Lyapunov function will converge to zero more quickly, which results in a faster

convergence speed. That would help the robot to return to itssteady gliding path with less time.
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6.2.2 Stability Analysis for the Full Closed-loop System

From Eqs. (6.23) - (6.25), the designed controlleruδ in (6.27) is dependent on the reduced model

states as

uδ =
1

Kc
arctan(

1
KDe

(KFδ cosαesinθ̄g(1+V̄)2+KFδ sinαe(1+V̄)2((1+V̄)2−cosθ̄g)))

(6.30)

If applying the above controller to the full-order system (6.10) - (6.13), we will have the closed-

loop system, expressed in the compact form as

dz
dtn

= h(z,uδ (ξ )) (6.31)

where the full system state vectorz=

[

ξ η
]T

.

It is challenging to establish the global stability of the origin in (6.31), so it is focused on the

local stability in this dissertation. The linearization matrix is defined as

A=
∂h
∂z

∣

∣

∣

∣

0
=

[

ai j
]

4×4 (6.32)

81



The calculated elements in the Jacobian matrixA are

a11=−2−
2KFδ

2sin2αe

KcKDe
2 ,

a12=−
m0gcosθge

KDeV2
e

−
KFδ

2sinαecosαe

KcKDe
2 ,

a13=−
2KDαe

KDe
,

a21=
m0gcosθge

KDeV2
e

+
KLαe

KDe
−

2KFδ
2sinαecosαe

KcKDe
2 ,

a22=
m0gsinθge

KDeV2
e

−
KFδ

2cos2αe

KcKDe
2 ,

a23= KL/KDe,

a14= 0, a24= 0, a31= a21, a32= a22, a33= a23,

a41=−
1
ε2

2KFδ sinαe

KcKDe
,

a42=−
1
ε2

KFδ cosαe

KcKDe
,

a34= 1/ε1, a43=−1/ε2, a44=−1/ε2.

By examining theA matrix for the Hurwitz property, we would know whether the closed-loop

system with the passivity-based controller is asymptotically stable at its equilibrium. However, it

is technically difficult to check this 4-by-4 matrix directly unless we use a numerical approach.

But due to the time-scale separation property of system (6.31), there is an alternative way to check

the stability, by checking two 2-by-2 matrices on their Hurwitz property [97].

First, we break the matrixA into four blocks using four 2-by-2 matricesA11,A12,A21,A22.
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Here,

A=







A11 A12

1
µ A21

1
µ A22







Following [97], instead of checking matrixA, we only need to check 2-by-2 matricesA22 and

A11−A12A
−1
22 A21 on whether they are Hurwitz, for proving the stability of thefull-order system

whenµ is sufficiently small. Plugging the calculated elements of linearization matrixA into those

four matrices, we have

A22=











µ
KL

KDe

µ
ε1

−
µ
ε2

−
µ
ε2











, A11−A12A
−1
22 A21=







b1 b2

b3 b4







where

b1 =−2−
2KFδ

2sin2αe

KcK2
De

+
4µ2KFδ αesinαeKD

ε1ε2KcK2
De

b2 =−
m0gcosθge

KDeV2
e

−
KFδ

2sinαecosαe

KcK2
De

+
2µ2KFδ KDαecosαe

ε1ε2KcK2
De

b3 =
m0gcosθge

KDeV2
e

+
KLαe

KDe
−

2KFδ
2sinαecosαe

KcK2
De

−
2µ2KFδ KL sinαe

ε1ε2KcK2
De

b4 =
m0gsinθge

KDeV2
e

−
KFδ

2cos2αe

KcK2
De

−
µKFδ KL cosαe

ε1KcK2
De

For matrixA22, the characteristic equation is

λ 2+k1λ +k0 = 0
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where

k1 =
µ
ε2

−µ
KL

KDe
, k0 =

µ2

ε1ε2
−µ

KLµ
KDeε2

Becauseµ ∼ O(εi), i.e., µ is in the same order of the time scaleεi , and they are both sufficiently

small, it can be shown easily that the coefficientsk1 andk0 are both positive, which meansA22 is

Hurwitz.

Now for matrixA11−A12A−1
22 A21, let the coefficients of the characteristic equation bel1 and

l0, defined similar tok1 andk0. It is easy to get

l1 =−(b1+b4), l0 = b1b4−b2b3 (6.33)

Here we exploit information about the gliding robotic fish system and set a range for those

parameters. From the gliding robotic fish application perspective, we have

sinαe≈ αe, cos(αe)≈ 1, 0≤ KFδ ∼ O(10), Ve≤ 1, KDe∼ O(10), Kuδ ∼ O(1),

KLe∼ O(10), KL ∼ O(100), KD ∼ O(100), 0.25≤ |θge| ≤ 0.75

where metric units are applied to all above parameter values. Besides, we bound the control param-

eterKc in an open set(1,10) to restrain the magnitude of the controluδ from 9◦ to 90◦, which is

consistent with the application constraints. Then we find that for each element in the 2-by-2 matrix

A11−A12A−1
22 A21, there is a dominant term, which determines the sign of that element, with all

other minor terms only influencing the value. We express the approximation using the dominant
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terms for the matrix elements

b1 ≈−2, b2 ≈−
m0gcosθge

KDeV2
e

, b3 ≈
m0gcosθge

KDeV2
e

, b4 ≈
m0gsinθge

KDeV2
e

Sincem0 andθge are always opposite in sign,b4 < 0. We also notice thatb2 andb3 are opposite

in sign. So from equation (6.33), we havel1 > 0 and l0 > 0. With all characteristic equation

coefficients positive, the matrixA11−A12A
−1
22 A21 is Hurwitz.

From the above analysis, we have shown that the original 4-by-4 linearization matrixA is

Hurwitz for sufficiently smallµ, which proves that the passivity-based controller derivedfrom the

approximated reduced model also stabilizes the full-ordersystem. Furthermore, by the fact that

the controller is designed based on the approximated reducesystem through passivity analysis,

we conjecture that this controller will be similarly effective for the full system as it does for the

approximated reduced system. In particular, we anticipatethat the controller will provide a faster

convergence speed than the open-loop controlleruδ = 0, due to the additional negative term it

introduced into (6.29).

6.2.3 Simulation Results

We apply the passivity-based controller to the full dynamics model, and use Matlab Simulink

to simulate the controller performance. The robot parameters we used are:m = 10 kg, J2 =

0.08 kgm2, KL0=0 kg/m,KL =303.6 kg/m,KD0=3.15 kg/m,KD =282.8 kg/m,Kq=−0.8 kgs,

KM0 = 0.39 kg,KM =−14.7 kg,δ = 29.5,m0 = 0.05 kg. The equilibrium point isVe= 0.24 m/s,

θge = −22.5◦, αe = 1.52◦ andω2e = 0 rad/s. Suppose that we have a current disturbance that

makes the robot deviate off its steady gliding path. From that point we want the robot to return to its

equilibrium gliding profile. The initial states are given asV0 = 0.2 m/s,θg0 =−35◦, α0 = 1◦ and
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Figure 6.2: Simulation results on the trajectories of the gliding angleθg for the open-loopuδ = 0
and closed-loop (Kc = 2) cases, respectively.

ω20= 0 rad/s. In simulation, we also consider the dynamics of the actuator for moving the control

surface, approximated by a first-order system with a time constant of 10 ms. The simulation time

is 60 seconds.

Fig. 6.2 shows that the passivity-based controller designed for the reduced model works for

the original full-order system, not only stabilizing the steady gliding equilibrium but also speeding

up the convergence process as we expected from the analysis.Figs. 6.3-6.4 show the influences

of the control parameterKc on the control output and the glide angle transients. It can be seen

that with a smallerKc, the system converges faster but requires larger initial control effort. With

the arctangent function in (6.28), the tunable parameterKc makes it easy to balance between the
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Figure 6.3: The trajectory of controluδ for the closed-loop simulation with different values forKc.
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Figure 6.4: The trajectory of gliding angleθg for the closed-loop simulation with different values
for Kc.
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control effort and the convergence speed.

6.3 Observer Design

In this section, we propose a nonlinear model-based observer to estimate the velocityV and the

gliding angleθg (see (6.30)), using only the pitch angle which can be measured from onboard

sensors. The local stability of the observer is analyzed with a constructed Lyapunov function [98].

A nonlinear observer is proposed in order to estimate systemstates with a relatively large con-

vergence region. The observer gain structure is selected tobe linear, to enable efficient computation

and onboard implementation in experiments. The gain is obtained by solving the Riccati equation

as in the Extended Kalman Filter, in order to take the robustness to the measurement noise into the

design consideration. The nonlinear observer can be expressed as

˙̂xxx= f (x̂xx,uδ )+Ho(θ − θ̂) (6.34)

θ̂ = h(x̂xx) (6.35)

Here,x̂xx= [ V̂ θ̂g α̂ ω̂2 ]T is the estimated system state,f (x̂xx,uδ ) is the observer dynamics, as

described in Eqs. (6.6)–(6.9),h(x̂xx) = θ̂g+ α̂ is the output function, andHo is the observer gain.

Let Q be a 4-by-4 symmetric positive definite matrix, which denotes the process noise covari-

ance for the state dynamics. LetRbe a constant, representing the measurement noise variance. Let

P be the solution of the Riccati equation

AoP+PAT
o +Q−PCT

o R−1CoP= 0 (6.36)
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whereAo andCo are the linearization matrix of the system,

Ao =































−
1

m1

∂D
∂V

−
m0gcosθg

m1
−

1
m1

∂D
∂α

0

1
m1V

∂L
∂V

m0gsinθg

m1V
1

m1V
∂L
∂α

0

−
1

m1V
∂L
∂V

−
m0gsinθg

m1V
−

1
m1V

∂L
∂α

1

2V(KM0+KMα)

J2
0

KMV2

J2

Kq2V2

J2































e

Co =

[

0 1 1 0

]

Here,[·]e means that matrix elements are evaluated at the equilibriumpoint.

∂L
∂α

= KLV2,
∂L
∂V

= 2V(KL0+KLα),
∂D
∂α

= 2KDV2α,
∂D
∂V

= 2V(KD0+KDα2).

The existence of a positive definite matrixP is guaranteed by the observability of (Ao, Co). If

P exists, the observer gainHo can be designed as

Ho = PCT
o R−1 (6.37)

By tuning the value ofR, we can adjust the robustness of the observer to different levels of mea-

surement noise.

The stability of the designed nonlinear observer is analyzed below. We first define the dynamics
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system states asxxx= [ V θg α ω2 ]T . Then the system dynamics can be expressed as

ẋxx= f (xxx,uδ ) (6.38)

θ = h(xxx) (6.39)

Define the state estimation error asx̃xx = xxx− x̂xx, and then from Eqs. (6.34) (6.35) (6.38) (6.39) we

have the estimation error dynamics

˙̃xxx= f (xxx,uδ )− f (x̂xx,uδ )−Ho(h(xxx)−h(x̂xx)) (6.40)

Taylor series of functionsf andh are taken at the equilibrium point, and we have

˙̃xxx= (Ao−HoCo)x̃xx+η(x̃xx, t) (6.41)

Hereη(x̃xx, t) represents the sum of Taylor series terms that contain second-order and higher-order

x̃xx. Furthermore,η(0, t) = 0. There exist positive constantsc0 andk1 such that when estimation

error|x̃xx|< c0 andxxx is bounded, we have

‖η(x̃xx, t)‖ ≤ k1‖x̃xx‖2 (6.42)

We define a Lyapunov functionV(x̃xx) for the system (6.41)

V(x̃xx) = x̃xxTP−1x̃xx (6.43)
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We take the time derivative ofV(x̃xx)

V̇(x̃xx) = x̃xxTP−1 ˙̃xxx+ ˙̃xxxTP−1x̃xx (6.44)

From Eqs. (6.36), (6.37), (6.41), (6.44), we have

V̇(x̃xx) =−x̃xxT(CT
0 R−1C0+P−1QP−1)x̃xx+2x̃xxTP−1η(x̃xx, t) (6.45)

Here(CT
0 R−1C0+P−1QP−1) ≥ σmin1114×4 is positive definite, andσmin is a finite scaler. From

Eq. (6.42), the time derivative of Lyapunov function is bounded

V̇(x̃xx)≤−c1‖x̃xx‖2+c2‖x̃xx‖3 (6.46)

Herec1 andc2 are positive scalar coefficients that depend on the noise signals and the system

matrices. The coefficients can be selected as

c1 = σmin , c2 = 2k1‖P−1‖ (6.47)

It can be easily shown from Eq. (6.46) that the state estimation error x̃xx dynamics is locally

exponentially stable. Furthermore, the local exponentialstability of the full closed-loop system

can be verified by the separation principle [96] with the proven local exponential stability property

of the passivity-based controller and the nonlinear observer.

We also consider the influence of the system noise and measurement noise on the observer
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stability. The noise-corrupted system dynamics can be expressed as

ẋxx= f (xxx,uδ )+ν1 (6.48)

θ = h(xxx)+ν2 (6.49)

whereν1 andν2 represent the process noise and measurement noise, respectively. The state esti-

mation error dynamics for such a system is

˙̃xxx= f (xxx,uδ )− f (x̂xx,uδ )−Ho(h(xxx)−h(x̂xx))+ν1−Hoν2 (6.50)

Taylor series of functionsf andh are taken at the equilibrium point, and we have

˙̃xxx= (Ao−HoCo)x̃xx+η(x̃xx, t)+ξ (t) (6.51)

Here ξ (t) = ν1−Hoν2. Assuming thatxxx is bounded and the noise signalsν1 andν2 are also

bounded, there exist constantk1 andk2 such that

‖η(x̃xx, t)‖ ≤ k1‖x̃xx‖2 , ‖ξ (t)‖ ≤ k2 (6.52)

We take the same Lyapunov functionV(x̃xx) for the system (6.51)

V(x̃xx) = x̃xxTP−1x̃xx (6.53)
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From Eqs. (6.36), (6.37), (6.44), (6.51), the time derivative ofV(x̃xx) is

V̇(x̃xx) =−x̃xxT(CT
0 R−1C0+P−1QP−1)x̃xx+2x̃xxTP−1(η(x̃xx, t)+ξ (t)) (6.54)

Because of the boundedness properties of the noise signal, the time derivative of Lyapunov

function is bounded

V̇(x̃xx)≤−c1‖x̃xx‖2+c2‖x̃xx‖3+c3‖x̃xx‖ (6.55)

Herec1, c2 andc3 are positive scalar coefficients that depend on the noise signals and the system

matrices. The coefficients can be selected as

c1 = σmin , c2 = 2k1‖P−1‖ , c3 = 2k2‖P−1‖ (6.56)

It can be shown from Eq. (6.55) that the state estimation error will be bounded

|x̃xx| ≤
c1
2c2

when 4c2c3−c2
1 ≤ 0 and

c1
2c2

< c0 (6.57)

The condition inequalities in Eq. (6.57) can be checked for agiven system with known system

matrices and the noise signal characteristics. We speculate that the stabilization output of the full

closed-loop system will also be bounded around the nominal value, based on the boundedness of

the state estimation error and the exponential stability ofthe designed passivity-based controller.

Simulation is carried out to examine the performance of the designed observer. The closed-loop

system with the passivity-based controller for stabilization is simulated with full state feedback.

The observer runs in parallel with the closed-loop dynamicswith the measured pitch angle as the
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Figure 6.5: Simulated trajectory of the measured pitch angle which is corrupted with noise. The
measurement noise is modeled as Gaussian random process with R= 0.1.

observer input. In simulation, measurement noiseυ(t), added to the system outputθ(t), is modeled

as a Gaussian random process with zero-mean,E{υ}= 0, and varianceR, E{υ(t)υ(τ)}= Rδ (t−

τ). Fig. 6.5 shows the noise-corrupted system output, the measured pitch angle with the variance of

measurement noiseR= 0.1. Fig. 6.6 shows both the real and estimated gliding angle trajectories.

Gliding angleθg is used here to evaluate the effectiveness of state estimation because it is the

signature variable in the sagittal-plane glide motion. Control parameterKc = 2 is used. The

simulation results show that the proposed observer is able to estimate the system states with good

robustness to the measurement noise.
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Figure 6.6: Simulation results: the trajectories of the gliding angleθg of the real state and nonlinear
observer estimation with measurement noise.
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6.4 Experimental Results

In order to test the effectiveness of the proposed passivity-based controller (Section 6.2.1) and the

nonlinear observer (Section 6.3), we conduct both open-loop and closed-loop experiments using a

gliding robotic fish prototype “Grace”. The tail fin system in“Grace” is driven by a servo motor

(Hitec Servo HS-7980TH) through a chain transmission. In experiments, the tail is adjusted up or

down like a whale fluke to modulate the glide motion. A microcontroller (dsPIC 30F6014A) in

the robot runs the glide control program and provides storage memory for the measurement data.

“Grace” is also equipped with the inertial measurement units including gyros (ST LPY503AL),

accelerometers and a digital compass (ST LSM303DLMTR), which are used to measure the robot’s

attitude.

6.4.1 Filter Design

The IMU sensor output is corrupted with a high-frequency noise. The system output, namely,

the pitch angle, is computed from the accelerometer sensor output. In this dissertation, in order

to smooth the measured pitch angle, a second-order Butterworth digital filter is adopted. The

discrete-time transfer function of the filter can be expressed as

H(z) =
a0+a1z−1+a2z−2

1+b1z−1+b2z−2 (6.58)

wherea0, a1, a2, b1, b2 are filter coefficients.

Let fr denote the ratio between the sampling frequencyfs and the cutoff frequencyfc

fr =
fs
fc

(6.59)
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For the Butterworth filter, the above coefficients can be determined as the follows

a0 = a2 =
ω ′2

c
c

a1 = 2a0

b1 =
2(ω ′2

c −1)
c

b2 =
1−2cos(π/4)ω ′

c+ω ′2
c

c

whereω ′
c = tan(π/ fr), andc= 1+2cos(π/4)ω ′

c+ω ′2
c .

In this dissertation, the sampling frequency is 50 Hz, and the cutoff frequency is designed to

be 10 Hz. The low-pass Butterworth filter for the pitch angle can be described using the following

recursive difference equation,

θ(n) =a0θs(n)+a1θs(n−1)+a2θs(n−2)−b1θ(n−1)−b2θ(n−2) (6.60)

whereθ(n) andθs(n) are the Butterworth filter’s output and input (pitch angle) at the nth step,

respectively. In this dissertation,a0 = a2 = 0.20644,a1 = 0.41289,b1 =−0.3702,b2 = 0.19597.

6.4.2 Open-loop Experiments

Open-loop experiments are first conducted in a large indoor tank, which measures 5 m long, 3.3 m

wide, and 1.3 m deep, using the gliding robotic fish prototypenamed “Grace” (Fig. 6.7). The

robot is first released from the water surface with a fixed tailangleδ , and then water is pumped

into the robot’s body until the net buoyancym0 reaches 50 g. Two seconds after the gliding

down motion is initiated, the observer is initialized in themicrocontroller. During the following

period, the robot records the pitch angle readings from bothonboard sensors and the observer. The
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Figure 6.7: A snapshot of the open-loop experiment with fixedtail angle using gliding robotic fish
“Grace” in the lab tank.

readings are further compared together with the pure computer-based Matlab simulation result,

which is obtained by running the same observer dynamics continuously in Matlab based on the

sensor output history recorded onboard. Fig. 6.8 shows the experimental results on the pitch angle

θ for different fixed tail anglesδ = 15◦,30◦,45◦, where the measured pitch angle is compared

with the values derived from the state estimate with Eq. (6.35). First, we can observe that the

computer-based Matlab simulation of the nonlinear observer produces estimate trajectories almost

identical to those from the onboard observer, confirming that the microcontroller is able to execute

the observer with little loss in accuracy. Second, the matchbetween the observer estimation and

sensor output further validates the design of the nonlinearobserver.
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Figure 6.8: The trajectories of pitch angle of the on-board sensor reading, observer estimation and
computer-based simulation result, in the open-loop experiments using gliding robotic fish “Grace”.
(a) δ = 15◦; (b) δ = 30◦; (c) δ = 45◦.
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6.4.3 Closed-loop Experiments

In this subsection, experimental results on sagittal-plane stabilization using the passivity-based

controller are presented to verify the effectiveness of both the proposed nonlinear controller and

the nonlinear observer. Experiments are conducted in the Neutral Buoyancy Research Facility

(NBRF) at the University of Maryland, College Park, which isa water tank measuring 15 m across

and 7.5 m deep.

In the experiments, the robot is released from the water surface with a net buoyancym0 = 50 g.

The tail angleδ is initially set to 60◦. Then the robot enters gliding down motion. When the robot

reaches a preset depth of 1 m, the tail flaps toδ = 0◦ to provide an initial perturbation for the

stabilization process. Then the designed passivity-basedcontroller (6.30) kicks in to stabilize the

system, with the state estimation using the nonlinear observer (Fig. 6.9). A Qualysis underwater

motion capture system, which consists of 12 underwater cameras and motion tracking software, is

used to record the whole stabilization process and analyze the motion afterwards (Fig. 6.10).

Fig. 6.11 shows the experimental results on three types of pitch angle trajectories including

onboard sensor measurements, onboard observer estimation, and motion capture system output,

together with the onboard gliding angle estimation, when nofeedback control exists, with tail an-

gle trajectory designed as in Fig. 6.12. Figs. 6.13–6.16 show the experimental results for passivity-

based stabilization for two different values of the controller gain. From the experimental results,

we observe a good match among the pitch angle estimation, theon-board sensor reading, and the

motion capture system output. The results further verify the proposed nonlinear observer design.

Besides, the gliding angle converges to the equilibrium point around−23.5◦. The results con-

firm that the passivity-based controller effectively stabilizes the sagittal-plane glide motion and

speeds up the convergence process, comparing with the glideangle trajectory in the open-loop
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Figure 6.9: A snapshot of stabilization experiment using gliding robotic fish “Grace” in NBRF,
University of Maryland.
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Figure 6.10: A snapshot of stabilization experiment in the view of the 12 underwater cameras of
the Qualysis motion capture system in NBRF, University of Maryland.
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Figure 6.11: The trajectories of pitch angle and gliding angle in the experiment of gliding stabi-
lization without feedback control.

case (Fig. 6.11). It also shows that with a smaller controller gainKc, the arising time of the pitch

angle is shorter (1 second in Fig. 6.15 vs 2 seconds in Fig. 6.13) and the control output magnitude

is larger (25◦ in Fig. 6.16 vs 15◦ in Fig. 6.14), which is consistent with and complementary to

the simulation findings in Section 6.2.3. This provides insight into the control parameter design in

order to balance between convergence time and control efforts.

In experiments, we also implemented proportional controller and PI controller for glide stabi-

lization for the purpose of comparison. Experimental results using a proportional controller and a

PI controller are shown in Figs. 6.17–6.18 and Figs. 6.19–6.20, respectively. We varied the con-

troller parameters, the proportional gainKP and the integral gainKI in order to obtain a better
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Figure 6.12: The trajectory of predefined tail angle in the experiment of gliding stabilization with-
out feedback control.
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Figure 6.13: The trajectories of pitch angle and gliding angle in the passivity-based stabilization
experiment withKc = 3.
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Figure 6.14: The trajectory of tail angle in the passivity-based stabilization experiment withKc=3.
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Figure 6.15: The trajectories of pitch angle and gliding angle in the passivity-based stabilization
experiment withKc = 1.
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Figure 6.16: The trajectory of tail angle in the passivity-based stabilization experiment withKc=1.

109



performance. We find that with a largerKP andKI , the arising time of the gliding angle trajec-

tory is reduced, however, with the cost of larger overshoot and oscillation amplitude, which shows

similar tradeoff in tuning the passivity-based controllergain. Furthermore, in the comparison of

the experimental results between using P/PI control and passivity-based control, the differences

in arising time, percent overshoot, and oscillation time show that passivity-based controller has

an overall better performance than the P/PI controller, especially in terms of the balance between

convergence speed and control effort.
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Figure 6.17: The trajectories in the comparative stabilization experiments with a proportional con-
troller with KP = 2. (a) pitch angle and gliding angle; (b) tail angle.
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Figure 6.18: The trajectories in the comparative stabilization experiments with a proportional con-
troller with KP = 3. (a) pitch angle and gliding angle; (b) tail angle.

112



0 2 4 6 8 10 12
−34

−32

−30

−28

−26

−24

−22

−20

−18

−16

 t (s)

an
gl

e 
(° )

 

 

On−board sensor  θ
Qualysis system  θ
On−board observer  θ
On−board observer  θ

g

(a)

0 2 4 6 8 10 12
−60

−50

−40

−30

−20

−10

0

10

 t (s)

δ 
(° )

(b)

Figure 6.19: The trajectories in the comparative stabilization experiments with a PI controller with
KP = 2,KI = 1. (a) pitch angle and gliding angle; (b) tail angle.

113



0 2 4 6 8 10 12
−35

−30

−25

−20

−15

−10

 t (s)

an
gl

e 
(° )

 

 
On−board sensor  θ
Qualysis system  θ
On−board observer  θ
On−board observer  θ

g

(a)

0 2 4 6 8 10 12
−60

−50

−40

−30

−20

−10

0

10

20

30

 t (s)

δ 
(° )

(b)

Figure 6.20: The trajectories in the comparative stabilization experiments with a PI controller with
KP = 2,KI = 3. (a) pitch angle and gliding angle; (b) tail angle.
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Chapter 7

Yaw Stabilization Using Sliding Mode

Control

7.1 Problem Statement

Steady gliding motion is the most commonly used profile for underwater gliders, providing the

capability of sampling water in the field while saving energyat the same time. Setting the right

hand side of Eqs. (3.2)–(3.5) to zero, we can solve those equations for the steady glide path given

a fixed movable mass displacementrp and excess massm0, with zero tail angle [80]. Due to the

existence of ambient currents or disturbances, the robot issusceptible to yaw deviation from its

desired direction, beside the sagittal-plane perturbation discussed in Chapter 6, which makes yaw

angle stabilization very important.

For succinctness, we first rewrite the system dynamics Eqs. (3.2)–(3.5) in a compact form

ẋxx= f (xxx)+∆1(xxx)+g(xxx)(u+∆2(t,xxx,u)) (7.1)

y= h(xxx) = ψ (7.2)

wherexxx is the system state,xxx= [ φ θ ψ v1 v2 v3 ω1 ω2 ω3 ]T , u= δ is the tail angle,

which is the control input in the current setting, and∆1(xxx) and∆2(t,xxx,u) represent uncertainties.
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The system output is chosen to be the yaw angleψ. The functiong(xxx) is dependent on the state

g(xxx) =
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(7.3)

The yaw motion stabilization problem is how to design the state-feedback controller for the tail

angleδ , to stabilize the yaw angleψ to a desired valuer in the presence of disturbances.

7.2 Sliding Mode Control for Yaw Stabilization

Sliding model control is a practical nonlinear control method, especially for robust stabilization

[96]. In this dissertation, we adopt sliding mode control for tail-enabled yaw motion stabilization

of gliding robotic fish. Basic control design procedure follows the approach described in [96]. We

further construct a simplified controller requiring only partial state feedback information based on

the derived controller [99].

In order to obtain the relative degree of the system, we take the time derivatives ofh(xxx)

ḣ(xxx) = ψ̇ = sinφ secθω2+cosφ secθω3 = L f h(xxx) (7.4)

ḧ(xxx) = ψ̈ = L2
f h(xxx)+L∆1

L f h(xxx)+LgL f h(xxx)(u+∆2(t,xxx,u)) (7.5)
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whereL f h(·) represents the Lie derivative of functionh(·) with respect to the vector fieldf (·) [96],

andL2
f h(xxx) is equal toL f L f h(xxx).

The results thaṫh(xxx) does not depend on control inputu andḧ(xxx) does, imply that

Lgh(xxx) = 0 (7.6)

LgL f h(xxx) 6= 0 (7.7)

so the relative degree of the systemρsys= 2.

From Frobenius Theorem [100], there exists a transform function T(xxx), which converts the

original system to the normal form with system states[ηηη ξξξ ]T .
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p1(xxx)

...

p7(xxx)

h(xxx)

L f h(xxx)































= T(xxx) (7.8)

where

∂ pi

∂xxx
g(xxx) = 0, for i = 1,2, . . . ,7 (7.9)

ξ̇1 = ξ2 (7.10)

Let r denote the reference trajectory for the yaw angle, which would be a constant number in
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the stabilization problem. Take

R =







r

ṙ






(7.11)

The yaw error vectoreee is

eee= ξξξ −R =







ξ1− r

ξ2− ṙ






(7.12)

Then the error dynamics is expressed as

η̇ηη = f0(ηηη,ξξξ ) (7.13)

ė1 = e2 (7.14)

ė2 = L2
f h(xxx)+L∆1

L f h(xxx)

+LgL f h(xxx)(u+∆2(t,xxx,u))− r̈ (7.15)

Assume thaṫηηη = f0(ηηη ,ξξξ ) is bounded-input-bounded-state stable withξξξ as the input. Then we

design a sliding manifold

s= e2+k0e1 (7.16)

wherek0 is a positive constant.

Sliding mode control can be taken as the following to cancel the known terms as in feedback
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linearization,

u=−
1

LgL f h(xxx)

(

k0e2+L2
f h(xxx)− r̈

)

+ν (7.17)

whereν is the switching component, and

L2
f h(xxx) =

∂ψ̇
∂xxx

f (7.18)

LgL f h(xxx) =
∂ψ̇
∂xxx

g (7.19)

∂ψ̇
∂xxx

=































cosφ secθω2

secθ tanθ(cosφω2+cosφω3)

0005×1

sinφ secθ

cosφ secθ































T

(7.20)

Or we can take the controller as the pure switching component,

u= ν (7.21)

Then in either case, the ˙s-equation can be written as

ṡ= LgL f h(xxx)ν +∆(t,xxx,ν) (7.22)

Suppose that the uncertainty satisfies the following inequality,

∣

∣

∣

∣

∆(t,xxx,ν)
LgL f h(xxx)

∣

∣

∣

∣

≤ ρ(xxx)+κ0|ν|, 0≤ κ0 ≤ 1 (7.23)
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whereρ(xxx) represents the upper bound of the uncertainty related to thesystem states.

Design the switching component

ν =−γ(xxx)sat(s/ε) (7.24)

wheresat(s/ε) is a high-slope saturation function with a small constantε, used to reduce chat-

tering, andγ(xxx)≥ ρ(xxx)/(1−κ0)+ γ0 with constantγ0 to deal with the non-vanishing disturbance

∆(t,xxx,ν) if that is the case.

In this dissertation, we choose

γ(xxx) = k1‖xxx−−−xxxeee‖
k2
2 +k3 (7.25)

wherexxxe is the system equilibrium point, which can be calculated given a steady gliding profile

[82], andk1, k2, k3 are tunable controller parameters, determined by the uncertainty type and also

capable of adjusting closed-loop dynamics performance.

Based on the fact that the yaw angleψ is the state we really care about, we further simplify the

sliding mode controller (Eq. (7.21),(7.24),(7.25)) to

u=−(k1‖ψ −ψe‖
k2
2 +k3)sat(s/ε) (7.26)

where the sliding mode controller only requires the information of yaw angle, making it easy

to implement. The effect of this simplification on stabilitycan be compensated by increasing

controller parametersk1, k2 and especially the non-zero constantk3. Although this will increase

the tracking error in general, the controller implementation becomes much more simpler. The

effectiveness of the designed controller will be evaluatedin simulation and experiments in the
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Table 7.1: Parameters of gliding robotic fish “Grace”.

Parameter Value Parameter Value
m1 8.0 kg m2 19.8 kg
m3 10.8 kg m̄ 1.6 kg

CD0 0.45 Cα
D 17.59 rad−2

Cβ
FS

-2 rad−1 Cδ
FS

1.5 rad−1

CL0 0.075 Cα
L 19.58 rad−1

J1 1.27 kg·m2 J2 0.08 kg·m2

J3 0.13 kg·m2 CM0
0.0076 m

Cβ
MR

-0.3 m/rad Cα
MP

0.71 m/rad

Cβ
MY

5 m/rad Cδ
MY

-0.2 m/rad

Kq1 -0.16 m·s/rad Kq2 -0.80 m·s/rad
Kq3 -0.16 m·s/rad S 0.019 m2

following sections.

7.3 Simulation

To evaluate the designed sliding mode controller, simulation is carried out in Matlab. The param-

eters used in the simulation is based on the gliding robotic fish prototype “Grace”, obtained via

scaling analysis on our previously developed prototype in [82] (Tab. 7.1).

The initial state values for the simulation are

φ = 0, θ =−30◦, ψ = 30◦, v1 = 0.27m/s, v2 = 0,

v3 = 0, ω1 = 0, ω2 = 0, ω3 = 0.

The controller parameters used in the simulation are

k0 = 10, k1 = 10/30/50, k2 = 0.8/1/1.2, k3 = 0.01.
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Figure 7.1: Yaw angle trajectory with respect to different controller parametersk1.
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Figure 7.2: Tail angle trajectory with respect to differentcontroller parametersk1.
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Figure 7.3: Sideslip angle trajectory with respect to different controller parametersk1.
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Figure 7.4: Yaw angle trajectory with respect to different controller parametersk2.

In Figs. 7.1–7.3, the trajectories of yaw angleψ, controller commandδ , and sideslip angle

β are shown for varying controller parameterk1 while Figs. 7.4–7.6 shows the simulation results

when varying controller parameterk2. From the results, we can see that under proper controller

parameter setting, the sliding mode controller is able to regulate the yaw angle, which is deviated

from the desired orientation, back to the original, zero angle within a relative short time. Con-

sequently, the trajectory of the glider is adjusted to the desired path, with the heading orientation

being zero degree, as shown in Fig. 7.7. From the comparison under different controller parame-

ters, we find thatk1 andk2 control the balance between response speed and controller effort. With

largerk1 and smallerk2, the system responses faster and requires bigger control output amplitude.
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Figure 7.5: Tail angle trajectory with respect to differentcontroller parametersk2.
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Figure 7.6: Sideslip angle trajectory with respect to different controller parametersk2.
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Figure 7.7: Trajectory of the gliding robotic fish for controller parametersk1 = 30,k2 = 1.
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Regarding parameterk3, as in the sliding mode design principle, it should balance the steady-state

error and uncertainty tolerance capability. With a largerk3, the controller is able to work under

larger uncertainty while leading to bigger steady-state error.

7.4 Experimental Results

We implement the sliding mode controller on our lab-developed gliding robotic fish “Grace”, and

conduct yaw angle stabilization experiments in a large indoor water tank that measures 15-foot

long, 10-foot wide, and 4-foot deep. Yaw angle is calculatedin the on-board micro-controller

using real-time sensor feedback from compass, accelerometer, and gyro. The sampling time for

sensor reading is 100 ms. A discrete-time low pass filter is applied directly after the raw data to

smooth out high frequency noise, with the difference equation

o(n) = a× i(n)+(1−a)×o(n−1) (7.27)

wherei(n) ando(n) are the low-pass filter’s input and output at timen, respectively. Filter param-

etera∈ (0,1) is selected to be 0.5 in the experiment.

In the experiments, we release the gliding robotic fish on thewater surface with a deviated

yaw angle. Then the robot starts to pump water in and translate the movable mass forward to

the set value,m0 = 40 g, andrp = 5 mm. After the robot is fully submerged and enters gliding

down motion, the sliding mode controller is applied to regulate the yaw angle to the desired value,

defined as zero degree. The robot motion in the whole process is recorded with a top-view camera

hung on a guiding rail and a side-view underwater camera placed in the tank (Fig. 7.8).

The sensor reading is stored in the on-board memory and sent back to the laptop through
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Figure 7.8: Snapshots of controlled motion with yaw stabilization using sliding mode controller,
under parametersk1 = 50,k2 = 1.
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Figure 7.9: Yaw angle trajectory using “Grace”

wireless communication when the robot surfaces. Due to the range limitation of the tank, we

conduct the experiment for about 15 seconds. That corresponds to the most of transient process,

leaving the period that is close to the steady-state motion unrecorded.

In Figs. 7.9 and 7.10, we plot experimental results for both yaw angleψ and tail angleδ . From

the experiment, we can see that the proposed sliding mode controller is able to regulate the deviated

yaw angle to the desired set value, with reasonable tail angle amplitude. There exist sensor noise

and tail rotation dynamics, which contributes to the unsmooth yaw angle readings. More advanced

sensor and filtering method could be used to solve the problem.
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Figure 7.10: Tail angle trajectory using “Grace”

132



Chapter 8

Three-Dimensional Curve Tracking

8.1 Three-Dimensional Steady Spiral and Its Differential Ge-

ometry Features

The three-dimensional motion control for gliding robotic fish, in terms of curve tracking, is very

challenging because the influences of the control inputs on the robot’s locomotion are strongly

nonlinear and coupled. It is more convenient to look into theinfluence of control inputs on the

robot’s differential geometry features, such as curvatureand torsion, because we can examine the

relationship between those geometric characteristic parameters and the control inputs by studying

the steady-state spiral motions of the robot.

We decompose an arbitrary three-dimensional curve into a set of continuously evolving spirals.

In this way, at any point of the space curve, there is an imaginary matching spiral curve with the

same curvature and torsion. With this interpretation, instead of using the Euclidean positions, we

will explore the task of three-dimensional curve tracking via designing and following continuously

evolving spirals from the point of view of differential geometry [101].

First, Let us review the results of the steady spiral motion discussed in Chapter 4.

There are three control variables available to manipulate the robot’s motion profile: the excess

massm0, the position of the movable massrrr ppp, and the tail angleδ . From [80] and [81], we know

that when all three controls are fixed at non-zero values, thegliding robotic fish will perform three-
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dimensional spiraling motion and finally enter a steady spiral, where the yaw angleψ changes at a

constant rate while the roll angleφ and pitch angleθ remain constant.

The dynamics of the spiral motion, derived from (3.2)-(3.5), can be presented in a compact

form as

ẋxxsss= fff (xxxsss,uuu) = [ fi(xxxsss,uuu)]8×1 (8.1)

wherexxxsss=

(

φ θ v1 v2 v3 ω1 ω2 ω3

)T
, and control inputsuuu=

(

rp m0 δ
)T

.

The steady-state spiraling equations can be obtained by setting time derivatives to zero in (8.1)

0= fff (xxxsss,uuu) = [ fi(xxxsss,uuu)]8×1 (8.2)

In a steady spiral,RRRTTTkkk is constant since

RRRTTTkkk= RRRTTT















0

0

1















=















−sinθ

sinφ cosθ

cosφ cosθ















(8.3)

The angular velocity has only one degree of freedom withω3i in Oxaxis in the inertial frame

ωωωb = ω3i(RRR
TTTkkk) (8.4)

Therefore, in the system of algebraic equations (8.2), there are nine independent variables (includ-

ing control inputs) for describing the steady spiral motion: ( φ θ ω3i rp m0 δ V α β )T .

Hereafter we will use a state transformation on linear velocity variables for the sake of calculation

134



convenience

vvvbbb =
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= RRRbv















V

0

0















=
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V sinβ

V sinα cosβ















(8.5)

In the elementary differential geometry, a three-dimensional curve is captured by its curvature

and torsion. The curvatureκ is the amount by which a geometric object deviates from beingflat,

or the degree by which a geometric object bends, while torsion τ measures the departure of a curve

from a plane, or how sharply a curve twists. Any time-trajectory of a smooth space curve can

be completely described mathematically using curvature, torsion and velocity with Frenet-Serret

formulas [102].

The geometric parameters (curvature, torsion, velocity) of a steady spiral can be expressed as

κ =
r

r2+c2 (8.6)

τ =
c

r2+c2 (8.7)

wherer is the steady spiral radius, and 2πc is the steady spiral pitch, or the vertical separation

between two steady spirals. Furthermore,

r =
Vh
ω3i

(8.8)

c =
Vv

ω3i
(8.9)

whereVh andVv are the horizontal velocity and vertical velocity, respectively, of the steady spiral

motion.
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We also have

V2
h +V2

v = V2 (8.10)

From (8.6)-(8.10), the angular velocityω3i and the vertical velocityVv can be described by the

three geometric parameters,κ , τ, andV

ω3i = V
√

κ2+ τ2 (8.11)

Vv = V

√

τ2

τ2+κ2 (8.12)

8.2 Influence of Control Inputs on Spiral Trajectory

As for the spiral motion, the three control inputs, including the movable mass displacementrp, the

net buoyancym0, and the tail angleδ , have different influences on both the steady-state motion

profile and the transient dynamics. In this dissertation, wefocus on the influences of control inputs

on the steady-state spiral trajectory characteristics, which provide useful insight for path planning

in three-dimensional curve tracking.

We study the relationship between three system control inputs and three trajectory character-

istic parameters, including curvatureκ , torsionτ and total speedV, which are used to completely

describe any three-dimensional trajectory. With the system dynamic model in Chapter 3 and sys-

tem parameters as in “Grace”, we conduct simulation with different sets of values of system control

inputs, and then record the corresponding steady-state spiral paths.

Fig. 8.1 shows the relationship between tail angleδ and the three trajectory characteristic

parameters, while the net buoyancym0 and the displacement of movable massrp are fixed at
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30 g and 0.5 cm, respectively. Simulation results of varyingm0 andrp are shown in Figs. 8.2–8.3.

From those figures, we see that all control inputs have significant influence on the motion profile,

although the degree of influence varies. For example,δ andrp have greater influence onκ and

τ thanm0. Most relationships show monotonic trends, while non-monotonic relationships appear

betweenκ /τ andm0 (Fig.8.2a). The simulation results of the influences of control inputs on robot’s

spiral trajectory, provide insight into the capability of three-dimensional maneuvering as well as

the feedback controller design for three-dimensional curve tracking.

In order to verify the relationship between the control inputs and the trajectory characteristic

parameters of steady-state spirals, experiments are conducted using the prototype “Grace”. The

experiments are carried out in the Neutral Buoyancy Research Facility (NBRF), University of

Maryland. The water tank measures 50 feet across and 25 feet deep.

In experiments, “Grace” are remotely controlled via XbeePro communication to perform spiral

motions with different control input values (Fig. 8.4). Thewhole spiral process is recorded using

a Qualysis underwater motion capture system. The motion capture system features 12 underwater

cameras around the water tank, with 8 at a shallower depth and4 at a deeper depth. Each cam-

era captures the spiral motion from a different angle of view(Fig. 8.5). The robot is equipped

with five markers, which the motion capture system uses to identify the rigid body. Some of the

robot’s states, such as linear and angular positions can be measured and outputted using the system

(Fig. 8.6), and other system states, including translational and angular velocities can be estimated

from those measurements.

Fig. 8.7a and Fig. 8.7b show the comparison results between the model prediction and the

experimental results on the spiral curvature and torsion when varyingδ from 20◦ to 50◦ with

the m0 andrp fixed at 30 g and 0.5 cm, respectively. The results on the spiral total speed is not

presented as the influence of the tail angle on that variable is not very obvious as shown in Fig. 8.1b.
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Figure 8.1: Trajectory characteristic parameters at different tail angles withm0= 30 g andrp= 0.5
cm.
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Figure 8.2: Trajectory characteristic parameters at different net buoyancy withδ = 30◦ andrp =
0.5 cm.
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Figure 8.3: Trajectory characteristic parameters at different displacements of movable mass with
δ = 30◦ andm0 = 30 g.

140



Figure 8.4: The gliding robotic fish “Grace” spiraling in Neutral Buoyancy Research Facility,
University of Maryland.
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Figure 8.5: Snapshots of spiral motion with 12 underwater cameras from different angles of view
using a Qualysis underwater motion capture system.

Figure 8.6: Illustration of robot’s rigid body and coordinates in spiral motion using a Qualysis
underwater motion capture system.
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The spiral experiments at each set of control input values are conducted five times. The mean and

standard deviation ofκ andτ are provided with the error bar in the figures. Considering the current

disturbance in the water tank due to the boundary effects andconstantly active filtering system, the

match between the model prediction and the experimental results is reasonable well, which further

validates the derived system model.

The experiments for varyingm0 andrp are not carried out and presented here because the speed

and the gliding angle could be much increased so that the robot will bump into the metal frame

located in the center of the water tank (setup for other experiments and not removable currently).

8.3 Two Degree-of-Freedom Control Design

In this section, we propose a 2-DOF control strategy for the curve tracking problem where an

inverse mapping is used as a feedforward controller while a robustH∞ controller is used as the

feedback controller, which is designed based on the linearized model around the steady spiral

trajectory. The open-loop feedforward controller obtained from inverse mapping of steady spiral

motion serves as a driving force pushing the robot towards the desired steady spiral. However, the

convergence time is relatively long, which will be demonstrated in simulation later. The feedback

H∞ controller aims to speed up the convergence and enhance the performance robustness. The idea

of the 2-DOF controller is that with the feedforward inversemapping, the dynamic nonlinearity is

reduced so that a feedbackH∞ controller can be designed based on the linearized model to achieve

improved transient performance.
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Figure 8.7: Model prediction and experimental results in spiral motion at different tail angles. The
other two control inputs are fixedm0 = 30 g, andrp = 0.5 cm. (a) curvature; (b) torsion.
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8.3.1 Feedforward Control via Inverse Mapping of Steady Spiral Motion

In this subsection, we study the feedforward control for 3D curve tracking for gliding robotic fish.

Based on the fact that a three-dimensional curve can be decomposed into a set of continuously

evolving spirals, we propose a 3D curve tracking method by tracking geometric characteristics

of these spirals instead of following Euclidean positions.An open-loop feedforward controller

is designed using inverse mapping of the steady spiral motion. This inverse controller will also

become part of the proposed 2-DOF controller.

We will calculate the desired control inputs for a given steady spiral profile, which is param-

eterized by curvature, torsion and velocity. This inverse mapping solution can be adopted as an

open-loop feedforward controller for the 3D curve trackingproblem.

With (8.4), it can be shown that the first two equations in (8.2) always hold, thus redundant.

With the value ofVv known from (8.12), we have one more constraint equation

Vv = RRRbv















V

0

0















(RRRTTTkkk) (8.13)

Givenκ , τ andV, we can calculate the value of the angular velocityω3i from (8.11). Knowing

the values ofV and ω3i , there are seven unknown variables left out of nine independent states

for the steady spiral motion( φ θ ω3i rp m0 δ V α β )T . Correspondingly, there are

seven independent algebraic equations from (8.2) and (8.12). The inverse mapping problem is then

formulated as

0= ggg(xxx) = [gi(xxx)]7×1 (8.14)

wherexxx= ( φ θ α β rp m0 δ )T . The expansion ofgi(xxx) is shown in (8.15)-(8.21).
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0= m2sβVcφcθω3i −m3sαcβVsφcθω3i −m0gsθ −1/2ρV2S(CD0+Cα
Dα2+Cδ

Dδ2)cαcβ

−1/2ρV2S(Cβ
SFβ +Cδ

SFδ )cαsβ +1/2ρV2S(CL0+Cα
L α)sα (8.15)

0=−m3sαcβVsθω3i −m1cαcβV cφcθω3i +m0gsφcθ −1/2ρV2S(CD0+Cα
Dα2+Cδ

Dδ2)sβ

+1/2ρV2S(Cβ
SFβ +Cδ

SFδ )cβ (8.16)

0= m1cαcβVsφcθω3i +m2sβVsθω3i +m0gcφcθ −1/2ρV2S(CD0+Cα
Dα2+Cδ

Dδ2)sαcβ

−1/2ρV2S(Cβ
SFβ +Cδ

SFδ )sαsβ −1/2ρV2S(CL0+Cα
L α)cα (8.17)

0= (J2−J3)sφcθcφcθω2
3i +(m2−m3)sβsαcβV2+1/2ρV2S(Cβ

MR
β −Kq1sθω3i)cαcβ

−1/2ρV2S(CM0
+Cα

MP
α +Kq2sφcθω3i)cαsβ −mwgrwsφcθ

−1/2ρV2S(Cβ
MY

β +Kq3cφcθω3i +Cδ
MY

δ )sα (8.18)

0= (J1−J3)sθcφcθω2
3i +(m3−m1)cαcβsαcβV2−mwgrwsθ − m̄grpcφcθ

+1/2ρV2S(Cβ
MR

β −Kq1sθω3i)sβ +1/2ρV2S(CM0
+Cα

MP
α +Kq2sφcθω3i)cβ (8.19)

0= (J2−J1)sθsφcθω2
3i +(m1−m2)cαcβsβV2+1/2ρV2S(Cβ

MR
β −Kq1sθω3i)sαcβ

−1/2ρV2S(CM0
+Cα

MP
α +Kq2sφcθω3i)sαsβ + m̄grpsφcθ

+1/2ρV2S(Cβ
MY

β +Kq3cφcθω3i +Cδ
MY

δ )cα (8.20)

0=Vv/V +cαcβsθ −sβcθsφ −sαcβcθcφ (8.21)

Unfortunately, there is no closed-form solution to this system of equations. In this dissertation,

we use a Newton’s method to find solutions recursively, whichprovide the desired open-loop
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control inputs. The iterative algorithm for Newton’s method reads [95]

x̂xxi+1 = x̂xxi −J−1(x̂xxi)ggg(x̂xxi) (8.37)

Herex̂xxi is theith-step iteration forxxx, andJ(xxx) is the Jacobian matrix ofggg(xxx)

J(xxx,uuu) =
∂ggg
∂xxx

=

(

∂gi

∂x j

)

7×7
(8.38)

8.3.2 Linearized Model Around the Steady Spiral Trajectory

The linearized model can be obtained by linearization of thespiral dynamics around the equilib-

rium spiral trajectory. Recall the spiral dynamics (8.1)

ẋxxsss= fff (xxxsss,uuu) = [ fi(xxxsss,uuu)]8×1

wherexxxsss = ( φ θ v1 v2 v3 ω1 ω2 ω3 )T , anduuu = ( rp m0 δ )T . We define trans-

formed system stateszzz= ( φ θ V α β ω1 ω2 ω3 )T for the convenience of computation

of the Jacobian matrixJ(xxxs,uuu). The linearized system matrices are

A= [J(xxxs,uuu)]e=

[

∂ fff
∂xxx

]

e
=

[

∂ fff
∂zzz

(

∂xxx
∂zzz

)−1
]

e

(8.39)

B=

[

∂ fff
∂uuu

]

e
(8.40)

Here[·]e means the matrix elements are evaluated at the equilibrium point.

We define the linearized system output asyyy = ( φ θ v1 )T , linear in system states. The
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linearized system output matrices are

C= [1113×3 0003×5] (8.41)

D = 0003×3 (8.42)

The objective of the controller design for the linearized model is to drive the three selected system

outputs to the desired values that are computed via inverse mapping (Section 8.3.1) at an improved

speed.

8.3.3 H∞ Controller Design

A 2-DOF control is adopted for the 3D curve tracking problem to increase the system bandwidth.

The 2-DOF control system configuration is shown in Fig. 8.8. The transfer functionG(s) repre-

sents the spiral dynamics system.K f b(s) is the feedback controller.rrr = ( φr θr v1r )T is the

perturbation of the reference signal from the nominal values. uuu= ( rp m0 δ )T is the control

input to the plant.eee= rrr − yyy represents the tracking error.We(s) is the user-defined weighting

function to impose the requirements for the tracking bandwidth and tracking error amplitude. The

state-space realization ofWe(s) is as follows,

ẋxxwww = Awxxxwww+Bwuuuwww (8.43)

zzzw =Cwxxxwww+Dwuuuwww (8.44)

Wu= diag(wu1,wu2,wu3) is the weighting function to help control the magnitude of system control

inputs, andzzzuuu =Wuuuu.

The tracking performance can be characterized by the tracking erroreee. Meanwhile, the control
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Figure 8.8: The control system diagram with combination of open-loop control and closed-loop
control.

Figure 8.9: Transformed 2-DOF control configuration inH∞ control framework .

effort can be characterized by the control inputuuu which is desired to be small for the consideration

of energy consumption. The objective of the feedback control design is to minimize those two

signalseeeanduuu.

This optimization problem with the feedback control for thelinearized model can be trans-

formed into anH∞ robust control framework as shown in Fig. 8.9. In thisH∞ control system
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configuration,

K(s) = K f b(s) (8.45)

zzz= ( zzzwww zzzuuu )T (8.46)

nnn= rrr −−−yyy (8.47)

The interconnected system

P=







Ap Bp

Cp Dp






(8.48)

where

Ap =







A 000

−BwC Aw






Bp =







000 B

Bw −BwD







Cp =















000 000

−DwC Cw

−C 000















Dp =















0 Wu

Dw −DwD

111 −D















The design objective is then to minimizing theH∞ norm of the transfer function fromrrr to zzz

min
K

‖Tz
r (s)‖∞ (8.49)

To solve the aboveH∞ optimization problem, we adopt the commandhinfmix(·) in Matlab LMI

toolbox, the output of which provides the feedback controllerK(s).
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8.4 Simulation Results

Given desired trajectories of curvature, torsion and velocity, simulation is conducted to test the

effectiveness of the proposed 2-DOF control algorithm. Forthe purpose of comparison, we have

also conducted simulation with pure inverse mapping control (see Section 8.3.1) and Proportional-

Integral (PI) control. The PI controller is designed as

δ = Kδ
P∆κ +Kδ

I

∫

∆κ (8.50)

rp = K
rp
P ∆τ +K

rp
I

∫

∆τ (8.51)

m0 = K
m0
P ∆V +K

m0
I

∫

∆V (8.52)

where∆ stands for the difference between the desired value and actual value of the variable that

follows. The particular form of the PI controller, where onecontrol input is only dependent on

the error feedback from one geometric parameter, is adoptedfor design convenience and based on

the observed influences (in simulation) of the control inputs on the geometric parameters, where it

appears that each control input has more pronounced impact on one of the geometric parameters

than other two inputs. The PI controller coefficients are designed asKδ
P = 0.1, Kδ

I = 0.01,K
rp
P =

0.05, K
rp
I = 0.005,K

m0
P = 0.1, K

m0
I = 0.01. There are three control inputs and three geometric

variables to track, so the strong coupling between the control inputs makes the parameter tuning

quite challenging. The PI control parameters are tuned in simulation in order to obtain the best

tracking performance.

The model parameters used in simulation are based on the lab-developed gliding robotic fish
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prototype “Grace” as in Table 7.1. The initial values of system states used in simulation are

θ =−7.2◦ φ = 0 v1 = 0.1 m/s v2 = 0

v3 = 0.04◦ ω1 = 0 ω2 = 0 ω3 = 0

This represents a sagittal-plane glide motion.

The weighting functions for the feedbackH∞ control design are chosen as

Aw = diag(−500,−100,−200) Bw = diag(9,9,9)

Cw = diag(−1,−1,−1) Dw = diag(0.1,0.1,0.1)

Wu = diag(0.2,0.05,0.2)

The solution to theH∞ optimization problem is a eleventh-order linear system forthe con-

troller K(s). Through model reduction techniques by investigating the dominant singular values,

a seventh-order controller is used in simulation. Saturation is also imposed to restrict the control

inputs to the feasible range of actuators.

Figures 8.10 and 8.11 show the simulation results of the tracking performance of three geo-

metric parameters and the control efforts of three control inputs, respectively, for tracking a steady

spiral trajectory with constant geometric parameters and Fig. 8.12 shows the tracking trajectory

in the 3D view under the proposed 2-DOF controller. From the simulation results, we see that

both PI controller and feedforward inverse mapping controller are able to stabilize the system to

the desired steady-spiral trajectory. However, both have convergence times between 30 and 40

seconds. There is also noticeable steady-state tracking error with the PI controller. With the pro-

posed 2-DOF controller, the system tracking performance isimproved significantly. Convergence
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time decreases to less than 10 seconds with smaller steady-state errors. Meanwhile, the 2DOF

controller uses more control effort than the open-loop feedforward strategy. Figs. 8.13 and 8.14

show the simulation results of the tracking performance of three geometric parameters and the con-

trol efforts of three control inputs, respectively, when the reference velocity changes as a sinusoid

function with respect to time while the curvature and torsion are kept constant. There is a large

time/phase delay in the tracking of velocity for the feedforward control, which is expected due to

the observed slow convergence speed. Besides the time delay, there is also significant tracking er-

ror with the PI control. But with the 2-DOF controller, the tracking performance shows significant

improvement in terms of the time/phase delay and the tracking error. Besides, in Figs. 8.13a and

8.13b, the variables fluctuate even though the reference is aconstant. This shows coupling among

control inputs on the spiral geometric features.
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Figure 8.10: The simulation results of the geometric parameters when tracking a steady spiral
trajectory. (a) curvature; (b) torsion; (c) velocity.
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Figure 8.11: The simulation results of control inputs on when tracking a steady spiral trajectory.
(a) displacement of movable mass; (b) tail angle; (c) net buoyancy.
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Figure 8.12: 3D trajectory when tracking a steady spiral under the 2-DOF controller.
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Figure 8.13: The simulation results of the geometric parameters when the reference velocity
changes as a sinusoid function with respect to time while curvature and torsion are kept constant.
(a) curvature; (b) torsion; (c) velocity.
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Figure 8.14: The simulation results of control inputs on when the reference velocity changes as a
sinusoid function with respect to time while curvature and torsion are kept constant. (a) displace-
ment of movable mass; (b) tail angle; (c) net buoyancy.
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Chapter 9

Field Test Results for Environmental

Monitoring

In this chapter, we present some preliminary field testing results for oil spill detection in the Kala-

mazoo River, Michigan, and algae bloom monitoring in the Wintergreen Lake, Michigan, where

basic functions of gliding robotic fish, the swimming, the gliding, and the spiraling are tested in

the field. It is found that the crude oil sensor readings were different at the three selected locations

along Kalamazoo River near the spill site, with slightly higher values at the downstream sites.

For the algae concentration, the sampling results were consistent with readings from a traditional

hand-held device [84].

9.1 Kalamazoo River Test

“Grace” was deployed in Kalamazoo River in November, 2012, to detect the crude oil content

near the 2010 Enbridge oil spill site near Marshall, Michigan. A Turner Designs Cyclops-7 crude

oil sensor was used to sample the water. We tested three locations along the Kalamazoo River

(Fig. 9.1). The spot A was downstream of the oil spill spot which was an open river area (Fig. 9.2);

the spot B was upstream which was in the woods (Figs. 9.3); andthe spot C was also upstream

which was under a bridge (Fig. 9.4). “Grace” swam in the Kalamazoo river by flapping its tail

fin, collecting data in the selected locations. The readingsfrom the sensor are recorded onboard
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Figure 9.1: Three selected sampling locations illustratedin Google Map.

Table 9.1: Locations and sensor readings in Kalamazoo Rivertest.

Spot GPS Coordinate Sensor Reading
A (42.258655, -84.99888333) 3.33 V
B (42.26156167, -84.953565) 3.04 V
C (42.2616, -84.85534667) 2.87 V

and transmitted wirelessly to the base station onshore. TheGPS position and the average sensor

reading at each spot are shown in Table 9.1.

The results show that the sensor readings were slightly higher at the downstream sites of the

spill spot than the upstream. There is a relationship between the sensor’s output (in voltage) and

the real concentration of crude oil. In this dissertation, we provide only the raw readings from the

crude oil sensor. The detection spectrum of the sensor is relatively wide so that it may not precisely

reflect the actual crude oil concentration.
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Figure 9.2: Swimming trajectory of gliding robotic fish in anopen water area at testing spot A.

Figure 9.3: Swimming trajectory of gliding robotic fish in the woods at testing spot B.
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Figure 9.4: Swimming trajectory of gliding robotic fish under a bridge at testing spot C.

9.2 Wintergreen Lake Test

Gliding robotic fish “Grace” was also used to sample the Wintergreen Lake, Michigan for the blue-

green algae (cyanobacteria) concentration in July, 2013. The sensor we used was Turner Designs

Cyclops-7 Freshwater Blue-Green Algae Sensor. The sensor readings in this field test are compared

with those from a manually deployed profiler with the blue-green algae sensor (Hydrolab) that has

been traditionally used in the sampling of harmful algae.

Surface swimming was tested first at Wintergreen Lake using “Grace” (Fig. 9.5), with sensor

readings recorded for selected locations. Table 9.2 shows the GPS position and the sensor outputs

of algae concentration at those points.

Since algae concentration varies at different depths, we ran a number of steady glide and steady

spiral motions using the robot to detect the algae bloom in the three-dimensional water space.

Figs. 9.6–9.9 show the results of steady glide tests. The start (submerging) and the end (surfacing)
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Figure 9.5: Selected sampling points in the Wintergreen Lake with surface swimming.

Table 9.2: Locations and sensor readings in Wintergreen Lake test.

Spot Sensor Reading Hydrolab Chl GPS Coordinate
A 0.252979 V 2.19 (42.3987, -85.38334)
B 0.336768 V 2.45 (42.39851, -85.38359)
C 0.289233 V 2.33 (42.39874, -85.38367)
D 0.263452 V 3.06 (42.39904, -85.38356)
E 0.269897 V 2.60 (42.39919, -85.3831)
F 0.422168 V 3.89 (42.39938, -85.38271)
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Figure 9.6: Depth trajectory of steady glide when sampling water in Wintergreen Lake, Michigan.

points are (42.398228, -85.384644), and (42.398361, -85.384636), respectively, with a travel dis-

tance of 14 meters. The readings of Chlorophyll from the Hydrolab device at this location are 3.11

at 1.26 m, 5.69 at 2.45 m, and 8.73 at 3.55 m. Figs 9.10–9.13 show the results for the steady spiral

test with the spiral center at (42.398338, -85.384727). Thereadings of Chlorophyll from the Hy-

drolab device at this location are 2.89 at 0.97 m, 6.59 at 3.48m, and 10.26 at 4.05 m. The readings

from the robot were found to be consistent in general with those from the Hydrolab device.

164



0 50 100 150

0.4

0.5

0.6

0.7

0.8

0.9

1

 t(s)

se
ns

or
 r

ea
di

ng
 (

V
)

Figure 9.7: Sensor readings of steady glide when sampling water in Wintergreen Lake, Michigan.
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Figure 9.8: Yaw angle trajectory when sampling water in Wintergreen Lake, Michigan.
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Figure 9.9: Pitch angle trajectory when sampling water in Wintergreen Lake, Michigan.
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Figure 9.10: Depth trajectory of steady spiral when sampling water in Wintergreen Lake, Michi-
gan.
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Figure 9.11: Sensor readings of steady spiral when samplingwater in Wintergreen Lake, Michigan.
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Figure 9.12: Yaw angle trajectory of steady spiral when sampling water in Wintergreen Lake,
Michigan.
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Figure 9.13: Pitch angle trajectory of steady spiral when sampling water in Wintergreen Lake,
Michigan.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

We reported a new type of underwater robots, gliding roboticfish, designed for aquatic environ-

mental monitoring. Combing design features of buoyancy-driven propulsion of underwater gliders

and tail-fin actuation of robotic fish, the gliding robotic fish shows a great potential in shallow

water sampling with energy efficiency and high maneuverability.

We first introduced two lab-developed prototypes, a miniature underwater glider and a gliding

robotic fish “Grace”. The actuation systems were discussed including the buoyancy system, mass

distribution system and tail-fin system, to explain the locomotion mechanism of the robot. The

sensor system was introduced, including the inertial measurement units and environmental sensing

units. The mechanical design of the robot was also discussed.

Dynamic model of gliding robotic fish was derived and furtherreduced according to two spe-

cial steady-state motions, the sagittal-plane glide and 3Dsteady sprial. Solutions of the robot’s

gliding path were provided for both motions. Particularly,for steady spiral, we adopted Newton’s

method and numerically explored the basins of attraction for this recursive algorithm. Experiments

were conducted on the miniature underwater glider prototype. Comparison between model predic-

tion and experimental results of the glide path was carried out to validate the derived model and

proposed recursive solving method.

Stabilization problems were studied, for both sagittal-plane and lateral motions. For the sagittal-
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plane gliding path stabilization, a passivity-based controller using a whale-like tail fin was pro-

posed with partial state feedback. A nonlinear observer wasdesigned to estimate the velocity-

related system states in controller implementation. Both simulation and experiments were con-

ducted to evaluate the effectiveness of the designed controller and observer. For lateral motion

stabilization, a sliding mode control scheme was adopted with a fish-like tail as the system control

input, which depended only on the pitch angle information. Both simulation and experimental

results were presented.

A 2-DOF control strategy was proposed for three-dimensional curve tracking problem for

gliding robotic fish, by following the trajectory characteristic parameters (curvature, torsion and

speed). We investigated the steady spiral motion and its geometric characteristics. A feedforward

controller was designed first via inverse mapping of steady spiral motion. A 2-DOF control design

was then proposed, which included an inverse mapping feedforward controller and a robustH∞

feedback controller, designed based on the linearized model. Simulation was conducted with com-

parison to PI control and pure feedforward inverse mapping control. The simulation results were

presented to verify the effectiveness of the proposed 2-DOFcontrol design.

At last, full functions of the developed gliding robotic fishprototype were tested in field. The

results of field tests, including crude oil detection in Kalamazoo River and algae sampling in Win-

tergreen Lake, were presented.

10.2 Future Work

First, in both the lab/pool experiments and the field tests, significant drifting of the robot was

observed that was caused by the currents and waves of its aquatic environment, e.g., the water jets

shooting from the side wall of the swimming pool. Thus an environmental current flow estimation
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or prediction is desirable in disturbance rejection and precise locomotion. The information of the

surrounding environments will benefit the controller design and the path following.

Second, a comprehensive path planning and path following control strategy is needed in water

sampling tasks. Take the algae sampling in Wintergreen Lakeas an example. It is of interest to

develop adaptive sampling strategies and explore the combination of elementary energy-efficient

motions (steady gliding and steady spiraling), to cover thewhole lake with high sampling resolu-

tion and and low energy consumption.
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