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Abstract
Motivated by the lateral line system of fish, arrays of flow sensors have been proposed as a
new sensing modality for underwater robots. Existing studies on such artificial lateral lines
(ALLs) have been mostly focused on the localization of a fixed underwater vibrating sphere
(dipole source). In this paper we examine the problem of tracking a moving dipole source
using an ALL system. Based on an analytical model for the moving dipole-generated flow
field, we formulate a nonlinear estimation problem that aims to minimize the error between
the measured and model-predicted magnitudes of flow velocities at the sensor sites, which is
subsequently solved with the Gauss–Newton scheme. A sliding discrete Fourier transform
(SDFT) algorithm is proposed to efficiently compute the evolving signal magnitudes based on
the flow velocity measurements. Simulation indicates that it is adequate and more
computationally efficient to use only the signal magnitudes corresponding to the dipole
vibration frequency. Finally, experiments conducted with an artificial lateral line consisting of
six ionic polymer–metal composite (IPMC) flow sensors demonstrate that the proposed
scheme is able to simultaneously locate the moving dipole and estimate its vibration amplitude
and traveling speed with small errors.

(Some figures may appear in colour only in the online journal)

1. Introduction

Fish and amphibians rely on the lateral line system to obtain
flow information of interest [1, 2]. A lateral line comprises
arrays of mechanoreceptive units called neuromasts, each of
which consists of a bundle of sensory hair cells encapsulated
in a gelatinous cupula [3]. Neuromasts can be found standing
external to the skin (superficial neuromasts) and in fluid-filled
canals below the skin surface (canal neuromasts), which
tend to respond to flow velocities and flow accelerations,

respectively, around the animal’s body [4, 5]. It has been
demonstrated that the lateral line plays a pronounced role in
predator detection and prey capture [6, 7], object detection
and avoidance [8, 9], rheotaxis [10] and energy-efficient
swimming [11] among other behaviors.

The lateral line system has inspired a number of efforts
to create an engineering equivalent to facilitate the navigation,
coordination and control of underwater robots and vehicles [2,
12]. Over the last decade, several research groups have
reported microfabricated flow sensors that to varying degrees
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have been motivated by fish neuromasts [13–16] or the wind
receptor hairs of insects [17, 18]. Hair cell-inspired sensors
have also been developed at milli- to centimeter scales, and are
based on optical transduction [19] or novel sensing materials
such as ionic polymer–metal composites (IPMCs) [20, 21]
and gel-supported lipid bilayers [22].

On the signal processing aspect for artificial lateral
lines (ALLs), while there has been experimental work in
exploring the strategies for vortex sensing [19, 23, 24] and
object tracking and recognition [25], most relevant work
has been focused on the localization of a vibrating sphere,
known as a dipole source. A dipole source can emulate
the rhythmic movement of fins and body appendages, and
has been widely used as a stimulus (playing the role of
predator, prey or conspecific) in the study of biological
lateral lines [26, 27]. Dipole source localization has also
become a benchmark problem in the development of ALLs,
for demonstration of the latter’s capability to mimic their
biological counterpart [16, 21, 28–30]. In addition, for
underwater applications, localization of dipole sources has
implications for the detection estimation of nearby fish-like
robots and therefore is relevant to robot coordination and
control. Various strategies for dipole source localization
have been proposed. For example, Dagamseh et al proposed
localization based on the characteristic points (zero-crossings,
maxima, etc) in the measured velocity profile along the
lateral line [29]. Franosch et al suggested a maximum-
likelihood estimator-type model for dipole localization by
Xenopus [31], which is relevant to the engineering setting.
Data-matching/table-lookup approaches were presented by
Pandya et al, where the measured signal pattern was compared
with a large, pre-obtained set of templates or an empirical
model fitted with a sufficient number of data [28]. A
beamforming algorithm for array signal processing was
used to localize a dipole source and a tail-flicking crayfish
by Yang et al [30]. In previous works we proposed a
neural network-based scheme [21] and a nonlinear estimation
method [32] for dipole localization.

Despite the aforementioned extensive work on dipole
source localization, existing studies have been predominantly
limited to the case of a fixed dipole. In this paper we
present, to our best knowledge, the first studies on localizing
a moving dipole source using an ALL. Such a moving
source could represent a swimming or robotic fish, which
naturally demonstrate a combination of translational motion
and oscillatory body/fin motion. First, we formulate a
nonlinear estimation problem based on an analytical model
for the moving dipole-generated flow field, where we assume
that the source location, vibration amplitude and speed of
movement are unknown, and aim to minimize the error
between the measured and model-predicted magnitudes of
flow velocities at the sensor sites. In particular, since the
flow velocities contain both a DC component and an AC
component that corresponds to the frequency of dipole
vibration, the cost function for minimization consists of a
convex combination of terms associated with the DC and
AC components, respectively. The minimization problem is
solved recursively with the Gauss–Newton scheme. A sliding

discrete Fourier transform (SDFT) algorithm is proposed to
efficiently compute the evolving signal magnitudes at the DC
and AC frequencies based on the flow velocity measurements.
Simulation is conducted to assess the performance of the
proposed scheme, and we find that it is adequate to consider
only the AC component of the flow velocities in the
estimation; namely, the DC component can be excluded
from the cost function to minimize. The latter scheme is
more computationally efficient than a scheme involving both
the DC and AC components, due to the savings in both
the SDFT evaluation and in the Gauss–Newton iteration. In
addition, since in practice it is often difficult to obtain precise
measurement of the DC component (as we discuss later), the
latter finding justifies the use of the AC component only in
experimental validation.

We have validated the proposed algorithm experimentally
with an ALL prototype comprising an array of IPMC
sensors. IPMCs are a class of soft sensing and actuation
materials that have received significant interest over the
past two decades [33–44]. An IPMC has three layers, with
an ion-exchange polymer membrane sandwiched by metal
electrodes. Inside the polymer, anions covalently fixed to
polymer chains are balanced by mobile cations. The sensing
mechanism of an IPMC can be explained as follows. When
the IPMC is deformed under a mechanical stimulus (e.g.
force, pressure and flow), the cations inside will redistribute,
which results in a detectable electric signal (e.g. short-circuit
current) [45]. On the other hand, when an voltage is applied
across an IPMC, the electric field will drive the transport of
hydrated cations and water molecules within the membrane;
this, together with the associated electrostatic interactions,
will cause the bending of the IPMC, which explains the
actuation mechanism of the material [33, 45]. Recent years
have seen significant interest in the fabrication [36, 39, 46],
characterization and modeling [33, 38, 42, 47–52] of IPMC
sensors and actuators. A number of groups have explored
IPMC materials for underwater actuation [40, 41, 53–57],
sensing [58] and energy harvesting [43]. In particular, our
previous work has demonstrated the feasibility of IPMC
sensors in flow sensing [21, 59]. In this work, with an artificial
line consisting of six IPMC sensors, each being 8 mm long,
2 mm wide and 200 µm thick, we show that the proposed
method is capable of simultaneously locating the moving
dipole and estimating its vibration amplitude and traveling
speed with small errors.

The remainder of the paper is organized as follows. The
localization algorithm, including the problem formulation, the
Gauss–Newton scheme and the SDFT scheme, is presented in
section 2. Simulation and experimental results are presented
in sections 3 and 4, respectively. Finally, concluding remarks
are provided in section 5.

2. Algorithm for the localization of a traveling
dipole source

2.1. Problem setup

Figure 1 illustrates the problem setup considered in this
paper, where a dipole source is vibrating and traveling in the
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Figure 1. Illustration of the problem setup for the localization of a
traveling dipole source.

two-dimensional x–y plane. An ALL comprising N sensors
is located in parallel to the x-axis, with the sensor locations
denoted as (xi, yi), 0 ≤ i ≤ N − 1. We denote the location
of a dipole source at time t by (xs(t), ys(t)). For ease of
presentation, we assume that the vibration axis of the source
is parallel to the y-axis, with the corresponding vibration
velocity denoted as v1(t) = ωA sin(ωt+φ), where A and ω are
the vibration amplitude and angular frequency, respectively.
We further assume that the source is traveling along the
x-direction with a constant speed of v0.

Since most existing flow sensors are only able to
measure the flow velocity in one direction, without loss of
generality, we will assume that each sensor can provide a
noisy measurement of vx, the x-component of the local flow
velocity. The approach proposed in this work can be extended
with ease to cases where the lateral line sensors measure
vy, the y-component of the flow velocities, or cases where
some sensors measure vx while others measure vy. Under an
assumption of ideal flows, vx at the site of sensor i can be
derived as [60]

vx(xi, yi, t) = {a3
[(2(xi − xs(t))

2
− (yi − ys(t))

2)v0

+ 3(xi − xs(t))(yi − ys(t))v1(t)]}

× {2‖ri(t)‖
5
}
−1, (1)

where ri(t) = (xs(t) − xi, ys(t) − yi)
T, with the superscript

T denoting the transpose, and a represents the radius of the
sphere.

The localization and tracking problem is defined as
follows. Assume that the sphere diameter a and vibration
frequency ω are known but the vibration velocity amplitude
A and phase φ and the source traveling speed v0 are unknown.
Given the measurements of vx(xi, yi, τ ), 0 ≤ τ ≤ t, 0 ≤ i ≤
N − 1, provide an estimate of the current source location
(xs(t), ys(t)).

2.2. Tracking approach

From (1), the local flow velocity generated by the moving
dipole has two terms, one corresponding to the translation

motion and the other corresponding to the vibration. When
the change of source location (xs(t), ys(t)) is relatively slow
with respect to the dipole vibration v1(t), the frequency
spectrum of the signal vx(xi, yi, ·) will consist primarily of
two components at DC and ω, respectively. Our proposed
approach involves computing the magnitudes of these two
frequency components, denoted as m0,i and m1,i, based
on the signal vx(xi, yi, ·), and then using the obtained
{m0,i,m1,i}

N−1
i=0 to estimate the source location and other

parameters of interest. A major advantage of this approach is
its robustness to measurement noises—the inherent filtering
effect of computing m0,i and m1,i allows us to remove noises
at all other frequencies.

We will discuss how the empirical values of m0,i and m1,i
are obtained in section 2.3; in this subsection we focus on
parameter estimation assuming that the measurements of m0,i
and m1,i are available. Clearly, the magnitudes {m0,i,m1,i} are
time dependent due to the time-varying nature of (xs, ys); for
simplicity of notation, the latter dependence is kept implicit
in the following discussion. For a quasi-static source location
(xs, ys), we derive from (1)

m0,i = f0,i(θ)
1
=

∣∣∣∣ a3

2‖ri‖
5 (2(xi − xs)

2
− (yi − ys)

2)v0

∣∣∣∣ , (2)

m1,i = f1,i(θ)
1
=

∣∣∣∣ a3ω

2‖ri‖
5 (3(xi − xs)(yi − ys)A)

∣∣∣∣ , (3)

where θ = (v0,A, xs, ys) represents the set of parameters of
interest.

We further define

m0
1
= (m0,0, . . . ,m0,N−1)

T,

m1
1
= (m1,0, . . . ,m1,N−1)

T,

f0(θ)
1
= (f0,0(θ), . . . , f0,N−1(θ))

T,

f1(θ)
1
= (f1,0(θ), . . . , f1,N−1(θ))

T.

Let m̂0 and m̂1 denote the magnitudes of the DC and AC
(frequency ω) components, respectively, evaluated from the
measured signals {vx(xi, yi, ·)}

N−1
i=0 . We would like to obtain an

estimate of the parameter vector, θ̂ (t) = (v̂m, Â, x̂s(t), ŷs(t)),
such that a cost function

J(θ̂) = β(m̂0 − f0(θ̂))
T(m̂0 − f0(θ̂))

+ (1− β)(m̂1 − f1(θ̂))
T(m̂1 − f1(θ̂)) (4)

is minimized, where β ∈ [0, 1] is a parameter weighting the
importance of the DC term relative to the oscillatory terms.

While f0(θ) and f1(θ) are linear in v0 and A, they are
highly nonlinear in (xs, ys). The problem of minimizing J in
(4) is thus similar to the problem of localizing a stationary
dipole source as formulated in our previous work [32], where
two iterative schemes were proposed to solve the nonlinear
estimation problem. The first scheme, which is based on
the Gauss–Newton method, involves iterative linearization of
the nonlinear functions, as we explain below. In the second
scheme, the Newton–Raphson method is used to solve the
nonlinear equation resulting from the first-order optimality
condition. Overall the two schemes were shown to have
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comparable performance with Gauss–Newton having a slight
advantage [32]. Therefore, we will adopt the Gauss–Newton
scheme in this paper. First we approximate f0 and f1 by
linearizing them around some nominal point θ̄ :

f̄0(θ) = f0(θ̄)+ B0(θ̄)(θ − θ̄ ),

f̄1(θ) = f1(θ̄)+ B1(θ̄)(θ − θ̄ ),

where

B0(θ̄) =
∂f0
∂θ

∣∣∣∣
θ=θ̄

, B1(θ̄) =
∂f1
∂θ

∣∣∣∣
θ=θ̄

.

Accordingly, we modify the cost function for the estimation
problem from (4) to

J1(θ̂) = β(m̂0 − f̄0(θ̂))
T(m̂0 − f̄0(θ̂))

+ (1− β)(m̂1 − f̄1(θ̂))
T(m̂1 − f̄1(θ̂)). (5)

Finding the minimizing θ̂ for J1 is a standard least-
squares optimization problem, a solution of which is given
by

θ̂ = θ̄ + λ(βB0(θ̄)
TB0(θ̄)+ (1− β)B1(θ̄)

TB1(θ̄))
−1

× (βBT
0 (θ̄)(m̂0 − f0(θ̄))

+ (1− β)BT
1 (θ̄)(m̂1 − f1(θ̄))), (6)

where λ > 0 is a stepping parameter. In implementation a
recursive version of (6) is adopted to update the estimate, to
mitigate the impact introduced by linearization:

θ̂k+1 = θ̂k + λ(βB0(θ̂k)
TB0(θ̂k)

+ (1− β)B1(θ̂k)
TB1(θ̂k))

−1

× (βBT
0 (θ̂k)(m̂0 − f0(θ̂k))

+ (1− β)BT
1 (θ̂k)(m̂1 − f1(θ̂k))), (7)

where the initial estimate θ̂0 is chosen properly. The iteration
is stopped when ‖θ̂k+1 − θ̂k‖ ≤ ε, where ε > 0 is a specified
tolerance and ‖ · ‖ denotes the Euclidean norm of a vector.

Note that in (7), B0(θ̂k) and B1(θ̂k) have dimensions of
N × Dθ , where Dθ = 4 denotes the dimension of the vector
θ . Consequently, the inverted matrix in (7) has dimensions of
Dθ × Dθ . Therefore, the complexity of matrix inversion, the
most computationally expensive operation in the algorithm,
does not grow with the number N of sensors.

2.3. The sliding discrete Fourier transform (SDFT) algorithm

Since the actual sensor output is a discrete-time signal,
discrete Fourier transform (DFT) could be used to extract the
signal amplitudes at different frequencies. However, because
the dipole source is moving, the amplitudes m0 and m1 evolve
with the time index n and it is thus not practical to collect
a large sequence of sensor data and perform DFT to extract
the measurements m̂0 and m̂1. The SDFT algorithm [61, 62]
is particularly suitable for computing a specific spectral bin
in real-time application based on a sliding window of time
samples. For this reason, it has been adopted to compute the
two frequency components of interest in this paper.

Figure 2. Illustration of the simulation setup.

For a window of M time samples collected by the ith
sensor, rewritten as {vi[n − (M − 1)], . . . , vi[n]}, we can
evaluate the pth spectral bin using DFT:

Vp,i[n] =
M−1∑
k=0

vi[n−M + 1+ k]e−j2πpk/M,

for 0 ≤ p ≤ M − 1. (8)

As discussed in section 2.2, there are two frequencies that are
of interest to us, the DC signal (spectral bin p = 0) and the

signal with angular frequency ω (spectral bin p =
[
ωM

2πFs

]
),

where [·] denotes rounding to the nearest integer and Fs is the
sampling frequency to obtain sensors signals vi[·]. Exploiting
the fact that all elements but one in neighboring windows are
identical, we can efficiently evaluate Vp,i[n] recursively with
the SDFT algorithm:

Vp,i[n] = e−jω0(Vp,i[n− 1] − vi[n−M] + vi[n]), (9)

where ωo = 2πp/M.
For p = 0, from (8) we can see that V0,i[n] essentially

sums up the M signal samples in the window. Consequently,
the magnitude m̂0,i of the DC component for {vi[·]} is |V0,i[n]|

M .

For the AC component
(

p =
[
ωM

2πFs

])
, one can readily derive

its magnitude m̂1,i as |2Vp,i[n]|
M .

3. Simulation results

Figure 2 illustrates the simulation setup. The setup and
the simulation parameters are largely based on the real
experimental conditions (see section 4). The lateral line
system is placed parallel to the x-axis and centered at (0,
5) cm. It consists of six sensors, with a sensor-to-sensor
separation of 2 cm. The dipole vibration frequency is set to
be 40 Hz, which is consistent with the typical range of dipole
frequencies adopted in the study of biological and artificial
lateral lines (e.g. 50 Hz in [63] and 45 Hz in [30, 64]). The
dipole size a and vibration amplitude A are assumed to be
1.9 cm and 0.191 cm, respectively. The dipole is assumed
to travel at a constant speed of v0 = 1.5 cm s−1 from left
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Figure 3. Simulation results: time trajectories of the flow velocities at the sensor locations.

to right. The choice of this speed is partly motivated by the
constraint in our experimental setup, but it is also within the
typical speed range of small robotic fish [65]. The impact of
v0 will be further discussed in section 5.

Figure 3 shows the simulated flow velocities (x-
component) at each sensor site, where the initial location of
the dipole source is (0, 2) cm. Based on the measured noise
level of our IPMC flow sensors in the experimental prototype,
we consider an additive Gaussian noise with zero mean and
variance of 0.0065 cm2 s−2 for each sensor.

Figures 4 and 5 show the magnitudes of the DC and
AC components, respectively, obtained through SDFT. The
sampling frequency used is 20 kHz, and the sliding window
size is 500 samples (25 ms). Within each window, the dipole
travels 0.375 mm and the resulting flow velocity at each sensor
site is nearly constant. It is clear from figures 4 and 5 that
both the DC and AC components contain relevant information
for localizing the source, as can be seen from the shifting
magnitude profiles in the figures.

Using the computed DC and AC magnitudes, we
have conducted the tracking of the dipole source with the
Gauss–Newton algorithm described in section 2.2. In order
to explore the influence of the weighting parameter β on the
tracking performance, we have tried two different values of
β, 0.5 and 0. When β = 0.5, equal weights are placed on
the DC and AC components, while when β = 0, we rely
only on the AC component for localization. While the SDFT
is used to update m̂0 and m̂1 at each sampling time, the
estimation is only conducted every 0.2 s (it would be neither
realistic nor necessary to update the estimate at each sampling
time). For the Gauss–Newton algorithm, ε is chosen to be

0.01. The initial guesses used for the parameters are: v̂0(0) =
1 cm s−1, (x̂s(0), ŷs(0)) = (0.5, 1.5) cm, Â(0) = 0.18 cm.
Since the function f1 is independent of the traveling velocity
v0, one cannot estimate v0 directly when β = 0; in that
case, we have approximated the traveling velocity by dividing
the difference between the estimated values of xs at two
consecutive estimation instants with the time interval between
those instants:

v̂0 ≈
x̂s(tk+1)− x̂s(tk)

tk+1 − tk
, (10)

where tk+1 − tk = 0.2 s as mentioned earlier.
Figures 6(a) and (b) show the actual and estimated source

locations and the tracking error, respectively, for the two
choices of β. The tracking error is computed as the Euclidean
distance between the actual source location and the estimated
location at a given time. The maximum tracking errors are
0.044 cm for β = 0 and 0.0441 cm for β = 0.5. We have
also obtained the averages, Ā and v̄0, of the estimates for
the dipole vibration amplitude and traveling velocity, where
each average is computed by taking the mean of the estimated
values over the simulated time period. Ā is 1.87 mm and
1.86 mm when β = 0 and β = 0.5, respectively, both of which
are close to the true value of 1.91 mm. The values of v̄0, with
the estimates computed with (10), are 1.41 cm s−1 for β = 0
and 1.414 cm s−1 for β = 0.5. For β = 0.5, direct estimation
of v0 results in a value of 1.46 cm s−1 for v̄0, which is slightly
closer to the true value of 1.5 cm s−1 than the values based on
indirect approximation (10).

From the simulations above, we see that exploiting the
magnitude of the AC component only (β = 0) can provide
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Figure 4. Simulation results: magnitude trajectories of the DC component at the sensor sites.

Figure 5. Simulation results: magnitude trajectories of the AC component at the sensor sites.

an estimation performance comparable to that obtained with
both DC and AC components (β 6= 0). There are several
advantages in using the AC component only. First, it lowers
the computational complexity in the algorithm (7) since one
will drop v0 from the parameter vector θ , which results in a

lower-dimension matrix (3 × 3) to be inverted in each step.
Second, in practice the DC component could be subject to
significant drift due to sensor characteristics (see section 4)
while the AC component is much more robust to noises.
Therefore, for the remainder of this paper, we consider β = 0.
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Figure 6. Simulation results on the estimation of the source location: (a) estimated source coordinates; (b) localization error.

Figure 7. An experimental prototype of an IPMC-based lateral line
system.

4. Experimental results

4.1. Experimental setup

We have further validated the proposed localization approach
through experiments on an IPMC-based artificial lateral line.
The lateral line prototype consisted of six IPMC sensors as
shown in figure 7. Each sensor, with dimensions 8 mm ×
2 mm×200µm, was cut from an IPMC sheet fabricated by the
Smart Microsystems Laboratory at Michigan State University,
following a recipe similar to the one described in [46]. The
sensor-to-sensor separation was 2 cm, resulting in a total span
of 10 cm. Each sensor was mounted in such a way that it
would bend in the direction parallel to the sensor array, which
is denoted as the x-direction.

Figure 8(a) shows a schematic diagram of the exper-
imental setup, while figure 8(b) shows a picture of the
actual experimental system. The experiments were conducted
in a water tank measuring 6 ft long, 2 ft wide and 2
ft deep. A custom-built, DC motor-driven conveyor was
used to move a dipole along the x-direction in the water.
The conveyor track was separated from the lateral line
system by 2 cm. The short-circuit current output of each
IPMC sensor was amplified with a two-stage amplification
circuit [58] before the acquisition (at 20 kHz) and processing
by a PC equipped with dSPACE (DS 1104, dSPACE). The

dipole source was created with a mini-shaker (model 4810,
Brüel and Kjaer, Denmark), the vibration amplitude and
frequency of which can be readily controlled through a
voltage input to the mini-shaker. A lightweight bar firmly
attached to the mini-shaker then translates the vibration to
a sphere (aluminum, diameter 1.9 cm) rigidly coupled to
the bar. Consistent with the simulation setting, the frequency
of vibration used in this work was 40 Hz. The vibration
amplitude was 1.91 mm, which was measured with a
laser displacement sensor (OADM 20I6441/S14F, Baumer
Electric). The dipole source and the IPMC lateral line were
completely submerged under water at a depth of about
5 cm. The traveling speed of the dipole was calibrated to be
1.5 cm s−1.

Figure 9 shows the measured instantaneous IPMC
short-circuit current from each sensor when the dipole source
traveled past the ALL:. Figure 10 shows the DC component
of each sensor output obtained through SDFT, with a sliding
window of 500 samples (25 ms). It can be seen that the
obtained DC component profiles were significantly distorted
from the simulated profiles in figure 4. This can be attributed
to the difficulty for IPMCs in capturing quasi-static stimuli
(since an IPMC sensor responds to changes in its mechanical
state), which makes the flow measurement at near-DC
frequencies susceptible to drifts and noises. Therefore, as
justified in section 3, we will instead use the AC components
of the IPMC sensor outputs for the dipole tracking.

Figure 11 shows the trajectories of magnitudes of 40 Hz
sensor signals obtained via SDFT and expressed in the unit
of flow velocity. The conversion from the sensor current
amplitude to the flow velocity amplitude is achieved through
a sensor calibration procedure. While one could derive a
full physics-based model for the IPMC flow sensor by
integrating the flow–structure interaction dynamics [66] with
the IPMC transduction dynamics [67], this is not necessary
if we are only interested in the magnitude gain of the flow
sensing dynamics at a given frequency, as in our case here.
Instead, we have obtained the magnitude gain as follows. We
put the dipole source (40 Hz) at different, fixed locations
and collected the outputs of the six sensors accordingly.

7
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Figure 8. Experimental setup for tracking a traveling dipole source: (a) schematic diagram; (b) picture of the experimental setup.

Figure 9. Experimental results: time trajectories of the IPMC sensor output (short-circuit current).

Fast Fourier transform (FFT) was then conducted on the
sensor signals to extract their amplitudes at 40 Hz. Next
we calculated the theoretical flow velocities (x-component)
and thus their amplitudes at each sensor site, for each tested
dipole location, based on the potential flow model [60].
Finally, through linear fitting of the measured magnitudes

of sensor output to the theoretical flow velocity magnitudes
corresponding to different dipole locations, we obtained the
calibration gain for each sensor. As can be seen in figure 11,
the measured magnitude trajectories at 40 Hz have a similar
pattern to that in figure 5, showing a two-peak profile shifting
from sensor 1 (left) to sensor 6 (right).

8
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Figure 10. Experimental results: magnitude trajectories of the DC component of the sensor outputs.

Figure 11. Experimental results: magnitude trajectories of the AC component of the flow velocity at the sensor sites.

Figure 12 shows the actual source locations and the
locations estimated based on the magnitude profiles shown
in figure 11. Table 1 lists the estimated dipole moving speed
and vibration amplitude. The maximum tracking error was
0.33 cm and the errors in estimating v0 and A were less than

10%, which demonstrates the effectiveness of the proposed
estimation approach.

We note that the two peaks in each of figures 11(b)–(e)
do not look symmetric to each other. A likely reason is the
imperfection of the IPMC sensors; in particular, each sensor

9
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Figure 12. Experimental results for the estimation of the source location: (a) localization, (b) tracking error.

Table 1. Experimental results: estimated velocity (v0) and vibration
amplitude (A).

Parameter Actual Estimated Error

Velocity (cm s−1) 1.5 1.4 0.1
Vibrating amplitude (mm) 1.91 2.1 0.19

had slight pre-bending in the absence of flow stimulus, which
could result in a slight difference in sensing flows of different
directions. While we did not run experiments with the dipole
traveling from right to left, we expect comparable overall
estimation performance in that case although the estimation
error at each physical point could be slightly different.

5. Conclusion

In this paper we investigated an analytical model-based
estimation approach to the localization of a moving dipole
source using an ALL. The moving speed, vibration amplitude
and location of the moving source were assumed to be
unknown, and we proposed a Gauss–Newton algorithm
to solve the nonlinear estimation problem based on the
evolving AC signal magnitudes obtained with SDFT. The
effectiveness of the approach was illustrated with simulation
and experimental results. In particular, experiments on an
IPMC-based ALL prototype have demonstrated that the
proposed method is able to simultaneously track the dipole
location and estimate its vibration amplitude and traveling
speed with small errors. While the paper has focused on a
two-dimensional setup, the approach can be readily extended
to the three-dimensional setting, where one does not impose
constraints on the dipole vibration direction [68] or its
traveling direction. We have also assumed that the frequency
of the dipole is known; if in practice this is not known a
priori, one could first run a FFT of the sensor signals to
locate potential frequencies of interest. In addition, due to the
‘interchangeable’ nature of a3 and dipole velocities in (1),
the proposed scheme, with minor modification, can be used
to estimate the dipole size a if the vibration amplitude A is
known.

Although the dipole vibration frequency was set to be
40 Hz in this work, we note that IPMC sensors can capture
vibrations from several Hz [67] to hundreds of Hz [59],
which covers well the typical frequency range of a dipole-like
stimulus expected in aquatic environments (up to tens of
Hz). To maximize the IPMC sensor output, which is closely
correlated with the sensor deformation, one needs to properly
design the geometry and dimensions of each sensor so that its
resonant frequency is close to the expected frequency range of
the stimuli.

The estimation performance of the proposed algorithm
depends on several factors. First, since the measured flow
velocity scales inversely with the cube of the distance between
the source and the sensor (see (1)); a larger distance will
result in a smaller signal-to-noise ratio (SNR) and thus a
larger estimation error. Second, for a given sliding window
length (in time), a larger dipole travel velocity v0 will imply
a longer distance traveled and thus a larger variation of
actual signal amplitude within that window, which leads to
a bigger error in the computed signal amplitude and thus in
the estimated dipole location and vibration amplitude. Finally,
for a lower dipole vibration frequency, the minimum size
of the sliding window, determined by the Nyquist–Shannon
sampling theorem, becomes larger; therefore, in order to
maintain a given estimation performance, the maximum
allowed v0 will be smaller.

For future work, we are interested in extending the
proposed scheme to cases involving multiple traveling
dipoles; in particular, the case where multiple dipoles share
same vibration frequencies would pose interesting challenges
in resolving the locational ambiguity. We also plan to
implement the proposed scheme on lateral line prototypes
based on microfabricated IPMC sensors [69] with sizes more
comparable to biological neuromasts.
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