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Analysis of closed-loop systems involving hysteresis is important to both the understand-
ing of these systems and the synthesis of control schemes. However, such analysis is chal-
lenging due to the nonsmooth nature of hysteresis nonlinearities. In this paper, singular
perturbation techniques are employed to derive an analytical approximation to the track-
ing error for a system consisting of fast linear dynamics preceded by a piecewise linear
hysteresis nonlinearity, which is motivated by applications such as piezo-actuated nano-
positioning. The control architecture considered combines hysteresis inversion and
proportional-integral feedback, with and without a constant feedforward control. The
analysis incorporates the effect of uncertainty in the hysteresis model, and offers insight
into how the tracking performance depends on the system parameters and the references,
thereby offering guidance in the controller design. Simulation and experimental
results on a piezo-actuated nanopositioning system are presented to support the analysis.
In particular, the control scheme incorporating the feedforward element consistently
outperforms the classical PI controller in tracking a variety of references.
[DOI: 10.1115/1.4026511]

1 Introduction

Hysteresis is a nonlinear phenomenon that exists in various
areas, such as smart materials, biology, geology, mechanics, and
economics, and it presents challenges in both the understanding
and control of such systems. Modeling, analysis, and control of
systems with hysteresis have received great attention over the last
two decades. For example, piezoelectric actuators are commonly
used in nanopositioning applications such as scanning tunneling
microscopy and atomic force microscopy. They have large band-
width and can produce large mechanical forces [1,2], but their
hysteretic behavior has been a major challenge in achieving high-
speed precision control [1].

The control methods dealing with hysteresis can be roughly
classified into open-loop inverse compensation methods and
methods involving feedback. Open-loop inverse control [3–7] can
result in small tracking errors, but it typically only applies in the
case where system dynamics (other than hysteresis) are ignored,
and is susceptible to model uncertainties and environmental
changes. Therefore, a popular approach in coping with hysteresis
is to construct an inverse operator and integrate it with feedback
techniques [7–14]. These feedback control schemes can include,
for example, proportional-integral-derivative control, adaptive
control [7,10,12,13,15], robust control [11,16,17], and robust-
adaptive control [18–20].

A main concern for feedback methods is stability. Stability
analysis for hysteretic systems involving adaptation is presented
in Refs. [7,10,12,13] under various persistent-excitation-type
conditions on the reference signals. Robust control methods
for hysteresis control include for example servo-compensators
[14] and sliding-mode controllers [16,17]. In these methods,

researchers avoid the complex adaptation algorithms and typically
assume that a bound on the inversion error is known to establish
the stability of the closed-loop system. There are also schemes
that do not fall into aforementioned categories. For example, in
Ref. [21] Valadkhan et al. establish bounded-input-bounded-out-
put stability for a proportional-integral controlled hysteresis oper-
ator (without system dynamics). Wu and Zou established
asymptotic convergence in tracking a periodic signal under an
iterative learning control, and used the latter scheme to compen-
sate for hysteresis and vibrational dynamics in piezo actuators
[22]. Ge and Jouaneh proposed a feedforward inverse scheme in
combination with a proportional integral differential controller
[23] for a piezo actuator, which was proven effective experimen-
tally without stability analysis. In summary, despite the significant
body of work on analysis of systems with hysteresis, derivation of
an analytical approximation for the closed-loop tracking error in
terms of system parameters has not been reported.

The contributions of this paper are twofold. The first contribu-
tion is a novel singular perturbation analysis method for under-
standing the closed-loop behavior of systems with hysteresis and
fast linear dynamics. The second contribution is the proposal of a
modified PI controller, where a constant feedforward term is
included, for the class of systems under consideration, and demon-
stration of the effectiveness of such a strategy through analysis,
simulation, and experimentation. While the second contribution is
of clear engineering interest, we note that the first contribution is
also well motivated by engineering applications. In particular, the
presented analysis approach sheds light on how hysteresis param-
eters, uncertainties, and control gains interact in the closed-loop
system and determine the size of the tracking error, and conse-
quently, it provides insight and guidance for the design of control-
ler gains. For example, the analysis reveals how the tracking error
scales with the reference frequency, a question of practical interest
but remaining largely open until now. A more detailed account of
the contributions follows.

Motivated by the properties of piezo-actuated nanopositioning
systems, we assume that the linear dynamics of the plant are
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stable and have large bandwidth. This assumption allows us to use
singular perturbation techniques to separate the slow dynamics of
the controller from the fast dynamics of the plant and obtain an
explicit expression for the tracking error, where we can discuss
the effect of different parameters on the size of the error. In addi-
tion, we assume that the hysteresis nonlinearity has piecewise
linear characteristics; in other words, all hysteresis loops (major
loops and minor loops) consist of linear segments, where each
segment si has a slope mi and an intercept ci with the vertical axis.
See Fig. 1 for illustration. The tracking error analysis is conducted
for a control scheme that combines the hysteresis inversion with
proportional-integral feedback controller and a constant-gain
feedforward term as illustrated in Fig. 2. Although the case with-
out the feedforward component has been reported extensively in
the literature [9,10,12–17], we show in this paper the advantage
of adding a feedforward gain component. We note that feed-
forward control has been discussed in tracking problems with
two-degree-of-freedom control [24–27] and proved to be useful in
performance improvement, but its combination with feedback and
inversion for systems with hysteresis has not been reported
before.

The analysis in this work is a continuation of our work pre-
sented in Ref. [28]. The previous work [28], was limited to the
analysis of the driving terms of the tracking error when the hyster-
esis is on a particular linear segment. As such, it did not provide
insight into the cumulative behavior when the hysteresis traverses
different linear segments, as well as the frequency-scaling behav-
ior that is presented in the current work.

With nanopositioning control as an example, extensive simula-
tion and experimental results are presented to support the pro-
posed analysis approach and the modified PI control scheme. In
particular, the comparison on the frequency-scaling behavior of
the tracking error is provided between the simulation results
and the analytical bound, where good agreement is achieved.
Experimental results on tracking a variety of references, including
sinusoids, multisine signals, and sawtooth signals, demonstrate
that the PI controller with the feedforward component outper-
forms the classical PI controller consistently.

The remainder of the paper is organized as follows. In Sec. 2,
we briefly describe the closed-loop system. This is followed by
the derivation of an explicit expression for the tracking error in
Sec. 3. Tracking error analysis is provided in this section by
studying the system model using singular perturbation approxima-
tion. Moreover, a bound on the propagating error is derived, and
the frequency-scaling analysis is provided. Simulation and experi-
mental results are presented in Sec. 4. Finally, we provide con-
cluding remarks in Sec. 5.

2 Closed-Loop System Setup

In this section, we briefly describe the components of the
closed-loop system as illustrated in Fig. 3. The linear dynamics of
the plant are represented by a singularly perturbed system. The
bandwidth of the dynamics xn is assumed to be large and of
the order 1=e, where e is a small positive parameter. The model of
the linear plant is given by

e _z ¼ Azþ Bu;

y ¼ Cz
(1)

where A is a Hurwitz matrix, B and C are matrices with proper
dimensions, and z is the state vector. We assume that the feedback
controller is a proportional-integral controller, represented as

_x ¼ e ¼ yr � y ¼ yr � Cz;

w ¼ kixþ kpe
(2)

where e is the tracking error and w is the output of the
proportional-integral controller. A feedforward path with a gain g
is used to compensate for the DC gain of the linear dynamics.
When g¼ 0, the scheme falls back into the one scheme that com-
bines hysteresis inversion (in the feedback loop) and feedback
control.

We denote the hysteresis operator by Cp and the inverse opera-
tor as C�1

m . The input-output relationship of Cp can be described
in each segment of a hysteresis loop as follows:

u ¼ mivþ ci (3)

The DC gain of the plant is

h ¼ �CA�1B (4)

The input to the inverse operator, ud, and its output, v, are
expressed as2

ud ¼ gyr þ kixþ kpe (5)

v ¼ 1

m
ðud � cÞ (6)

Note that Eq. (6) is essentially the inversion process for the piece-
wise linear hysteresis model, and it requires tracking which linear
segment the hysteresis characteristic is on at each time instant.
Such an assumption is standard in hysteresis inversion since the
past history of v is available. We further note that Eq. (6) requires
knowing the slope and intercept of the current linear segment;
when such knowledge is not precise, we can represent it as fol-
lows. Let us denote the corresponding slope of the plant hysteresis
Cp by mp and the intercept by cp with parameter uncertainties Dm

and Dc, where mp ¼ mþ Dm and cp ¼ cþ Dc, which implies

u ¼ ðmþ DmÞvþ ðcþ DcÞ (7)

By substituting ud from Eq. (5) and v from Eq. (6) into Eq. (7), we
express u as

u ¼ mþ Dm

m
½gyr þ kixþ kpðyr � CzÞ� þ mDc � cDm

m
(8)

The singularly perturbed closed-loop system, obtained by insert-
ing u from Eq. (8) into Eq. (1), is given by

Fig. 1 Illustration of a hysteresis loop with piecewise linear
characteristics

2For convenience, we will drop the subscript i in the analysis unless necessary
and use m and c to denote the slope and intercept of the line segment under
consideration.
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_x ¼ yr � Cz

e _z ¼ A� kpðmþ DmÞ
m

BC

� �
zþ B

mþ Dm

m
ðgþ kpÞyr

þ B
mþ Dm

m
kixþ B

mDc � cDm

m

� � (9)

3 Tracking Error Analysis

In order to get a rough idea of what factors determine the size
of the error, we first assume in Sec. 3.1 that the plant is repre-
sented by a DC gain (i.e., it has an infinite bandwidth). This is
equivalent to setting e ¼ 0. In this case, the tracking error e is cap-
tured by the slow model alone. We focus here on showing how
the tracking error is affected by the input reference. Then, in the
following subsections we discuss other factors that determine the
size of the tracking error by solving the closed-loop system equa-
tions with periodic references.

3.1 Analysis Using the Slow Model Approximation. For the
fast model of the singularly perturbed system to be exponentially
stable, we assume that the matrix ½A� ðkpðmþ DmÞ=mÞBC� of
Eq. (9) is Hurwitz. To obtain an approximation of the slow model,
we set e ¼ 0, to get

z ¼ � A� kpðmþ DmÞ
m

BC

� ��1

B
mþ Dm

m
ðgþ kpÞyr

�

þmþ Dm

m
kixþ

mDc � cDm

m

� ��
(10)

We insert z from Eq. (10) into the _x-equation (9) and use the
matrix inversion lemma [29], to obtain the approximate slow
model as

_x ¼ �ðmþ DmÞhki

mþ kpðmþ DmÞh
xþ mð1� ghÞ � Dmgh

mþ kpðmþ DmÞh
yr

� h
mDc � cDm

mþ kpðmþ DmÞh
(11)

Equation (11) motivates the choice of g¼ 1/h. This would reduce
the error due to the yr term, and _x becomes

_x ¼ �ðmþ DmÞhki

mþ kpðmþ DmÞh
xþ �Dm

mþ kpðmþ DmÞh
yr

� h
mDc � cDm

mþ kpðmþ DmÞh
(12)

When the feedforward path is not included, we set g¼ 0 in
Eq. (11) and obtain

_x ¼ �ðmþ DmÞhki

mþ kpðmþ DmÞh
xþ m

mþ kpðmþ DmÞh
yr

þ h
mDc � cDm

mþ kpðmþ DmÞh
(13)

To have a general idea from this approximation about the
steady-state tracking error, here we only discuss the second term
on the right-hand side of Eqs. (12) and (13), which determines the
contribution of the reference signal yr to the tracking error e (i.e.,
_x). By comparing Eqs. (12) and (13) we notice that when Dm is
small compared to the slope m, the tracking error e will be less
influenced by yr when feedforward is used. Moreover, in the ideal
case ðDm ¼ 0 ¼ DcÞ, the tracking error becomes independent of
the reference signal yr. In this case, the solution of the differential
equation will only have a decaying transient term dependent on
the initial value of x but independent of the segment’s slope m,
and according to singular perturbation theory [30] the full solution
x is OðeÞ to the solution of Eq. (12); that is,

xðtÞ ¼ xð0Þe�
kih

1þkpht þ OðeÞ (14)

The effect of the linear dynamics which are ignored in the
low-frequency approximation, is abstracted in the term OðeÞ. It is
important to consider this term at high frequencies as we will see
in later analysis. From Eqs. (12) and (13), one can say that by
increasing the gain kp the error would decrease. However, kp

might be constrained by the stability of the system because, for
high-order linear dynamics, increasing the gain kp beyond a cer-
tain value may destabilize the closed-loop matrix ½A� ðkpðm
þDmÞ=mÞBC�. It is also important to have the ratio ki/kp high in
order to achieve fast decay in Eq. (14). In later analysis, we will
see that these decaying terms will be initiated whenever the signal
moves to a new segment.

3.2 System Model When e 6¼ 0 and Coordinates
Transform. For more accurate approximation, we consider e 6¼ 0
in this subsection. The system (9) is written in the general form

_x
e _z

� �
¼ A11 A12

A21 A22

� �
x
z

� �
þ B1

B2

� �
yr þ

0

c0

� �
(15)

where A11¼ 0, A12¼ – C, B1¼ 1 and (A21, A22, B2, and c0) are the
corresponding matrix/vector coefficients of x, z, yr and the
constant term of Eq. (9), respectively. We keep OðeÞ terms of

Fig. 2 The proposed scheme for singularly perturbed systems preceded by hysteresis
with added feedforward branch

Fig. 3 Hysteresis inverse in the feedback path
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the series expansion and sum the rest as Oðe2Þ. We use the follow-
ing transformation [31], which allows us to separate the slow and
fast variables:

n
g

� �
¼ ðIn � eHL �eH

L Im

� �
x
z

� �
þ eHW

�W

� �
yr (16)

where n is the slow variable and g is the fast variable in the new
coordinates. In and Im are identity matrices of the dimensions of
the slow and fast variables, respectively. W is a constant vector of
the dimension of the fast variable. L and H are analytical func-
tions of e. To get back to the original coordinates, we use the
inverse of the above transformation:

x
z

� �
¼ In eH
�L ðIm � eLHÞ

� �
n
g

� �
þ 0

W

� �
yr (17)

Since we are interested in an Oðe2Þ approximation, we use the
approximations L ¼ Lþ eA�2

22 A21A0 þ Oðe2Þ and H ¼ H þ eA1

þOðe2Þ, where L ¼ A�2
22 A21;H ¼ A12A�1

22 , A1 ¼ ðA0H � HLA12Þ
A�1

22 , and A0 ¼ A11 � A12A�1
22 A21 is a scalar. We follow similar

steps as in Ref. [31] to derive the system model in the new coordi-
nates. We note that in Ref. [31] the driving term does not exist.
This term will allow us to discuss the dependence of the solution
on the reference frequency x. By ignoring the Oðe2Þ terms in all
coefficients, we arrive at the following equations in which the
slow and fast models are separated:

_n ¼ ðA0 � eHLA0Þnþ ½�eHLA12W � HB2 � eA1B2

þ ðIn � eHLÞB1�yr þ eHW _yr � Hc0 � eA1c
0 (18)

e _g ¼ ðA22 þ eLA12Þgþ ðB2 þ eLB1 þ ðA22 þ eLA12ÞWÞyr

þ c0 � eW _yr (19)

We solve Eqs. (18) and (19) to get the expression of the tracking
error e as follows. First for n, we express the solution of Eq. (18)
as a power series

n ¼ n0 þ en1 þ e2n2 þ… (20)

By matching e-coefficients of Eq. (18) and the derivative of n of
Eq. (20), we obtain

_n0 ¼ A0n0 þ B0yr � Hc0 (21)

_n1 ¼ A0n1 � HLA0n0 þ ½�HLA12W � B1HL� A1B2�yr

þ HW _yr � A1c
0 (22)

where B0¼ [�HB2þB1]. In order to see how the solution devel-
ops and the error propagates from one hysteresis segment to
another, we solve the equations for each segment by dividing
the time into intervals that correspond to the time periods of the
hysteresis staying in different segments. We specify the time at
the beginning of each slot by ti, where i ¼ 0; 1;…. Then, for the
current segment i, we have the time t bounded as ti5 t < tiþ1. See
Fig. 4 for illustration.

3.3 The Case of a Sinusoidal Reference. We now consider a
sinusoidal reference yr ¼ Ac sinðxtÞ. We assume that the solution
of the closed-loop system converges to a periodic function with
the same period T of the reference input. This assumption is justi-
fied by the simulation and experimental results in this work and
also in Refs. [11,14,16,17,23]. Moreover, we assume that all the
components which compose the solution such as the slow n and
fast g variables are periodic.

The idea of getting a solution that shows the impact of all hys-
teresis segments on each other is explained by the following steps.
We start by solving Eq. (21) for the segment i with initial value
n0ðtiÞ. Then, the final value of this segment n0ðtiþ1Þ will be
inserted as the initial value for the following segment iþ 1. We
continue this process around one cycle until we get n0ðti þ TÞ.
The periodicity of the solution implies that n0ðti þ TÞ ¼ n0ðtiÞ
and this allows us to obtain an expression for n0ðtiÞ. By substitut-
ing this expression in the solution of Eq. (21) we get
n0ðtÞ; ti � t < tiþ1

n0ðtÞ ¼ uþ Hc0

A0

þ B0Ac
A0

A2
0 þ x2

sinðxtÞ x

A2
0 þ x2

cosðxtÞ
� �

(23)

where u is in the form

u ¼ eA0iðt�tiÞ
Xn

j¼1

e�A0jKj
Lj

A0j
þ Mjx

A2
0j þ x2

þ NjA0j

A2
0j þ x2

 !
(24)

n is the number of hysteresis segments traversed in one cycle, and
Kj, Lj, Mj, and Nj are constants dependent on the parameters of the
j-th segment in the cycle. The complete derivation of n0ðtÞ is
given in Appendix A. The complete derivation of the bound on u
can be found in Ref. [32]. The term u can be described by a peri-
odic term, which has a peak value at the beginning of each seg-
ment and decays exponentially with a rate dependent on the value
A0 until the following segment. u is important in the sense that it
connects the solutions of different segments by summing the
propagated error of all previous segments in each cycle. However,
this term can be made small by a choice of a large value of jA0j.
Since the choice of A0 is important, let us derive its expression
and see how it changes from one segment to another

A0 ¼ A11 � A12A�1
22 A21

¼ 0� C A� kp
mþ Dm

m
BC

� ��1

B
mþ Dm

m
ki

¼ �ðmþ DmÞkih

1þ kpðmþ DmÞh

(25)

With the assumption that the slopes of all segments are positive
(m> 0), we also need to assume jDmj < m, or equivalantly
mþ Dm > 0, for all segments, such that A0 < 0. By choosing kp

such that kpðmþ DmÞh is much larger than 1, A0 becomes inde-
pendent of the segment slope and is determined by the ratio ki=kp.
By having the integral gain much larger than the proportional gain
ðki � kpÞ, we guarantee that jA0j is large enough to make the
value of u significantly small and decays in a short time within
each segment.

In Appendix B, we show that n1 is bounded uniformly in x.
Hence, the slow variable n is obtained by substituting n0 from
Eq. (23) into Eq. (20). The solution of the fast variable is derived
in Appendix C as

g ¼ w� A�1
g BgAc sinðxtÞ � A�1

g c0

þ eðA�1
g W � A�2

g BgÞAcx cosðxtÞ þ Oðe2Þ (26)
Fig. 4 Illustration of the time instants when periodic signals
cross different linear segments of the hysteresis loops
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where Ag ¼ ðA22 þ eLA12Þ;Bg ¼ B2 þ eLB1 þ ðA22 þ eLA12ÞWÞ,
and w is a term similar to the u term of the slow variable, but it
decays much faster than u. The tracking error for ti � t < tiþ1 in
terms of n and g is given by

eðtÞ ¼ B1yr � Cz

¼ B1yr � A12 ðLþ eA�2
22 A21A0Þn

�
þðIm � eLHÞgþWyr� þ Oðe2Þ

¼ �A12ðLþ eA�2
22 A21A0Þnþ A12g� eA12LHg

þ ðB1 þ A12WÞyr þ Oðe2Þ

(27)

By inserting n from Eqs. (23) and (20) and g from Eq. (26) into
Eq. (27) we obtain the final expression of the error with its Oðe2Þ
approximation

eðtÞ ¼ ðB1 þ A12WÞyr þ A0i

�
uþ Hic0i

A0i

þ B0iAc
A0i

A2
0i þ x2

sinðxtÞ � x
A2

0i þ x2
cosðxtÞ

� �

þen1

�
� eA12A�2

22 A21A0in0 þ A12 �A�1
g;i Bg;iAc sinðxtÞ

h

þw� A�1
g;i c
0 þ eðA�1

g;i W � A�2
g;i Bg;iÞAcx cosðxtÞ

i
� eA12LH½�A�1

g;i Bg;iAc sinðxtÞ � A�1
g;i c
0� þ Oðe2Þ (28)

To discuss how these terms change with the frequency, we sepa-
rate the error expression into three groups

e ¼ e0 þ eee þ exeex þ Oðe2Þ (29)

where e0; ee, and eex are bounded uniformly in e and x. In other
words, je0j � k1; jeej � k2, and jeexj � k3, where k1, k2, and k3 are
some positive constants independent of � and x. The contribution
from the ee term can be ignored because it is multiplied by a small
number e. The term eex becomes significant at high frequencies
when its coefficient ex is not small. Let us start with analyzing
the e0 term. By ignoring OðeÞ terms, A�1

g can be approximated by
A�1

22 and the term �A12A�1
g is replaced by �H. Then Hc0 cancels

out the term �A12A�1
g c0, resulting in

e0ðtÞ ¼ ðB1 þ A12WÞyr þ A0 uþ B0Ac
�A0

A2
0 þ x2

sinðxtÞ
��

� x
A2

0 þ x2
cosðxtÞ

��
� A12A�1

g BgAc sinðxtÞ þ A12w

(30)

B1¼ 1 and W can be chosen such that A12W¼�1 and the first
term is eliminated. This is always possible because A12¼�C is
rank 1 and it is a row vector with all of its elements zeros except
the element representing the output of the linear plant. We can
also show that �A12A�1

g Bg ¼ 1� HB2 ¼ B0 and simplify the
equation by combining sine terms together, which produces
B0Acðx2=ðA2

0 þ x2ÞÞ sinðxtÞ. Bg is approximated by B2þA22W
and multiplied by �A12A�1

22 to get 1�H B2 and then replaced in
Eq. (30). Then, e0 (t) becomes

e0ðtÞ ¼ A0uþ B0

x2

A2
0 þ x2

Ac sinðxtÞ þ A12w (31)

It is noted that for a sufficiently high frequency ðjA0j � x
� 1=eÞ; ðx2=A2

0 þ x2Þ becomes constant and almost independent
on frequency. The exeex term is

exeexðtÞ ¼ A12½A�1
g eW � eA�2

g Bg�xAc cosðxtÞ (32)

By replacing A12½A�1
g � by H in Eq. (32), we have

exeexðtÞ ¼ eðHW � HA�1
g BgÞxAc cosðxtÞ

¼ eðHW � HA�1
22 ðB2 þ A22WÞÞxAc cosðxtÞ

¼ �eðHA�1
22 B2ÞxAc cosðxtÞ

(33)

By ignoring eee and Oðe2Þ in Eq. (29) and substituting e0 from
Eq. (31) and exeex from Eq. (33) into Eq. (29), we obtain an
approximate expression for the error during each segment i for a
sufficiently high frequency ðjA0j � x� 1=eÞ

eðtÞ ¼ A0uþ B0Ac
x2

A2
0 þ x2

sinðxtÞ

� eðHA�1
22 B2ÞxAc cosðxtÞ þ A12w (34)

In summary, the bound on the tracking error is composed of
two components. The decaying component, which is represented
by A0uþ A12w, has its peak at the beginning of each segment and
its contribution can be reduced by the choice of control gains. The
nondecaying component has the following characteristics. At a
very low frequency ðx� jA0jÞ, the error is proportional to the
frequency. This is due to the sine term of Eq. (34). Then, by
increasing the frequency, we reach a range where the error
becomes almost constant with a value that depends on the system
parameters and uncertainties, B0Ac of Eq. (34). Then, it starts to
increase linearly with the frequency again when ex of the third
term of Eq. (34) becomes large enough to contribute to the total
amount of the error. This is true as long as the Oðe2Þ approxima-
tion is valid.

3.4 Bound on All Segments. The error expression (34) is
valid for each segment. Let us again use the subscript i to denote
each segment. By taking the absolute value of e and using the
triangular inequality, we obtain

jeij � jA0iuij þ jB0iAcj þ jeðHiA
�1
22;iB2;iÞjxAc þ jA12wij (35)

The upper bound jejmax of the error for all segments can be deter-
mined by studying when the highest value of each term in
Eq. (35) occurs. Let us start with the second term jB0ij. Note

B0i ¼ 1� HiB2 ¼ 1� A12A�1
22 B2 (36)

Then substituting the matrices A12, A�1
22 , and B2 from Eq. (9) into

Eq. (36), we get

B0i ¼ 1� C A� kp
mi þ Dmi

mi
BC

� ��1

B
mi þ Dmi

mi
ðgþ kpÞ (37)

Using the matrix inversion lemma, we simplify C½A
� kpððmi þ Dmi

Þ=miÞBC��1B to

C A� kp
mi þ Dmi

mi
BC

� ��1

B ¼ �mih

mi þ kpðmi þ Dmi
Þh (38)

Then, we insert Eq. (38) into Eq. (37) to get

B0i ¼
mið1� ghÞ � Dmi

gh

mi þ kpðmi þ Dmi
Þh (39)

This expression appears as the coefficient of the driving term of
Eq. (11). By taking the feedforward gain g¼ 1/h, we get
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B0i ¼
�Dmi

mi þ kpðmi þ Dmi
Þh (40)

Let us denote the bound on B0i By B0,max for all segments. This is
obtained by substituting the largest jDmjmax in the numerator and
the smallest mmin in the denominator of Eq. (39)

jB0jmax <
jDmjmax

mmin þ kpðmminÞh
(41)

The bound jwjmax on all segments is derived in Appendix C. The
upper bound ðHA�1

22 B2Þmax on the third term of Eq. (35) is given in
Appendix D. We find that this high-frequency term is nearly inde-
pendent of m and Dm for the case jDmj < m. In other words, this
term does not change much from one segment to another. More
details of derivations can be found in Ref. [32].

We conclude that the upper bound of the error can be deter-
mined by substituting mi by mmax and Dmi

by jDmjmax in the
numerator and mi by mmin in the denominator. Applying this to
jA0ij we obtain jA0jmax which replaces A0i for the upper-bound on
the error

jejmax � jA0jmaxjujmax þ jB0jmaxAc þ j � eðHA�1
22 B2ÞmaxjxAc

þ jA12wjmax (42)

3.5 The Case of Periodic References. The earlier analysis
for the case of a sinusoidal reference can be extended to the case
of a general periodic reference. We have found from the solutions
of the slow and fast variables in the case of a sinusoidal reference
that the steady-state solution contains two parts. One has a decay-
ing form and is dependent on all previous segments of the hystere-
sis loop. The other is only dependent on the current segment and
is obtained by solving an integral equation as in the conventional
linear system. It is easy to show that a similar procedure can be
applied to any periodic reference. For instance

n0ðtÞ ¼ /i þ
Hic0i
A0i
þ
ðt

ti

eA0iðt�sÞB0iyrðsÞds (43)

where /i is given by

/i ¼
eA0iðt�tiÞ

1�M
eA0;iþn�1Diþn�1 � � � eA0;iþ1Diþ1

Hic0i
A0i
�

Hiþ1c0iþ1

A0;iþ1

� ���

þ eA0i tiþ1

ðtiþ1

ti

e�A0isB0iyrðsÞds

�
þ � � �

þ eA0;iþn�1Diþn�1
Hiþn�2c0iþn�2

A0;iþn�2

�
Hiþn�1c0iþn�1

A0;iþn�1

� ��

þ eA0;iþn�2tiþn�1

ðtiþn�1

tiþn�2

e�A0;iþn�2sB0;iþn�2yrðsÞds

�

þ
Hiþn�1c0iþn�1

A0;iþn�1

� Hic0i
A0i

� ��

þ eA0;iþn�1tiþn

ðtiþn

tiþn�1

e�A0;iþn�1sB0;iþn�1yrds

��
(44)

and M is defined as

M ¼ eA0;iþn�1Diþn�1 � � � eA0;iþ1Diþ1 eA0;iDi (45)

and Di ¼ tiþ1 � ti. The fast variable g is derived for any periodic
reference in Eq. (C5) in Appendix C. Then, for a given periodic
input yr(t) we solve the integration of Eq. (43) and substitute n
and g in Eq. (27) to obtain the expression of the tracking error.

Since any periodic signal is bounded by a constant K, jyrj � K,
an upper bound on /i can be obtained by replacing yr by K in
Eq. (44) to get

j/ij �
eA0iðt�tiÞ

1�M
M

B0;iK

A0;i

����
����þ eA0;iþn�1Diþn�1 � � � eA0;iþ1Diþ1

�
Hic0i
A0i
�

Hiþ1c0iþ1

A0;iþ1

����
����þ B0iK

A0i

����
����þ B0;iþ1K

A0;iþ1

����
����

� �
þ � � �

þ eA0;iþn�1Diþn�1
Hiþn�2c0iþn�2

A0;iþn�2

�
Hiþn�1c0iþn�1

A0;iþn�1

����
����

�

þ B0;iþn�2K

A0;iþn�2

����
����þ B0;iþn�1K

A0;iþn�1

����
����
�

þ
Hiþn�1c0iþn�1

A0;iþn�1

� Hic0i
A0i

����
����þ B0;iþn�1K

A0;iþn�1

����
����
�

(46)

Although the bound on j/ij looks different from the one obtained
in the case of a sinusoidal reference, they both can be made small
by increasing the value of jA0ij. However, in the case of a sinusoi-
dal reference we have the full solution with the coefficients
A0i=ðA2

0i þ x2Þ or x=ðA2
0i þ x2Þ appearing instead of 1=A0i, which

shows that this bound is smaller in high frequencies, x > jA0ij.
We should note that increasing the value of jA0j reduces the value
of juj, but this does not help much with the tracking error because
we multiply u by A0 when the error is calculated.

4 Simulation and Experimental Results

The simulation is based on the model and parameters identified
experimentally for a commercial nanopositioner. Details of the
experiments are provided in Sec. 4.2. The linear dynamics are
fitted experimentally with a second-order system with a natural
frequency of 2086 Hz, which corresponds to e ¼ 7:63� 10�5.
The hysteresis is modeled with a PI operator with 5 play operators
with thresholds r¼ [0, 0.63, 1.27, 2.54, 4.45]T and the vector of
weights for the operator is wT¼ [5.88, 1.58, 0.47, 0.98, 0.4].
When we apply a periodic reference signal (with single maximum
and minimum in each period) with amplitude 50 lm, we obtain a
loop of five segments in the ascending side and similarly in the de-
scending side at steady state. The slopes of the ascending side of
the loop are (m1¼ 0.67, m2¼ 0.85, m3¼ 0.9, m4¼ 1.01,
m5¼ 1.057). The slopes of the descending side of the loop are
(m6¼ 0.67, m7¼ 0.85, m8¼ 0.9, m9¼ 1.01, m10¼ 1.057). The
intercepts are ðc1 ¼ �6:8; c2 ¼ �3:31; c3 ¼ �2:58; c4 ¼ �2:8;
c5 ¼ �2:9; c6 ¼ 6:8; c7 ¼ 3:31; c8 ¼ 2:58; c9 ¼ 2:8; c10 ¼ 2:9Þ.
The weight vector of the operator is perturbed for the simulation
purpose by adding 0.15 for each element of w. This perturbation
changes the slopes of the loop and is equivalent to uncertainties as
ðDm1 ¼ 0:016;Dm2 ¼ 0:03;Dm3 ¼ 0:05; Dm4 ¼ 0:07; Dm5 ¼ 0:08;
Dm6 ¼ 0:016;Dm7 ¼ 0:03; Dm8 ¼ 0:05;Dm9 ¼ 0:07;Dm10 ¼ 0:08Þ
and ðDc1 ¼ �1:0313; Dc2 ¼ �0:7; Dc3 ¼ �0:46; Dc4 ¼ �0:413;
Dc5 ¼ �0:7; Dc6 ¼ 1:0313; Dc7 ¼ 0:7; Dc8 ¼ 0:46; Dc9 ¼ 0:413;
Dc10 ¼ 0:7Þ. Note that all simulation and experimental results are
presented for the case when the feedforward component is added
if we do not mention otherwise. We only present the case without
feedforward only when we want to compare the two cases.

4.1 Simulation Results Versus Analytical Results. Figures 5
and 6 show the simulation for a reference consisting of two sinu-
soids and a sawtooth reference signal, respectively, where the hys-
teresis uncertainty is included. The uncertainties are introduced by
perturbing the weights of play operators, as explained earlier. We
observe that, in each case, the tracking error is also periodic with
the same period as the reference. We also observe that the track-
ing error has a similar waveform as the reference input but it is
distorted when the slope changes from one segment to another.
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The change in slopes is more obvious in the case of the triangular
waveform. Figure 7 depicts the tracking errors for the same trian-
gular input reference of 5 Hz with and without feedforward term,
where perfect hysteresis inversion is assumed. From these results
we confirm that feedforward-augmented feedback outperforms
feedback alone. Further simulation results involving the sawtooth
reference are depicted in Fig. 8, where we compare the tracking
errors when uncertainty are present and absent in the hysteresis
model, respectively. From Fig. 8, the influence of the model
uncertainty on the tracking error is evident. The size of the error
for each segment is dependent on the segment slope and may be
large or small depending on the value of m at that segment.

In Table 1, we compare the maximum amplitudes of the track-
ing error, when the reference signal is a sinusoid with amplitude
of 50 lm and its range of frequencies is 1–1000 Hz. Here, we
adopt the control scheme with the feedforward term and consider
the model uncertainty as discussed earlier. The gains for the
proportional-integral controller are chosen as ki¼ 50 and kp¼ 3.
Moreover, a comparison between simulation and analytical results
is provided. These results are also plotted in Fig. 9 for a better
illustration. The identified second-order plant is used in the calcu-
lation of the analytic results. The value of u is provided in Table
1, which shows that it has little effect on calculating the error
especially at high frequencies. The maximum contribution of w to
the error, which is calculated but not included in Table 1, is
jA12wjmax ¼ 0:0948. This term is almost constant when the fre-
quency is increased. From Table 1 and Fig. 9, we notice the fol-
lowing. First, for this particular example, the / term is small and
can be ignored for all frequencies of 10 Hz or higher. Second, the

error obtained in simulation increases with the frequency at low
frequencies, then it remains almost constant for the mid-frequency
range, and then it starts to increase again with frequency. This is
consistent with the error bound we calculated in Sec. 3.4. Third,
the calculated error bound is close to the error from the simula-
tion. This bound is good up to 200 Hz, because we use Oðe2Þ
approximation which is valid for x� 1=e. It is clear from these
results that when frequencies become closer to the closed-loop
system bandwidth, we should consider approximations better than
Oðe2Þ approximation.

In Fig. 10, we further study the effect of PI controller gains, ki

and kp, on the tracking performance, where three new sets of PI

Fig. 5 Simulations results on tracking a periodic reference
composed of two sinusoidal signals of 25 Hz and 50 Hz

Fig. 6 Simulation results on tracking a sawtooth reference of
5 Hz

Fig. 7 Simulation results on tracking a sawtooth reference
with and without feedforward compensation

Fig. 8 Simulation results on tracking a sawtooth reference
when uncertainty is present/absent in the hysteresis model

Table 1 Simulation and analytical results on maximum track-
ing errors in lm for a system involving a perturbed PI-operator
and a second-order plant

Frequency Simulation Max jeðtÞj Analytical Max jeðtÞj u Max juj

1 Hz 0.177 0.26 0.019
10 Hz 0.375 0.57 0.009
20 Hz 0.38 0.58 0.004
50 Hz 0.39 0.586 0.001
80 Hz 0.41 0.592 3� 10�4

100 Hz 0.42 0.597 5� 10�5

150 Hz 0.475 0.61 2.6� 10�4

200 Hz 0.53 0.63 4.2� 10�4

400 Hz 0.82 0.77 6.9� 10�4

600 Hz 1.2 0.95 7.3� 10�4

800 Hz 1.66 1.16 7.7� 10�4

1000 Hz 2.2 1.38 7.9� 10�4
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gains are used in simulations. From our analysis we found that
A0 ’ ðki=kpÞ determines the shape of the tracking-error frequency
response. As shown in the figure, two plots with ki=kp ¼ 20 have
similar frequency responses, with only a shift between them
where the plot with higher ki and kp has smaller error. We also
note that by increasing ki only, a reduction occurs in the error in
the low-frequency range. At high frequencies, we could reduce
the error by increasing the gain kp; however, that is constrained by
closed-loop stability.

4.2 Experimental Results. A commercial piezo-actuated
nanopositioner (Nano-OP65 with Nano Drive controller, Mad
City Labs Inc.,) is used in the experiments. Displacement feed-
back for the positioner is provided by a built-in capacitive sensor.
A dSPACE system (DS1104, dSPACE Inc.,) is adopted to
interface between the voltage input/displacement output of the
nanopositioner with a PC. The nanopositioner is mounted on a
vibration-isolation table (LW3048B-OPT, Newport) to minimize
the impact of ambient vibrations. In the experiments, an important
safety mechanism implemented is a rate limiter, to protect the
nanopositioner from sudden changes of the applied voltage input.

In experiments, sinusoidal signals are first used as reference tra-
jectories in order to examine how the tracking error depends on
the frequency. Figure 11 shows the tracking performance for a
35 Hz sinusoidal reference with amplitude of 20 lm when the
feedforward is used. Figure 12 compares the tracking errors for
references of different frequencies, 10 Hz, 35 Hz, and 50 Hz. For
the best results, the control gains are chosen as ki¼ 2000 and

kp¼ 1.5. The maximum tracking error is about 0.05 lm and
slightly increases through the range from 10 Hz to 35 Hz. We see
a larger increase of about 0.08 lm at 50 Hz. We also compare the
experimental results with analysis and simulations for the range
of frequencies from 1 to 200 Hz. The results in Fig. 13 show a
similar qualitative behavior of the tracking error for the analytical,

Fig. 9 Comparison of simulation and analytical results on the
tracking error as the reference frequency is varied

Fig. 10 Comparison of the amplitude of tracking error for
different control gains as the reference frequency is varied

Fig. 11 Experimental results on the tracking performance of a
35 Hz sinusoidal reference

Fig. 12 Experimental results on the tracking error for sinusoi-
dal references of different frequencies

Fig. 13 Comparison of simulation, analytical, and experimen-
tal results on the tracking error as the reference frequency is
varied
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simulation, and experimental results. It is found that the experi-
mental error is very close to the analytical bound at relatively low
frequencies (lower than 100 Hz). But at higher frequencies, the
experimental error is larger than and deviates from the bound.
This is attributed to the impact of the rate limiter implemented in
experiments but not included in the analysis; in particular, the rate
limiter modifies the control input to meet the rate constraint,
which distorts the original control signal when tracking relatively
high-frequency references.

Experiments have also been conducted to examine the perform-
ance of tracking triangular and multisine reference signals, the
results of which are shown in Figs. 14 and 15, respectively, where

the PI control with feedforward is used. Figure 16 shows a com-
parison of the tracking errors when the feedforward is present or
absent for the triangular and multisine inputs. It can be seen that,
for both references, the PI controller with feedforward results in
significantly smaller tracking error. We have further conducted
comparison of the two PI controllers for sinusoidal references
across the frequency range of 1–200 Hz. These results are
reported in Table 2 and visualized in Fig. 17, which again confirm
the effectiveness of including the feedforward component.

5 Conclusion

In this paper, we analyzed a closed-loop system involving hys-
teresis inversion, proportional-integral feedback control, and a
constant-gain feedforward element. Some researchers in the litera-
ture use optimization [21], neural networks [33], or trial-and-error
to determine both ki and kp. Depending on the uncertainties on the
operator parameters, in this paper we found some criteria for
determining the choice of those gains. For instance, the ratio ki/kp

should be high to guarantee good performance, which agrees with
the results in Refs. [21,33]. Singular perturbation analysis was
used in order to separate fast dynamics of the plant from slow dy-
namics of the controller. The analysis quantifies the effect of the
reference frequency on the tracking performance, which is impor-
tant in applications such as high-speed nanopositioning. Simula-
tion results were compared with the analytical expressions. The
agreement between the simulation and analytical results provides
support for the proposed analysis approach. Experimental results
further strengthen the validity of the analysis. We note that, while
simulation could provide a more accurate answer than the analyti-
cal approximation for a specific set of system parameters and a
particular reference input, it does not provide direct insight into
how the parameters determine the behavior of the tracking error,
and consequently, has limited use in guiding the system and con-
trol design. On the contrary, the analysis presented in this paper
offers general insight into the system behavior and guidance on
controller design without running excessive simulations.

Fig. 14 Experimental results on the tracking of a triangular
reference

Fig. 15 Experimental results on the tracking of a multisine ref-
erence with frequencies of 15 Hz and 30 Hz

Fig. 16 Comparison of tracking errors with and without the
feedforward component for (a) a triangular reference and (b)
mutisine reference

Table 2 Experimental results on maximum tracking errors in
lm with and without feedforward compensation

Frequency With feedforward Max jeðtÞj Without feedforward Max jeðtÞj

1 Hz 0.02 0.025
10 Hz 0.04 0.2
20 Hz 0.045 0.38
50 Hz 0.08 0.8
80 Hz 0.11 1.4
100 Hz 0.12 1.7
150 Hz 0.32 2.2
200 Hz 0.6 3.0

Fig. 17 Comparison of tracking error with and without feedfor-
ward component for a sinusoidal reference
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The presented singular perturbation analysis hinges on the
assumption that the plant dynamics is much faster than the operat-
ing frequency range. If the closed-loop system operates close to
the bandwidth of the plant dynamics, the accuracy of the singular
perturbation analysis will be comprised. In practice, however, the
gains of the PI controller are limited by stability concerns and can-
not be increased freely to achieve an arbitrarily high bandwidth.
The concern of device safety also places limits on the operating
frequency; for example, the manufacturer of the nanopositioner
used in this paper cautions against operating the device higher
than 200 Hz (about one-tenth of the first-mode resonant fre-
quency), to avoid excessive vibration and subsequent damage to
the device. Therefore, the assumption of the plant dynamics being
much faster than the controller states is valid for most operational
scenarios.

The proportional-integral control was chosen in this paper due
to its wide use and simplicity, and the latter facilitates the presen-
tation of the proposed singular perturbation analysis. In future
work, we will extend the current analysis to other higher-order
controllers (e.g., the sliding mode controller) and more compli-
cated systems. We will also quantify the impact of the parameters
and their uncertainties for several important hysteresis operators,
such as the (modified) PI operator and Preisach-Kransnoselskii-
Porkovskii (PKP) operator, on the tracking performance.

Appendix A: Solution of n0

In order to see how the solution develops and the error propa-
gates from one hysteresis segment to another, we solve the equa-
tions for each segment by dividing the time into intervals that
correspond to the time periods of the hysteresis staying in differ-
ent segments. The solution of Eq. (21) for ti � t < tiþ1 is

n0ðtÞ ¼ eA0iðt�tiÞn0ðtiÞ þ
ðt

ti

eA0iðt�sÞðB0iAc sinðxsÞ � Hic
0
iÞds

(A1)

which can be readily derived as

n0ðtÞ ¼ eA0iðt�tiÞn0ðtiÞ þ
Hic0i
A0i
½1� eA0iðt�tiÞ�

� eA0iðt�tiÞB0iAc
�A0i

A2
0i þ x2

sinðxtiÞ �
x

A2
0i þ x2

cosðxtiÞ
� �

þ B0iAc
�A0i

A2
0i þ x2

sinðxtÞ � x
A2

0i þ x2
cosðxtÞ

� �
(A2)

With the assumption that the solution is periodic, we solve n0 by
starting at one segment i and continue solving for all n segments
until we return back to segment i after a period T. At time t¼ tiþ1,
Eq. (A2) becomes

n0ðtiþ1Þ ¼ eA0iðtiþ1�tiÞn0ðtiÞ þ
Hic0i
A0i
½1� eA0iðtiþ1�tiÞ�

� eA0iðtiþ1�tiÞB0iAc

�
�A0i

A2
0i þ x2

sinðxtiÞ

� x
A2

0i þ x2
cosðxtiÞ

�
þ B0iAc

�
�A0i

A2
0i þ x2

sinðxtiþ1Þ

� x
A2

0i þ x2
cosðxtiþ1Þ

�
(A3)

It is straightforward to use recursion to obtain n0ðtnþiÞ. Because
the solution is periodic, we can set up the equation n0ðtnþiÞ
¼ n0ðtiÞ to solve for n0ðtiÞ. More details can be found in Ref. [32].
Then by inserting n0ðtiÞ, we obtain the solution of n0ðtÞ at the
steady state as

n0ðtÞ ¼ uþ Hic0i
A0i
þ B0iAc

�A0i

A2
0i þ x2

sinðxtÞ � x

A2
0i þ x2

cosðxtÞ
� �

(A4)

where u is the periodic decaying term in the form of Eq. (24), the
complete expression of which can be found in Ref. [32].

Appendix B: Solution for n1

To solve for n1, insert n0 from Eq. (A4) into Eq. (22)

_n1 ¼ A0in1 � HLA0i

�
u� Hic0i

A0i
þ B0iAc

�
A0i

A2
0i þ x2

sinðxtÞ

� x
A2

0i þ x2
cosðxtÞ

��
þ ½�HLA12W � B1HL�Ac sinðxtÞ

þ HWAcx cosðxtÞ (B1)

By combining similar terms, we can rewrite Eq. (B1) as:

_n1 ¼ A0n1 þ a1 sinðxtÞ þ a2 cosðxtÞ þ a3x cosðxtÞ þ Q (B2)

where Q is a constant and a1, a2, and a3 are bounded uniformly in
x. We notice form (B2) that _n1 has the same form as _n0 of
Eq. (21) except with an extra term which comes from _yr and is
proportional to the frequency x. Since n1 in the solution of the
error will be multiplied by e, it matters in determining the bound
only if any terms of its solution can be approximated by a quantity
that is proportional to x. However, through similar derivation as
for n0, we will have a solution to n1 with extra terms of sine and
cosine terms multiplied by x. These terms appear as follows:

a3x
x

A2
0i þ x2

sinðxtÞ þ A0i

A2
0i þ x2

cosðxtÞ
� �

which are bounded by a constant independent of the frequency
and hence belong to the ee terms of Eq. (29).

Appendix C: Fast Variable Analysis

Now we need to express the fast variable g using its model (19)
by finding O(1) and OðeÞ terms.

Let us simplify Eq. (19) as

e _g ¼ Agi
gþ Bgi

yr þ c0i � eW _yr (C1)

where Ag ¼ ðA22 þ eLA12Þ;Bg ¼ B2 þ eLB1 þ ðA22 þ eLA12ÞWÞ.
The solution of (C1) for ti � t < tiþ1 is

gðtÞ ¼ eAgi
ðt�tiÞ=egðtiÞ þ

1

e

ðt

ti

eAgi
ðt�sÞ=e½Bgi

yr þ c0i � eW _yrðsÞ�ds

¼ eAgi
ðt�tiÞ=egðtiÞ � A�1

gi
eAgi
ðt�sÞ=ejttic

0
i

þ 1

e

ðt

ti

eAgi
ðt�sÞ=eBgi

yrðsÞds�
ðt

ti

eAgi
ðt�sÞ=eW _yrðsÞds (C2)

The details of solving Eq. (C2) are given in Ref. [32]. We arrive
at

gðtÞ ¼ eAgi
ðt�tiÞ=e gðtiÞ þ A�1

gi
c0i þ A�1

gi
Bgi

yrðtiÞ
�

þ eA�2
gi

Bgi
_yrðtiÞ � eA�1

gi
W _yrðtiÞ � A�1

gi
c0i

	
� A�1

gi
Bgi

yrðtÞ

þ eA�1
gi

W _yrðtÞ � eA�2
gi

Bgi
_yrðtÞ þ Oðe2Þ (C3)
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To obtain the initial value gðtiÞ, we do not need to solve (C3) by
getting the accumulation around one cycle because we assume e is
small and the decaying within each segments makes the transients
the order of OðeÞ. Thus, the initial value of the current segment,
i¼ iþ n, only depends on the driving terms of the previous seg-
ment, iþ n – 1.

gðtiÞ ¼ eAgiþn�1
ðti�tiþn�1Þ=e gðtiþn�1Þ þ A�1

giþn�1
c0iþn�1

�
þ A�1

giþn�1
Bgiþn�1

yrðtiþn�1Þ þ eA�2
giþn�1

Bgiþn�1
_yrðtiþn�1Þ

�eA�1
giþn�1

W _yrðtiþn�1Þ
	
� A�1

giþn�1
c0iþn�1

� A�1
giþn�1

Bgiþn�1
yrðtiÞ � eA�2

giþn�1
Bgiþn�1

_yrðtiÞ

þ eA�1
giþn�1

W _yrðtiÞ þ Oðe2Þ (C4)

Now by ignoring the term in the parenthesis in Eq. (C4) and sub-
stituting the remaining term of gðtiÞ into (C3), we obtain

gðtÞ ¼ w� A�1
gi

c0i � A�1
gi

Bgi
yrðtÞ þ eA�1

gi
W _yrðtÞ

� eA�2
gi

Bgi
_yrðtÞ þ Oðe2Þ (C5)

where

w ¼ eAgi
ðt�tiÞ=e �A�1

giþn�1
c0iþn�1 � A�1

giþn�1
Bgiþn�1

yrðtiÞ
�

þ eA�1
giþn�1

W _yrðtiÞ � eA�2
giþn�1

Bgiþn�1
_yrðtiÞ þ A�1

gi
c0i

þA�1
gi

Bgi
yrðtiÞ � eA�1

gi
W _yrðtiÞ þ eA�2

gi
Bgi

_yðtiÞ
	

(C6)

The term w is bounded for the following reasons. First, the highest
value happens at the beginning of each segment i, t¼ ti, which
makes the exponential term equal to one. Second, with the
assumption jDmj < m, the terms which are functions of yr or _yr

cancel out because every term has a similar term with opposite
sign and close to it in value. The contribution of the remaining
terms, A�1

gi
c0i � A�1

giþn�1
c0iþn�1, to the tracking error is calculated by

multiplying it by A12. This results in Hic0i � Hiþn�1c0iþn�1. By
inserting the matrix expressions in Hic0i, we obtain

Hic
0
i ¼ �C A� kp

mi þ Dmi

mi
BC

� ��1

B
miDci

� ciDmi

mi

� �

¼ �hðmiDci
� ciDmi

Þ
1þ kpðmi þ Dmi

Þh (C7)

Using yr ¼ Ac sinðxtÞ in Eq. (26) and including the subscript i for
the parameters, we have the expression of g for the time from ti to
tiþ1 as

g ¼ w� A�1
g;i Bg;iAc sinðxtÞ � A�1

g;i c
0

þ eðA�1
g;i W � A�2

g;i Bg;iÞAcx cosðxtÞ þ Oðe2Þ (C8)

Appendix D: Calculating the Bound on the

Frequency-Dependent Term of the Error

To determine the upper bound on the third term

eðHiA
�1
22;iB2;iÞxAc of Eq. (35), we replace Hi by A12A�1

22;i and B2,i

by Bb2, where b2 ¼ ððmi þ Dmi
Þ=miÞðgþ kpÞ. We also replace

A�1
22;i by A� Bb1C, where b1 ¼ ððmi þ Dmi

Þ=miÞkp and simplify

the expressions

HiA
�1
22;iB2;i ¼ A12A�2

22;iB2;i

¼ � CA�2Bþ CA�2ðBCÞ2A�2B
b1

1þ hb1

� �2
"

þ 2CA�2B
b1

1þ hb1

� �
CA�1B

�
b2 (D1)

Because C is a row vector and B is a column vector, the multipli-
cations of all the matrices in (D1) are scalar quantities. Let us
denote them by q1, q2, and q3 and replace b1 and b2 by their
expressions.

HiA
�1
22;iB2;i ¼ � q1 þ q2

ðmi þ Dmi
Þkp

mi þ kpðmi þ Dmi
Þh

� �2
"

þ q3

ðmi þ Dmi
Þkp

mi þ kpðmi þ Dmi
Þh

� ��
mi þ Dmi

mi
ðgþ kpÞ

(D2)

Let us denote the bound on HiA
�1
22;iB2;i By ðHA�1

22 B2Þmax for all
segments. This is obtained by substituting the largest slope mmax

and uncertainty jDmjmax in the numerator and the smallest mmin in
the denominator of Eq. (D2)

ðHA�1
22 B2Þmax ¼ �

mmax þ jDmjmax

mmin

ðgþ kpÞ

þ
�

q1q2

�
ðmmax þ jDmjmaxÞkp

mminð1þ kphÞ

�2

þ q3

ðmmax þ jDmjmaxÞkp

mminð1þ kphÞ

� ��
(D3)

We notice from Eq. (D2), in the case when jDmi
j � mi such that

we can ignore jDmi
j, Eq. (D2) becomes independent of the slopes

and uncertainties. In this case, the term of HiA
�1
22;iB2;i becomes

constant through all the segments.
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