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a b s t r a c t

In this paper we present a dynamic model for a tail-actuated robotic fish by merging rigid-body dynamics
with Lighthill’s large-amplitude elongated-body theory. The model is validated with extensive experi-
ments conducted on a robotic fish prototype. We investigate the role of incorporating the body motion
in evaluating the tail-generated hydrodynamic force, and show that ignoring the body motion (as often
done in the literature) results in significant overestimate of the thrust force and robot speed. By exploit-
ing the strong correlation between the angle of attack and the tail-beat bias, a computationally efficient
approach is further proposed to adapt the drag coefficients of the robotic fish, and its effectiveness is sup-
ported by experimental results.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With five hundred million years of evolution, fish and other
aquatic animals are endowed with a variety of morphological
and structural features that enable them to move through water
with speed, efficiency, and agility [1,2]. The remarkable feats in
biological swimming have stimulated extensive theoretical [3–5],
experimental [6–10], and computational [11,12] research by biolo-
gists, mathematicians, and engineers, in an effort to understand
and mimic locomotion, maneuvering, and sensing mechanisms
adopted by aquatic animals.

Over the past two decades, there has also been significant inter-
est in developing underwater robots that propel and maneuver
themselves like real fish do [13–34]. Often termed robotic fish,
these robots provide an experimental platform for studying fish
swimming, and hold strong promise for a number of underwater
applications such as environmental monitoring [35]. Instead of
using propellers, robotic fish accomplish swimming by deforming
the body and/or fin-like appendages, mostly functioning as caudal
fins and sometimes as pectoral fins. Body deformation and fin
movements are typically achieved with motors. On the other hand,
advances in smart materials have been explored to realize noise-
less and compact actuation of robotic fish [28,29,36–43].

Carangiform locomotion, where movement is mainly restricted
to the last third of the body length, is one of the most popular
swimming modes observed in fish due to its sound balance be-
tween speed and maneuverability [7,44,45]. For this reason,
carangiform has also been a prominent locomotion mode for re-
ported robotic fish prototypes. In addition, this mode features a rel-
atively big and rigid body that is ideal for housing electronics and
sensors.

Dynamic modeling [5,20,24,28,29,31,46–53], trajectory plan-
ning, and control [18,24,54–59] of robotic fish have received exten-
sive attention. A major challenge in the modeling of robotic fish
lies in properly capturing the fluid–structure interactions and the
resulting force and moment on the robot. While computational
fluid dynamics (CFD) modeling [11,12,60,61] can provide high-
fidelity representation of such interactions, it is not amenable to
control design. A few alternatives are available. The first is to apply
quasi-steady lift and drag models from airfoil theory to the body
and fin surfaces of underwater robots [24,46,49,50]. Another ap-
proach is to assume perfect fluids (irrotational potential flow)
and exploit the symmetry to obtain a finite-dimensional model
[51,58], but some coefficients of such models may have to be ob-
tained numerically [51]. Effects of vorticity can be accommodated
by assuming, for example, vortices periodically shed from the tail
fin [5,48].

The third approach to the evaluation of hydrodynamic forces is
to use Lighthill’s elongated-body theory [3]. This theory captures
the reactive force between body and fluids with an added-mass
effect, and it approximates the effect of wake dynamics by consid-
ering the momentum balance in a half-space control volume,
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which contains the deforming body and is bounded by a vertical
plane attached to the trailing edge. Consequently, the resulting
force and moment only depend on the configuration of the (ro-
botic) fish. Lighthill’s model strikes a sound balance between fidel-
ity and simplicity, and its effectiveness in robotic fish modeling has
been demonstrated in the prior work of one of the coauthors
[28,62].

The contributions of this work are twofold. First, we present a
dynamic model for a tail-actuated robotic fish by combining ri-
gid-body dynamics with Lighthill’s large-amplitude elongated-
body theory, and validate the model with extensive experiments
conducted on a robotic fish prototype. Specifically, we consider ri-
gid-body dynamics for the robot body and adopt Lighthill’s theory
to capture the tail-actuation effect. To our best knowledge, such an
approach has not been reported in the literature. Our prior work
[28,62] involving Lighthill’s theory was focused on steady-state
motions, where the dynamics of the robot was not considered.
Chen et al. applied a similar approach to evaluate the thrust pro-
duced by undulatory body motion of a robot tuna [63], but the
analysis therein dealt with only point-mass dynamics for the robot,
where forward-swimming was studied via simulation. Note that ri-
gid body dynamics allows one to capture both body translation and
rotation, and is significantly more complex and relevant than
point-mass dynamics in terms of capturing the true behavior of
the robot. Using the proposed model, we investigate the role of
incorporating the body motion in evaluating the tail-produced
hydrodynamic force, and show that ignoring the body motion (as
often done in the literature [28,29,64]) results in significant overes-
timate of the thrust force and robot speed.

The second contribution of this work is a computationally effi-
cient approach to the adaptation of drag coefficients for robotic
fish. These coefficients play a significant role in the modeling of
underwater vehicles and are often functions of the angle of attack
[65,66]. For a carangiform robotic fish, however, its body and/or
fins constantly undergo large deformation or rigid-body motion,
and consequently, the angle of attack oscillates due to the body re-
coil. For these reasons, modeling variable drag coefficients is chal-
lenging, and existing work on robotic fish modeling has
predominantly adopted constant drag coefficients [29,49,67]. In
this paper, we propose a novel approach to adapting the drag coef-
ficients. For ease of presentation, we focus on a robotic fish actu-
ated by an oscillating tail, where the tail beat bias, frequency,
and amplitude are the three kinematic parameters one can change.
We first study the effect of each parameter on the average of the
angle of attack, and find that the bias plays a much more significant
role than the other two. We then propose determining the drag
coefficients as simple polynomial functions of the tail beat bias.
The effectiveness of the adaptation scheme is demonstrated
through the comparison of simulation and experimental results,
for both steady turning and transient dynamics in forward
swimming.

The remainder of the paper is organized as follows. First, the dy-
namic model is described in Section 2. Experimental validation of
the model is presented in Section 3. The drag coefficient adaptation
scheme is discussed in Section 4. Finally, concluding remarks are
provided in Section 5.

2. The dynamic model for robotic fish

The robot is considered to consist of two parts, a body that does
not deform and a moving or deforming tail. The motion of the ro-
bot body is governed by rigid-body dynamics with the added-mass
effect incorporated. Lighthill’s large-amplitude elongated-body
theory is utilized to evaluate the hydrodynamic forces generated
by the actuating tail (as opposed to the whole robot). We assume
that the depth of the tail does not change abruptly along the length

direction, thus meeting the ‘‘elongated body’’ requirement [3].
Although the proposed modeling approach is applicable for a gen-
eral actuating tail, for ease of presentation, we focus on the case
where the tail is rigid and actuated at its base. As mentioned in
Section 1, one contribution of this work lies in the combination of
the two elements, rigid-body dynamics and Lighthill’s theory, for
the dynamic modeling of robotic fish. While both elements are well
known, for completeness of the paper, brief review of each is pro-
vided in Sections 2.1 and 2.2.1, respectively.

2.1. Rigid-body dynamics

Fig. 1 shows the top view of the robotic fish, consisting of a rigid
body and a tail. We follow [29] closely in describing the dynamics
of the rigid body. [X, Y, Z] denote the inertial coordinates while [x, y,
z] denote the body-fixed coordinates with unit vectors ½x̂; ŷ; ẑ�. We
denote by m̂ and n̂ the unit vectors parallel and perpendicular to
the tail, respectively. We assume that both the body and the tail
are neutrally buoyant, and that, for the body, the center of gravity
coincides with the center of geometry at point C. The velocity at C
expressed in the body-fixed coordinates ~VC ¼ ½VCx;VCy;VCz�T com-
prises surge (VCx), sway (VCy) and heave (VCz) components. In addi-
tion, the angular velocity ~x ¼ ½xx;xy;xz�T comprises roll (xx),
pitch (xy) and yaw (xz) expressed in the body-fixed coordinates.
We use a to denote the tail deflection angle with respect to the
negative x-axis, and b to denote the angle of attack, formed by
the direction of ~VC with respect to the x-axis. Finally, w denotes
the heading angle, formed by the x-axis relative to the X-axis.

The linear momentum~P and angular momentum ~H of the body
in the body-fixed coordinates are expressed as

~P ¼M � ~VC þ DT � ~x; ð1Þ
~H ¼ D � ~VC þ J � ~x; ð2Þ

where M and J are the mass and inertia matrices, respectively, and
D is the Coriolis and centripetal matrix. For a rigid body in an invis-
cid fluid, Kirchhoff’s equations of motion in the body-fixed frame
are [68,69]

_~P ¼~P � ~xþ~F; ð3Þ
_~H ¼ ~H � ~xþ~P � ~VC þ ~M; ð4Þ

where ~F ¼ ½Fx; Fy; Fz�T ; ~M ¼ ½Mx;My;Mz�T denote the external forces
and moments about the body center C, respectively, and ‘‘�’’ de-
notes the vector product. The assumption of neural buoyancy im-
plies that these forces and moments will only come from the
hydrodynamic interactions between the robot and the fluid. We fur-
ther assume that the body is symmetric with respect to the xz-plane
and the tail moves in the xy-plane. Consequently, the heave velocity
VCz, the roll rate xz, and the pitch rate xy are all equal to zero, in
which case the system has three degrees of freedom, namely, surge
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Fig. 1. Top view of the tail-actuated robotic fish undergoing planar motion.
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(VCx), sway (VCy) and yaw (xz). We further assume that the inertial
coupling between the surge, sway and yaw motions is negligible
[29], implying D = 0. Under these assumptions, following [68], (3)
and (4) can be simplified as

ðmb � X _VCx
Þ _VCx ¼ ðmb � Y _VCy

ÞVCyxz þ Fx; ð5Þ

ðmb � Y _VCy
Þ _VCy ¼ �ðmb � X _VCx

ÞVCxxz þ Fy; ð6Þ
ðJbz � N _xz Þ _xz ¼ ðY _VCy

� X _VCx
ÞVCxVCy þMz; ð7Þ

where mb is the mass of the body, and Jbz is the inertia of the body
about the z-axis. X _VCx

, Y _VCy
and N _xz are the hydrodynamic deriva-

tives that represent the effect of added mass/inertia on the body.

2.2. Evaluation of the hydrodynamic forces

To complete the model (5)–(7), we need to evaluate the hydro-
dynamic force (Fx, Fy) and moment Mz, which are due to both the
tail actuation and the interaction of the body itself with the fluid.
We first review Lighthill’s large-amplitude elongated-body theory,
and use it to evaluate the forces exerted on the tail (and transmit-
ted to the rigid body) due to tail-fluid interactions. The drag and lift
forces on the robotic fish body will then be described.

2.2.1. Lighthill’s large-amplitude elongated-body theory
Consider an elongated ‘‘body’’ moving in the XY-plane in water;

here (and throughout Section 2.2.1) the term ‘‘body’’ could mean a
live fish, a robotic fish, or in the context of our work, a flapping tail.
As illustrated in Fig. 2, a frame of reference is chosen such that the
water far from the body is at rest. The spinal column (analogy from
a live fish) of the elongated body is assumed to be inextensible and is
parameterized by s, with s = 0 denoting the anterior end of the body
and s = L denoting the posterior end. The coordinates (X(s, t), Y(s, t)),
06 s6 L, denote the trajectory of each point s on the spinal column
at time t, which could be due to the body undulation/oscillation or
the resulting translational/rotational motion of the body.

Following [3], given (X(s, t), Y(s, t)), the hydrodynamic reactive
force density at each point s < L, due to the added-mass effect, is

~f ðsÞ ¼
fXðsÞ
fY ðsÞ

� �
¼ �m

d
d t
ðv?n̂Þ; ð8Þ

and at s = L, there is a concentrated force

~FL ¼
FLX

FLY

� �
¼ �1

2
mv2

?m̂þmv?vkn̂
� �

s¼L
: ð9Þ

The two terms in (9) account for the pressure force acting on P
and the force due to convection of momentum out of V across P,
respectively, where P is the plane at s = L that is perpendicular to
m̂, and V is the half-space bounded by P that includes the fish but
excludes the wake [3]. In (8) and (9), m denotes the virtual mass
per unit length and can be approximated by 1

4 pqd2, where q is
the density of water and d is the depth of fish cross-section (in
�Z direction) at s (and thus can vary with s). As illustrated in
Fig. 2, m̂ ¼ ð@X=@s; @Y=@sÞT and n̂ ¼ ð�@Y=@s; @X=@sÞT represent

the unit vectors tangential and perpendicular to the spinal column,
respectively, and vk and v\ represent the components of the veloc-
ity ~v ¼ ð@X=@t; @Y=@tÞT at s in m̂ and n̂ directions, respectively:

vk ¼ h~v; m̂i ¼
@X
@t

@X
@s
þ @Y
@t

@Y
@s

; ð10Þ

v? ¼ h~v ; n̂i ¼ �
@X
@t

@Y
@s
þ @Y
@t

@X
@s

; ð11Þ

where h�, �i denotes the inner product of vectors. Note that the ac-
tual mass of the considered elongated-body is negligible (relative
to the virtual mass) when the width of the body cross-section is
much thinner than the depth [3]. The latter typically holds true
for the tail of a robotic fish.

2.2.2. Hydrodynamic force due to an oscillating tail
Following Lighthill’s large-amplitude elongated-body theory,

we need to know the motion of every point along the tail over time,
to evaluated the tail actuation-induced hydrodynamic force.

Refer to Fig. 1. The velocity ~VA at the body-tail joint A can be ex-
pressed as

~VA ¼ ~VC �xzcŷ; ð12Þ

where c is the distance from the body center to the joint. The veloc-
ity at each point salong the tail is

~Vs ¼ ~VC �xzcŷþ ð _aþxzÞsn̂; ð13Þ

where _a denotes the angular velocity of the tail with respect to the
body. Note here that s = 0 would represent the point A. In (13), ~Vs is
calculated incorporating the robot body motion (~VC and xz), which
is often ignored in the literature [28,29,64]. In Section 3.4, we will
discuss the role of incorporating the body motion in the appropriate
evaluation of hydrodynamic forces.

Let ~Vs? be the projection of ~Vs along the n̂ direction, i.e.,
~Vs? ¼ h~Vs; n̂in̂. Using (8), we evaluate the hydrodynamic force den-
sity at s as

~f ðsÞ ¼ �m
d~Vs?

d t
: ð14Þ

Then the hydrodynamic force on the tail due to the added-mass
effect is

~Fa ¼
Z L

0

~f ðsÞds ¼ Fam m̂þ Fan n̂; ð15Þ

where L is the length of the tail, and Fa m and Fa n are the compo-
nents of Fa along m̂ and n̂, respectively.

From (9), the concentrated force acting at the tail tip is evalu-
ated as ~Fc ¼ Fc1 m̂þ~Fc2 n̂, where

Fc1 ¼ �
1
2

mV2
L? ;

Fc2 ¼ mVL?VLk :

The total hydrodynamic force acting on the tail is then

~Fh ¼ Fhx � x̂þ Fhy � ŷ;

where

Fhx ¼ �ðFam þ Fc1Þ cos aþ ðFan þ Fc2Þ sin a; ð16Þ
Fhy ¼ �ðFam þ Fc1Þ sina� ðFan þ Fc2Þ cos a: ð17Þ

The hydrodynamic force-induced moment relative to the center
C of the robot body is

~Mh ¼
Z L

0

~rCs �~f ðsÞdsþ~rCL �~Fc; ð18Þ

where~rCs denotes the vector from the body center C to the point s
on the tail, i.e., ~rCs ¼ �ðc þ s cos aÞ x̂� ðs sinaÞ ŷ. It is clear that all

n̂Y

m̂
v

Y

0 L

v

||v

XZ

Fig. 2. Illustration of the coordinate system for the spinal column of the elongated
body (top view).
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vectors in (18) lie in the xy-plane, and thus the only non-zero com-
ponent of ~Mh is along the z-direction, which we denote as Mhz.

2.2.3. Drag and lift on the body
As shown in Fig. 1, besides the hydrodynamic force and mo-

ment transmitted from the tail, the robot body also experiences
drag force FD, lift force FL, and drag moment MD [24,29,49]:

FD ¼
1
2
qjVC j2SCD; ð19Þ

FL ¼
1
2
qjVC j2SCLbb; ð20Þ

MD ¼ �KDx2
z sgnðxzÞ: ð21Þ

where S is a suitably defined reference surface area for the robot
body. CD and KD are the drag force coefficient and drag moment
coefficient, respectively. CLb is the lift coefficient per angle of attack
b. The drag coefficients, as we will discuss later, are generally
dependent on the angle of attack b of the robot body.

Finally, by adding the hydrodynamic forces and moments from
the tail and directly on the body, we obtain Fx, Fy, and Mz in (5)–(7)
as

Fx ¼ Fhx � FD cos bþ FL sin b; ð22Þ
Fy ¼ Fhy � FD sin b� FL cos b; ð23Þ
Mz ¼ Mhz þMD: ð24Þ

3. Experimental model validation

3.1. Experimental setup

To validate the proposed dynamic model in Section 2, experi-
ments have been conducted with a free-swimming robotic fish
prototype as shown in Fig. 3. The robot has a simple mechanism
for actuation, and it satisfies most of the assumptions used in the
modeling work, which facilitates model validation. Through a
chain transmission mechanism, a servomotor (HS-5085MG from
Hitec) was used to control the angular position of the tail shaft
and thus the tail deflection angle a. The tail was a rectangular car-
bon-fiber foil, which was 8 cm long, 2.5 cm wide (deep), and
1.1 mm thick. With an onboard microcontroller, the servomotor
was programmed to rotate the tail according to

aðtÞ ¼ a0 þ aA sinðxat þ /aÞ ð25Þ

with a0, aA and xa denoting the bias, amplitude, and frequency of
the tail beat, respectively; and /a denoting the phase that indicates
the initial condition. When the bias a0 = 0, the robot performs for-
ward swimming. When a0 – 0, the trajectory of the robot converges
to a circular orbit. For model validation, we measured the turning
radius (radius of the circular orbit) and turning period (time for
completing a turn) during steady turning, under different combina-
tions of a0, aA, and xa. The experiments were conducted in an in-
door kiddie pool (as shown in Fig. 7 of [62]), and the turning

radius and period were measured with a timer and yardstick,
respectively. Specifically, for each experiment, we would first wait
until the robot entered steady turning, and then place a yardstick
(suspended slightly higher than the top of the robot) along the line
connecting the visually determined leftmost and rightmost points
of the trajectory. Afterwards (while the robot continued turning)
we would mark down the points A and B where the robot entered
and left, respectively, the half-space defined by the yardstick. These
two points were typically close to the visually determined left/
rightmost points mentioned earlier. The distance between A and B
and the difference between the times when the robot hit these
two points (captured by a timer) were used to determine the turn-
ing radius and period, respectively. With any prescribed open-loop
control pattern, the observed circular orbit shifted slightly over
time, which could be due to the flow disturbance created by the
swimming robot in the relatively small pool (diameter 1.75 m). To
mitigate the impact of such shift on the measurement error, for
each pattern, experiments were repeated for 6 times (restarting
the robot from rest every time), from which the mean and standard
deviation of the turning radius/period were evaluated. We note
that, while the turning experiments conducted in this work did of-
fer valuable insight on how tail-beat parameters could impact turn-
ing behavior, their primary use is in providing data for model
validation under a wide range of open-loop inputs. This is different
from [70], where the authors focused on turning control strategies
for multi-link robotic fish.

3.2. Parameter identification

The parameters in simulation are measured directly or calcu-
lated based on measurement as shown in Table 1. The body inertia
about the z-axis is evaluated as Jbz ¼ 1

12 mbð2cÞ2. The added masses
and inertia are calculated by approximating the robot body as a
prolate spheroid [29,69].

The drag and lift coefficients CD, CLb, and KD can be potentially
obtained by performing tests in a water tunnel or from the CFD
simulation, while in this work, we choose a more efficient way to
empirically identify these coefficients. In particular, we have tuned
these parameters to match the turning radius, turning period, and
the average of jbj obtained in simulation with the experimental
measurement under a particular tail beat pattern, with bias
a0 = 20�, amplitude aA = 15�, and frequency xA = 1.8p rad/s
(0.9 Hz). The resulting coefficients are CD = 0.2231, CLb = 4.50,
and KD = 11.29 � 10�4 kg m2. These parameters are then used in
independent model validation for all other tail beat patterns.

3.3. Results on model validation

Figs. 4–6 show the comparison between the model prediction
and experimental measurement of the turning radius and turning

Fig. 3. A free-swimming robotic fish prototype used for model validation.

Table 1
Parameter values for simulations.

Component Parameter Value

Body Mass (mb) 0.311 kg
Distance from body center to the shaft
(c)

0.07 m

Nominal body surface area (S) 0.0108 m2

Inertia (Jbz) 5.0797 � 10�4 kg m2

�X _VCx
0.0621 kg

�Y _VCy
0.2299 kg

�N _xz
1.0413 � 10�4 kg m2

Tail Tail length (L) 0.08 m
Tail depth (d) d = 0.025 m

Water density (q) 1 � 103 kg/m3

662 J. Wang, X. Tan / Mechatronics 23 (2013) 659–668
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period, when we vary the tail beat bias a0, amplitude aA, and fre-
quency xa, respectively, while holding the other two parameters
constant.

Experimental results in Fig. 4 show that both the turning radius
and the turning period drop monotonically with an increasing tail
beat bias; in other words, the robot makes tighter and quicker
turns as the bias is increased. For these experiments, the tail beat
amplitude and frequency are held fixed at 15� and 0.9 Hz, respec-
tively. From Fig. 4, these trends are well captured by the model
prediction, which closely matches the experimental measurement.

Fig. 5 shows how the turning radius and period depend on the
tail beat amplitude, where the bias and frequency are set to be
20� and 0.9 Hz, respectively. The model predicts that the turning
radius is nearly constant (about 27.5 cm) over the tested range
for the tail beat amplitude. The mean of the measured radii for
each given amplitude stays within the band [26] cm, which is close
to the predicted value. The turning period is predicted by the mod-
el to decrease (i.e., faster turning) as the tail beat amplitude in-
creases, which is supported by the experimental data both
qualitatively and quantitatively.
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Fig. 4. Comparison between model prediction and experimental measurement of (a) turning radius and (b) turning period as a function of the tail beat bias a0. The amplitude
and frequency of the tail beat are fixed at 15� and 0.9 Hz, respectively.
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The impact of the tail beat frequency on the turning behavior is
shown in Fig. 6, where the chosen tail beat bias and amplitude are
20� and 15�, respectively. The model predicts that the turning ra-
dius has negligible dependence on the tail frequency, while the
turning period drops with the frequency. As seen in Fig. 6, both
trends are well supported by the experimental data.

3.4. Hydrodynamic forces with/without incorporating robotic fish body
motion

It is often tempting to consider the body as anchored when
evaluating fin-produced hydrodynamic forces [64,29,28], since this
would greatly simplify the model. It is of interest to assess the
validity of such simplifications for a free-swimming robot where
the robot body undergoes movement. We will use the proposed
model in Section 2, which has proven effective as shown in the pre-
vious subsection, to evaluate the necessity of incorporating the
body motion, by comparing the simulation results when such mo-
tion is and is not considered.

For this study, we take the tail beat bias a0 to be 0, and thus the
robot will perform forward swimming at the steady state. We will
evaluate the impact of incorporating (or neglecting) body motion
on the computed average thrust (over a tail-beat cycle) and the ro-
bot swimming speed. The thrust force is evaluated via

Fthrust ¼ Fhx cosðw� w0Þ � Fhy sinðw� w0Þ; ð26Þ

where we recall from Fig. 1 that w denotes the heading of the ro-
botic fish with respect to the X-axis in the inertial frame. In (26),
w0 denotes the average of w over a tail-beat cycle at the steady

state, while Fhx and Fhy are evaluated using (16) and (17). Ignoring
the body motion in hydrodynamic force evaluation implies that
the velocity ~Vs at point s on the tail is changed from (13) to

~Vs ¼ _as n̂: ð27Þ

Fig. 7 compares the calculated average thrusts under different
tail-beat amplitudes and frequencies, when the body motion is
and is not incorporated in evaluating ~Vs, respectively. It shows
clearly that ignoring the body motion would result in significant
over-estimate of the thrust. For example, when the tail beats at
0.9 Hz with an amplitude of 15�, the average thrust is 1.188 mN
when the body motion is ignored, which is 57% larger than the va-
lue of 0.755 mN when the body motion is considered. Fig. 8 further
compares the computed average swimming speeds under the two
modeling schemes, from which we can see that ignoring the body
motion results in an over-estimate of steady-state speed by about
25%. These results illustrate the profound impact of the body mo-
tion on the tail-generated hydrodynamic force.

4. Efficient adaptation of drag coefficients

4.1. Bias-based adaptation of drag coefficients

The drag force and moment coefficients CD and KD in (19) and
(21) have been assumed to be constants. Most (if not all) modeling
work on robotic fish has assumed constant drag coefficients
[29,49,50,67]. However, it is known in fluid mechanics that the an-
gle of attack influences the drag on a body that is moving through a
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Fig. 7. Simulated average thrust force with/without incorporating the body motion: (a) thrust force versus tail-beat amplitude (frequency fixed at 0.9 Hz); (b) thrust force
versus tail-beat frequency (amplitude fixed at 15�).
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fluid [24,50,65,66]. For robotic fish, one challenge is that the angle
of attack oscillates constantly because of the recoil motion of the
body in response to tail movements. Furthermore, evaluation of
the angle of attack involves a highly non-linear function of the
velocity components, b = arctan(VCy/VCx). In this section, we pres-
ent an approach to the efficient adaptation of drag coefficients
for robotic fish, to maintain or even improve model fidelity without
the need to explicitly evaluate the angle of attack. The word ‘‘effi-
cient’’ here refers to computational efficiency (or low modeling
complexity), as we will show in the later part of this section that
such a varying drag effect can be well captured with a simple func-
tion of the tail-beat bias.

At the core of our approach is the exploitation of the close cor-
relation between the angle of attack and the tail beat bias. Recall
the form of the tail beat angle a in (25). While the bias a0, ampli-
tude aA, and frequency xa all could be varied over time (for exam-
ple, when one controls the robot to follow some arbitrary path),
such variations typically take place at a much slower time scale
than the tail beat motion – a tail beat pattern will be repeated
for at least several cycles before it is updated. Figs. 4–6 suggest that
the turning radius strongly depends on the bias a0, but is nearly
independent of the amplitude aA and frequency xa. The turning ra-
dius is intimately related to the angle of attack. To explicitly reveal
the relationships between the angle of attack and the tail-beat pat-
tern parameters, we have used the model identified in Section 3 to
numerically evaluate the average b0 of the absolute value jbj of the
angle of attack over each beat cycle, i.e.,

b0 ¼
xa

2p

Z t0þ2p=xa

t0

jbðtÞjd t: ð28Þ

From Fig. 9, b0 shows nearly linear dependence on the tail-beat bias
angle, with little dependence on the amplitude or the frequency.

Based on the observations from Fig. 9 and on the relationships
between the drag coefficients and the angle of attack [65], we pro-
pose adapting these coefficients using the tail-beat bias a0 (note
that the underlying assumption here is that, the impact of the an-
gle of attack, b, on drag can be well captured through the cycle-
averaged absolute value of b, b0):

CD ¼ C 0D0 þ C 0D1a
2
0; ð29Þ

KD ¼ K 0D0 þ K 0D1a0; ð30Þ

where C0D0; C0D1; K 0D0 and K 0D1 are constants that are empirically
identified as follows. First, as described in Section 3.2, we seek val-
ues of CD, KD, and CLb such that the simulated turning radius and
period best match the experimental results when the tail beats at
0.9 Hz with amplitude of 15� and bias of 20�. We then maintain
the value of CLb, and find the best parameter estimates for CD and

KD when the bias is 30� and 40�, respectively. We have deliberately
left out the cases of 25� and 35� biases at this stage, so that those
data can be used in independent model validation. Table 2 lists
the identified CD and KD identified for the three biases. We then
use the values in Table 2 to identify C0D0; C0D1; K 0D0 and K 0D0 in (29)
and (30) through the least-square-error fitting. The resulting
parameters are C0D0 ¼ 0:1936, C0D1 ¼ 0:1412=rad2

; K 0D0 ¼ 9:655�
10�4 kg m2 and K 0D1 ¼ 4:383� 10�4 kg m2/rad, respectively.

Fig. 10 shows the comparison between the measured turning
radii and periods and the values predicted by the model with drag
coefficient adaptation. We can see that, with the bias-based adap-
tation of drag coefficients, the match between the model predic-
tion and the experimental data is further improved over that in
Fig. 4.

To further validate the approach for drag coefficient adaptation,
we have conducted additional experiments involving transients in
forward swimming. A yellow LED powered by a button cell was
taped to the top of the robot as a marker. The weight of the LED/cell
add-on was 3 g, so its impact on the total mass (over 300 g) and
inertia of the robot was negligible. Starting from at rest, the robot
was programmed to swim forward (with the tail beat bias a0 = 0�)
with the amplitude and frequency of the tail-beat equal to 15� and
0.9 Hz, respectively. We video-recorded the motion of the LED (and
thus of the robot) with the ambient light turned off, and extracted
the robot’s time-trajectory by applying background subtraction to
the images. The dynamic model has been simulated with the
adapted and non-adapted drag coefficients, respectively. For the
model with non-adapted drag coefficients, CD = 0.2231, KD = 11.29
� 10�4 kg m2, which are identical to the coefficients obtained from
the turning experiments as presented in Section 3.2. For the model
with adapted drag coefficients, CD = 0.1936, KD = 9.655 � 10�4

kg m2, which are evaluated based on (29) and (30), with a0 = 0.
Fig. 11(a) and (b) compare the model predictions of the X/Y-
coordinate time-trajectories of the robot with the experimental
measurement, and Fig. 11(c) provides the comparison on the robot
path in the XY-plane. It can be seen that the model with adapted
drag coefficients outperforms the one with non-adapted coeffi-
cients, and is able to capture well both the transient and
steady-state behaviors of the robot.
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Fig. 9. Simulation results on the dependence of the angle of attack on tail beat parameters, where b0 is the cycle-averaged absolute value of the angle attack: (a) b0 versus the
tail beat bias a0; (b) b0 versus the tail beat amplitude aA; (c) b0 versus the tail beat frequency xa. In (a), the amplitude and frequency are fixed at 15� and 0.9 Hz; in (b), the bias
and the frequency are fixed at 20� and 0.9 Hz; in (c), the bias and the amplitude are fixed at 20� and 15�.

Table 2
Identified drag force and moment coefficients for different tail beating biases.

Bias a0 (�) CD KD (kg m2)

20 0.2231 1.129 � 10�3

30 0.2112 1.174 � 10�3

40 0.2712 1.282 � 10�3
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4.2. Elimination of the angle of attack from the lift force term

Note that, while the drag coefficients in (29) and (30) do not in-
volve the angle of attack b, the evaluation of the lift force for the
robot body in (20) still requires knowing b. In order to eliminate
b from the overall model and thus reduce the model complexity,
in this subsection we explore replacing b in (20) with the tail-beat
bias a0:

FL ¼
1
2
qjVC j2SC 0Lba0; ð31Þ

where, C0Lb is the new lift coefficient associated with the tail bias. To
identify C0Lb, we tune C0Lb, CD, and KD so that the simulated turning
radius, turning period, and average of jbj match those obtained in
experiments when the tail beats with bias a0 = 20�, amplitude
aA = 15�, and frequency xA = 1.8p rad/s. The estimates are
C0Lb ¼ 0:935, CD = 0.2131, and KD = 1.144 � 10�3 kg m2. With C0Lb
fixed, we can then follow the similar steps as in Section 4.1 to deter-
mine the drag coefficient adaptation laws (29) and (30). Note that
the four parameters in (29) and (30) are identified twice since we
want to compare the two cases when the evaluation of the lift force
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Fig. 10. Comparison between experimental measurement of (a) turning radius and (b) turning period with those predicted by the model, where the drag coefficients are
adapted and the lift force is evaluated using (20). The amplitude and frequency of the tail beat are fixed at 15� and 0.9 Hz, respectively.

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Time (s)

X 
(m

)

Experiment
Adapted model
Non−adapted model

(a)

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

Time (s)

Y 
(m

)

Experiment
Adapted model
Non−adapted model

(b)

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

X (m)

Y 
(m

)

Experiment
Adapted model
Non−adapted model

(c)
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involves the angle of attack b or its surrogate a0. In practice, one
only needs to identify these parameters once given the choice of
(20) or (31) for the lift force evaluation.

Figs. 12 and 13 show the model prediction performance when
drag coefficients are fixed and adapted, respectively, where the lift
force is evaluated using (31) instead of using (20) as for Figs. 4, 5, 6
and 10. From Fig. 12, the model with the modified lift term (31) is
still able to capture the trends of how the turning radius and period
vary with the tail bias, although the match has degraded from that
seen in Fig. 4. From Fig. 13, one can see that, with the drag adap-
tion, significantly better match between the model prediction
and experimental data is achieved.

5. Conclusion

In this paper, we have presented a complete dynamic model for
robotic fish actuated by a caudal fin, where Lighthill’s elongated-
body theory is used to evaluate the tail-generated hydrodynamic
force. For experimental validation purpose, we have considered a
rigid tail with biased sinusoid oscillation and treated the turning
radius and turning period as outputs in the comparison between
model prediction and experimental results. Additional model vali-
dation has also been conducted with experimental data of forward
swimming including the transients. We have found that, incorpo-
rating the body motion in the evaluation of hydrodynamic forces
plays a significant role in capturing the dynamics. We have also
shown that, the drag force and moment coefficients are strongly
dependent on the tail-beat bias, and subsequently we have pro-
posed a novel scheme to adapt these coefficients and lift force
based on the tail movement pattern. The effectiveness of this ap-
proach has been further demonstrated in experiments.

There are several directions in which the current work can be
extended. First, this paper has been primarily concerned with a ri-
gid tail. It is of interest to extend the results to the case of a base-
actuated flexible tail, where the vibrational dynamics of the tail is
coupled to the hydrodynamics and adds complexity to the evalua-
tion of tail-generated force and moment. It has been recognized
that the flexibility of body and fin structures has a pronounced im-
pact on the swimming performance of biological and robotic fish
[71–73], and the insight from these studies will be useful in the
modeling and optimization of a flexible tail for robotic fish. Second,
with the caudal fin as the only actuator, the presented model was
limited to the planar motion. Three-dimensional (3D) maneuvers
(e.g., diving and ascent) are often of practical interest and can be
realized by incorporating actuation mechanisms to adjust buoy-
ancy or center of gravity. Other actuating fins, in particular, pector-
al fins, can also enhance maneuverability of the robot (at the cost
of complexity). It is worthwhile to examine how the presented

model in this paper can be expanded to capture the 3D dynamics
and account for these additional actuation effects.
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