
ROBOTIC FISH: DEVELOPMENT, MODELING, AND APPLICATION TO MOBILE
SENSING

By

Jianxun Wang

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Electrical Engineering–Doctor of Philosophy

2014



ABSTRACT

ROBOTIC FISH: DEVELOPMENT, MODELING, AND APPLICATION TO MOBILE
SENSING

By

Jianxun Wang

Robotic fish are underwater robots that emulate locomotion of live fish through actuated fin

and/or body movements. They are of increasing interest due to their potential applications such as

aquatic environmental monitoring and robot-animal interactions.

In this work, several bio-inspired robotic fish prototypes have been developed that make use

of periodic tail motions. A dynamic model for a tail-actuated robotic fish is presented by merging

rigid-body dynamics with Lighthill’s large-amplitude elongated-body theory. The model is vali-

dated with extensive experiments conducted on a robotic fish prototype. The role of incorporating

the body motion in evaluating the tail-generated hydrodynamic forces is assessed, which shows

that ignoring the body motion (as often done in the literature) results in significant overestimate of

the thrust force and robot speed. By exploiting the strong correlation between the angle of attack

and the tail-beat bias, a computationally efficient approach is further proposed to adapt the drag

coefficients of the robotic fish.

It has been recognized that the flexibility of the body and fin structures has a pronounced

impact on the swimming performance of biological and robotic fish. To analyze and utilize this

trait, a novel dynamic model is developed for a robotic fish propelled by a flexible tail actuated at

the base. The tail is modeled with multiple rigid segments connected in series through rotational

springs and dampers. For comparison, a model using linear beam theory is created to capture the

beam dynamics. Experimental result show that the two models have almost identical predictions

when the tail undergoes small deformation, but only the proposed multi-segment model matches



the experimental measurement closely for all tail motions.

Motivated by the need for system analysis and efficient control of robotic fish, averaging of

robots’ dynamics is of interest. For dynamic models of robotic fish, however, classical or geometric

averaging typically cannot produce an average model that is accurate and the in the meantime

amenable to analysis or control design. In this work, a novel averaging approach for tail-actuated

robotic fish dynamics is proposed. The approach consists of scaling the force and moment terms

and then conducting classical averaging. Numerical investigation reveals that the scaling function

for the force terms is a constant independent of tail-beat patterns, while the scaling function for the

moment term depends linearly on the tail-beat bias. Existence and local stability of the equilibria

for the average model are further analyzed. Finally, as an illustration of the utility of the average

model, a semi-analytical framework is presented for obtaining steady turning parameters.

Sampling and reconstruction of a physical field using mobile sensor networks have recently

received significant interest. In this work, an adaptive sampling framework is proposed to recon-

struct aquatic environmental fields (e.g., temperature, or biomass of harmful algal blooms) using

schools of robotic sensor platforms. In particular, it is assumed that the field of interest can be

approximated by a low rank matrix, which is exploited for successive expansion of sampling area

and analytical reconstruction of the field. For comparison, an Augmented Lagrange Multiplier

optimization approach is also taken to complete the matrix reconstruction using a limited number

of samples. Simulation results show that the proposed approach is more computationally efficient

and requires shorter travel distances for the robots.
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Chapter 1

Introduction

Biomimetic systems have been receiving increasing attention from the robotics community, since

natural organisms can provide important insights into the theory and design of engineer systems.

For example, in the area of aquatic robots, the maneuverability and efficiency of live fish [3, 4]

has motivated significant scientific interest over the past two decades in developing, modeling and

controlling robotic fish [5–19]. In addition to providing platforms for underwater applications such

as environmental monitoring [1, 20–23], these robots offer a means to study the behavior of live

fish [24].

In this chapter, a review of robotic fish related state of arts is given in Section 1.1. The general

organization of this report and major contributions of this work are clarified in Section 1.2 and 1.3,

respectively. The author’s publications during his Ph.D research are listed at Section 1.4

1.1 Robotic Fish as Mobile Sensing Platforms

With five hundred million years of evolution, fish and other aquatic animals are endowed with

a variety of morphological and structural features that enable them to move through water with

speed, efficiency, and agility [3, 4]. The remarkable feats in biological swimming have stimu-

lated extensive theoretical [18, 25, 26], experimental [27–31], and computational [32, 33] research

by biologists, mathematicians, and engineers, in an effort to understand and mimic locomotion,

maneuvering, and sensing mechanisms adopted by aquatic animals.
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Over the past two decades, there has also been significant interest in developing underwater

robots that propel and maneuver themselves like real fish do [5, 7, 11, 12, 19, 24, 34–49]. Of-

ten termedrobotic fish, these robots provide an experimental platform for studying fish swim-

ming, and hold strong promise for a number of underwater applications such as environmental

monitoring [1]. Instead of using propellers, robotic fish accomplish swimming by deforming the

body and/or fin-like appendages, mostly functioning as caudal fins and sometimes as pectoral fins.

Body deformation and fin movements are typically achieved with motors. On the other hand, ad-

vances in smart materials have been explored to realize noiseless and compact actuation of robotic

fish [6, 9, 12, 45, 50–55]. Fig. 1.1a shows a robotic fish swimming in an inland lake. Fig. 1.1b

shows the close-up of another robot prototype, equipped with a dissolved oxygen (DO) sensor,

global position system (GPS), internal measurement unit (IMU), and other electronic components,

which is designed to monitor the DO level in aquafarms.

Aquatic environments have been facing various threats, and monitoring them and reconstruct-

ing aquatic process are of great importance to public health and biological balance. Manual sam-

pling is still a common practice in environment monitoring, which is labor-intensive with difficulty

in capturing dynamic phenomena of interest. Deployment of in-situ sensing with fixed or buoyed

sensors or vertical profilers has been proposed [56–61]. However, since buoyed sensors have lit-

tle freedom to move around, it cannot provide high spatial resolution to effectively adapt to the

destruction of parts of the network, and will require a large number of units for capturing the dis-

tributed information of dynamic phenomena. The past decade has also seen great progress in the

use of robotic technology, like autonomous underwater vehicles (AUVs) [62–68], and underwater

gliders [69–71] for aquatic environmental sensing [63, 66–68, 72–84]. However, it is difficult to

deploy many of them due to the high manufacturing and operational costs.

On the other hand, schools of autonomous robotic fish sensing platforms provide a competitive
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(a)

(b)

Figure 1.1: Prototypes of robotic fish developed by Smart Microsystems Lab at Michigan State
University [1]: (a) testing in a inland lake; (b) prototype for dynamically monitoring the dissolved
oxygen level in aquafarms

alternative for the task of environment monitoring, with their low-cost, high-volume traits. How-

ever, the minimal human intervention and limited onboard resources prohibit the robots’ ability to

operate robustly in the unfriendly and unpredictable environment. This poses challenges across a

wide spectrum, ranging from locomotion and maneuvering mechanisms, energy-efficient deigns,
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communication schemes, control and coordination, to sampling and reconstruction strategies.

This dissertation spans robotic fish development, dynamic modeling, averaging, nonlinear con-

troller design, and an adaptive sampling framework to guide a group of robotic fish.

1.2 Organization

This dissertation is organized as follows. In Chapter 2, guidelines for designing robotic fish are

provided and a detailed description of one robotic fish system is explained as a representative

example. Then some other prototypes that the author made significant contributions to, e.g., a

gliding robotic fish and a robotic predator are briefly discussed. The applications of these robots

are also covered in this chapter. In Chapter 3, a complete dynamic model is presented for robotic

fish actuated by a rigid caudal fin, where Lighthill’s elongated-body theory is used to evaluate

the tail-generated hydrodynamic forces. It shows that, the drag force and moment coefficients are

strongly dependent on the tail-beat bias, and subsequently a novel scheme is proposed to adapt

these coefficients and lift force based on the tail movement pattern. In Chapter 4, a model for

robotic fish with a base-actuated flexible tail is developed. The tail is modeled as multiple rigid

segments connected by springs and dampers, which is compared with the model based on the

linear beam theory. In Chapter 5, a control-oriented averaging approach for tail-actuated robotic

fish dynamics is developed, which is applied to a hybrid controller for target control. In Chapter 6,

an adaptive sampling framework is developed for a group of robotic fish, where it is assumed that

the field can be represented by a low-rank matrix. Motivated by motion constraints of the robots,

the presented approach features successive expansion of the sampling area, where increasingly

larger sub-matrices of the original field are reconstructed analytically.
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1.3 Overview of Contributions

The contributions of this dissertation are primarily on the complex dynamic modeling of tail-driven

robotic fish, its related averaging and control theory, and an adaptive sampling framework using a

group of robots. These contributions are further elaborated below.

First, the guidelines of robotic fish system design are provided and several types of robotic fish

prototypes are developed for aquatic environmental monitoring, robot-animal interaction study,

and education and outreach.

Second, a dynamic model for a tail-actuated robotic fish has been developed. In addition, a

computationally efficient approach is proposed and validated for adapting the drag coefficient of

the robotic fish based only on the tail-beat bias.

Third, to design and control robotic fish actuated with a flexible tail, it is essential to have

a faithful and efficient dynamic model. Existing studies typically adopt a linear Euler-Bernoulli

beam model is adopted to describe the beam dynamics; however, these models cannot accurately

capture the beam dynamics when the beam undergoes large deformations. A model consisting of

multiple, serially connected rigid segments is developed to describe the flexible beam, the effec-

tiveness of which is validated with experimental results.

Fourth, a novel control-oriented data-driven averaging approach is proposed to approximate

the original dynamics of robotic fish. The merit of the proposed approach, is demonstrated in the

design of a hybrid controller for targeting tracking and in the application to study of steady turning.

Last, a school of robotic fish is proposed for adaptive sampling and reconstruction of aquatic

fields. Distinguished from most existing work, we propose to expand the sampling area succes-

sively and reconstruct the field iteratively via analytical solutions. The effectiveness of the ap-

proach is validated via extensive simulations based on real data traces of the temperature field in
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a large water tank. It shows that the proposed adaptive sampling solution is more computationally

efficient and requires shorter travel distances for the robots than a competing matrix completion-

based method.

1.4 Publications

1.4.1 Journal Articles

1. J. Wang, X. Tan, “Averaging of Tail-Actuated Robotic Fish Dynamics through Force and

Moment Scaling”,IEEE Transactions on Robotics, under review, 2014

2. J. Wang, P. K. McKinley, X. Tan, “Dynamic modeling of robotic fish with a base-actuated

flexible tail”, Journal of Dynamic Systems, Measurement, and Control, to appear, 2013

3. Y. Wang, R. Tan, G. Xing, X. Tan,J. Wang, R. Zhou, “Spatiotemporal aquatic field recon-

struction using cyber-physical robotic sensor systems”,ACM Transaction on Sensor Net-

works, vol. 10, no. 57, 2014

4. Y. Wang, R. Tan, G. Xing,J. Wang, X. Tan, “Profiling aquatic diffusion process profiling

using robotic sensor networks”,IEEE Transactions on Mobile Computing, vol. 13, no. 4,

pp. 880-893, 2014

5. J. Wang, X. Tan, “A dynamic model for tail-actuated robotic fish with drag coefficient adap-

tation”, Mechatronics, vol. 23, no. 6, pp. 659-668, 2013
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1.4.2 Conference Proceedings

1. C. Liu, S. Chen,J. Wang, X. Tan, “Study on shortest path planning for robotic fish actuated

by a caudal fin” [in Chinese], Proceedings of the 33rd Chinese Control Conference, Nanjing,

China, to appear, 2014

2. Y. Wang, R. Tan, G. Xing,J. Wang, X. Tan, X. Liu, “Aquatic debris monitoring using

smartphone-based robotic sensors”,Proceedings of the 13th ACM/IEEE International Con-

ference on Information Processing in Sensor Networks, Berlin, Germany, pp. 13-24, 2014

[Acceptance rate: 21%; Runner-up for Best Paper Award]

3. F. Zhang,J. Wang, J. Thon, C. Thon, E. Litchman, X. Tan, “Gliding robotic fish for mo-

bile sampling of aquatic environments” (Invited), Proceedings of 11th IEEE International

Conference on Networking, Sensing and Control, Miami, FL, pp. 167-172, 2014

4. S. Chen,J. Wang, X. Tan, “Target-tracking control design for a robotic fish with caudal fin,”

Proceedings of 32nd Chinese Control Conference, Xi’an, China, pp. 844-849, 2013

5. S. Chen,J. Wang, X. Tan, “Backstepping-based hybrid target tracking control for a carangi-

form robotic fish,”Proceedings of 2013 ASME Dynamic Systems and Control Conference,

Palo Alto, CA, Paper DSCC2013-3963, 2013

6. S. B. Behbahani,J. Wang, X. Tan, “A dynamic model for robotic fish with flexible pectoral

fins,” Proceedings of 2013 IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, Wollongong, Australia, pp. 1552-1557, 2013

7. J. Wang, S. Chen, X. Tan, “Control-oriented averaging of tail-actuated robotic fish dynam-

ics” (Invited), Proceedings of the 2013 American Control Conference, Washington, DC, pp.

591-596, 2013
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8. Y. Wang, R. Tan, G. Xing, X. Tan,J. Wang, R. Zhou,“Spatiotemporal aquatic field recon-

struction using robotic sensor swarm,”Proceedings of the 33rd IEEE Real-Time Systems

Symposium, San Juan, Puerto Rico, pp. 205-214, 2012 [Acceptance rate: 22%]

9. J. Wang, P. K. McKinley, X. Tan, “Dynamic modeling of robotic fish with a flexible caudal

fin” (Invited), Proceedings of the 2012 ASME Dynamic Systems and Control Conference,

Fort Lauderdale, FL, Paper DSCC2012-MOVIC2012-8695, 2012

10. A. J. Clark, J. M. Moore,J. Wang, X. Tan, P. K. McKinley, “Evolutionary design and ex-

perimental validation of a flexible caudal fin for robotic fish,”Proceedings of the 13th Inter-

national Conference on the Simulation and Synthesis of Living Systems (Artificial Life 13),

East Lansing, MI, pp. 325-332, 2012 [Best Paper Award in Behavior and Intelligence]

11. Y. Wang, R. Tan, G. Xing,J. Wang, X. Tan, “Accuracy-aware aquatic diffusion process

profiling using robotic sensor networks”,Proceedings of the 11th ACM/IEEE Conference on

Information Processing in Sensor Networks, Beijing, China, pp. 281-292, 2012 [Acceptance

rate: 15%]

12. J. Wang, F. Alequin-Ramos, X. Tan, “Dynamic modeling of robotic fish and its experimen-

tal Validation” (Invited), Proceedings of the 2011 IEEE/RSJ International Conference on

Intelligent Robots and Systems, San Francisco, CA, pp. 588-594, 2011 [Acceptance rate:

32%]
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Chapter 2

Development of Robotic Fish and Their

Applications

2.1 Introduction

Over the past two decades, there has been significant interest in the development of robotic fish.

These low-cost, small form-factor platforms present a variety of constraints for design. The main

design criteria in this work are to develop a robust system that is low-cost and easy to be manu-

factured, extended and serviced. The chapter is organized as follows. In Section 2.2, a detailed

description of the network-robotic-fish is presented. In Section 2.3, a gliding robotic fish prototype

and its application to environmental monitoring are described. In Section 2.4, a predator robotic

fish and its application to robot-fish interaction are discussed. The use of robotic fish in education

and outreach activities are briefly summarized in Section 2.5. These prototypes were developed

jointly with several other members of the Smart Microsystems Lab.

2.2 Network-Robotic-Fish

A robotic fish prototype, called network-robotic-fish in this dissertation, is first described. The

name comes from the intended purpose of this class of robotic fish for cooperative sensing as a

mobile network. The design of such robots is faced with several challenges. Simplicity and ease of
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fabrication are critical to keeping the cost of the robot nodelow, however, system robustness and

modularity are also important considerations.

2.2.1 Hardware structure

To address the challenges discussed above, we have developed a two-layer hardware structure

for the robotic node with two micro-controllers. The navigation board is in charge of all the

navigation-related functions, including drivers of sensors and actuator, and their coordinations. On

the other hand, the processing board to the board takes care of higher-level information processing

and decision-making tasks. The processing board also deals with communication and coordination

among individual nodes. Such a design can significantly reduce the chances of conflict between

time-critical components, such as the wireless radio and the navigation controller. More impor-

tantly, the hardware results in good extensibility and robustness properties for the design. The

navigation board is relatively fixed in terms of low-level control of the robot and plenty of hard-

ware interfaces are left for additional sensors. On the other hand, the processing board is designed

to accommodate different applications.

The processing board is a duplicate of a standard Telosb mote, which features a MSP430 micro-

controller and CC2420 radio stack. The layout, as shown in Fig. 2.1, of the the navigation board

for network-robotic-fish accounts for interference isolation and minimization of total space.

2.2.2 Software architecture

The robotic fish software architecture, shown in Fig. 2.2, consists of the firmware layer, the node-

level module controllers layer, and customizable head-level computation and user-level application

layer.
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Figure 2.1: Navigation board

The novelty of this design is that we implement the software using two self-governed systems

with an SPI interface between them. On the navigation board, a motion controller and sensor

controller are developed upon the drivers for the hardware. On the processing board, a storage

controller and network controller are implemented to control the data flow in the node and between

the nodes, respectively. Furthermore, a user-level applications layer is developed to adapt different

objectives.
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Figure 2.2:Software architecture of network-robotic-fish.

2.2.3 System assembly

One of the most time-consuming tasks in robotic fish development is the fabrication of shell with

a streamlined shape with good hydrodynamic performance. In the first two generations of robotic

fish, shown in Figs. 2.3(a) and 2.3(b) we have manually manufactured the shells. The mold has

to be redesigned every time when evolving the robot’s body. Another disadvantage of such an

approach is that the body is not accessible1, which creates significant problems when it comes to

diagnosis and service of the robot.

To accelerate the assembling process, an Objet Connex350 Multi-Material 3D printer is utilized

to design and develop the robot shell. An important feature of this 3D printed platform is the self-

containment of the system structure: the waterproof servo can be directly mounted to the bracket

at the end portion; thenavigation boardis placed on the stand in the shell; extra capsules are left

1The only way to access the robot’s body is to cut off the shell and repair it afterwards, which
is time-consuming and reduces the reliability.
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Figure 2.3: Three generations of robotic fish: (a) First generation of robotic fish; (b) DO fish
(second generation); (c) network-robotic-fish (third generation)
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Table 2.1: Selected components used in network robotic fish.

Component name Component model
1 Micro-controller () Microchip dsPIC6014A
2 Micro-controller (on TelosB) TI MSP430
3 Wireless module (on TelosB) TI CC2420
4 Battery Batteryspace 7.4V (13.32Wh) Li-ion Polymer Battery Pack
5 Servo motor Hitec Servo HS-5646WP (waterproof)
6 GPS Garmin GPS 18x LVC
7 Gyro ST LPY503AL
8 Accelerometer+Compass ST LPY503AL
9 Temperature sensor TMP36

for the balance purposes. Any of these components can be easily detached and replaced within a

hour or so, which highly improves the flexibility and extensibility of the system design, and also

cuts the cost.

Table 2.1 lists the details of components on network robotic fish mentioned before in this

section.

2.3 Gliding Robotic Fish

Gliding robotic fish is a new type of underwater vehicles, which is a combination of underwater

glider and robotic fish. Other than the swimming motion by flapping the tail as robotic fish do, the

robot has a mechanism of gliding by utilizing the difference between its gravity and buoyancy.

Fig. 2.4 illustrates the two gliding-based locomotion modes for the gliding robotic fish. The

robot achieves a zig-zag motion by periodically varying its weight and the center of mass, as shown

in Fig. 2.4(a). It can also realize a novel 3D spiral motion, shown in Fig. 2.4(b) by deflecting the

tail during gliding.

We have successfully built a gliding robotic fish prototype, called GRACE (Gliding Robot
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(a)

(b)

Figure 2.4: Illustration of gliding robotic fish motion profiles [2]. (a) Rectilinear gliding motion;
(b) 3D spiraling.

ACE) [2,85], as shown in Fig. 2.5.

In November, 2012, we took GRACE, which was equipped with a crude oil sensor , to Kala-

mazoo River2, MI, to detect the crude oil content. In this test, GRACE swam along the river by

flapping its tail as robotic fish and collected the data. The data obtained from the sensor were

2Kalamazoo River was polluted by an oil spill in July 2010, when a pipeline burst and oil
flowed into Talmadge Creek, a tributary of the Kalamazoo River.
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Figure 2.5:Gliding robotic fish prototype developed at Smart Microsystems Lab. [2]

transmitted wirelessly to the base station with the location information from the GPS unit. Fig. 2.6

shows one sampling trajectory of GRACE.

Figure 2.6:Swimming trajectory of GRACE along the Kalamazoo River. [2]

Results from this section have appeared in the publication [2]. I was mainly responsible for

system integration of GRACE and troubleshooting during the tests.
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2.4 Predator Robotic Fish

We are also interested in using our robotic fish to study behaviors of live fish. Collaborating with

Dr. Boughman’s group at Michigan State University, we have developed a predator robotic fish to

study the response behavior of stickleback fish as shown in Fig. 2.7.

(a)

(b)

Figure 2.7: Robot-fish interactions. (a) Predator robotic fish prototype; (b) live stickleback fish
approaching the robot.

A C# code is implemented to capture the signal from a joystick and transfer it to the Xbee
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module3, as shown in Fig.2.7(a). Users can control the robot’s tail motion (i.e., beat-frequency

and beat-bias) by operating the joystick. The robot is shaped and painted to mimic a trout, which

serves as a predator to stickleback fish. Fig. 2.7(b) shows one frame of the video taken when a

stickleback swam up tp the robot.

2.5 Eduction Activities and Outreach Using Robotic Fish

Aside from their vast potentials for research, robotic fish offer rich opportunities for reaching out to

students and the general public. Bio-inspired robots are valuable and effective means for attracting

students to the areas of science, technology, engineering and math (STEM) [86–88].

Robotic fish have been used as educational tools all over the world. For instance, the carp-like

robots in [8,89] have attracted thousands of youth during their exhibits at London Aquarium [89].

We have presented our robotic fish at various outreach programs, including the first and second

USA Science and Engineering Festivals, in 2010 and 2012, respectively. At these events, the

visitors got a chance to not only see the robotic fish in action, but also interacted with our lab

members to understand the technology and its applications, as shown in Fig. 2.8.

3http://www.digi.com/xbee/.
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(a)

(b)

Figure 2.8: Smart Microsystems Lab’s robotic fish exhibit at the 2010 USA Science and Engineer-
ing Festival.
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Chapter 3

A Dynamic Model for Tail-actuated Robotic

Fish with Drag Coeff cient Adaptation

3.1 Introduction

Dynamic modeling [11,12,18,19,45,47,90–97], trajectory planning, and control [11,38,98–103]

of robotic fish have received extensive attention. A major challenge in the modeling of robotic fish

lies in properly capturing the fluid-structure interactions and the resulting force and moment on the

robot. While computational fluid dynamics (CFD) modeling [32, 33, 104, 105] can provide high-

fidelity representation of such interactions, it is not amenable to control design. A few alternatives

are available. The first is to apply quasi-steady lift and drag models from airfoil theory to the

body and fin surfaces of underwater robots [11,90,93,94]. Another approach is to assume perfect

fluids (irrotational potential flow) and exploit the symmetry to obtain a finite-dimensional model

[95,102], but some coefficients of such models may have to be obtained numerically [95]. Effects

of vorticity can be accommodated by assuming, for example, vortices periodically shed from the

tail fin [18,92].

The third approach to the evaluation of hydrodynamic forces is to use Lighthill’s elongated-

body theory [25]. This theory captures the reactive force between body and fluids with an added-

mass effect, and it approximates the effect of wake dynamics by considering the momentum bal-

ance in a half-space control volume, which contains the deforming body and is bounded by a

20



vertical plane attached to the trailing edge. Consequently,the resulting force and moment only

depend on the configuration of the (robotic) fish. Lighthill’s model strikes a sound balance be-

tween fidelity and simplicity, and its effectiveness in robotic fish modeling has been demonstrated

in [45,106].

The contributions of the work reported in this chapter are two-fold. First, we present a dynamic

model for a tail-actuated robotic fish by combining rigid-body dynamics with Lighthill’s large-

amplitude elongated-body theory, and validate the model with extensive experiments conducted

on a robotic fish prototype. Specifically, we consider rigid-body dynamics for the robot body

and adopt Lighthill’s theory to capture the tail-actuation effect. To our best knowledge, such an

approach has not been reported in the literature. Existing work [45, 106] involving Lighthill’s

theory was focused on steady-state motions, where the dynamics of the robot was not considered.

Chenet al. applied a similar approach to evaluate the thrust produced by undulatory body motion

of a robot tuna [107], but the analysis therein dealt with onlypoint-mass dynamicsfor the robot,

where forward-swimming was studied via simulation. Note that rigid body dynamics allows one

to capture both body translation and rotation, and is significantly more complex and relevant than

point-mass dynamics in terms of capturing the true behavior of the robot. Using the proposed

model, we investigate the role of incorporating the body motion in evaluating the tail-produced

hydrodynamic force, and show that ignoring the body motion (as often done in the literature [12,

14,45]) results in significant overestimate of the thrust force and robot speed.

The second contribution is a computationally efficient approach to the adaptation of drag co-

efficients for robotic fish. These coefficients play a significant role in the modeling of underwater

vehicles and are often functions of the angle of attack [108, 109]. For a carangiform robotic fish,

however, its body and/or fins constantly undergo large deformation or rigid-body motion, and

consequently, the angle of attack oscillates due to the body recoil. For these reasons, modeling
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variable drag coefficients is challenging, and existing workon robotic fish modeling has predomi-

nantly adopted constant drag coefficients [12,93,110]. In this work, we propose a novel approach

to adapting the drag coefficients. For ease of presentation, we focus on a robotic fish actuated

by an oscillating tail, where the tail beat bias, frequency, and amplitude are the three kinematic

parameters one can change. We first study the effect of each parameter on the average of the angle

of attack, and find that the bias plays a much more significant role than the other two. We then

propose determining the drag coefficients as simple polynomial functions of the tail beat bias. The

effectiveness of the adaptation scheme is demonstrated through the comparison of simulation and

experimental results, for both steady turning and transient dynamics in forward swimming.

The remainder of the chapter is organized as follows. First, the dynamic model is described

in Section 3.2. Experimental validation of the model is presented in Section 3.3. The drag coeffi-

cient adaptation scheme is discussed in Section 3.4. Finally, concluding remarks are provided in

Section 3.5.

3.2 The Dynamic Model for Robotic Fish

The robot is considered to consist of two parts, a body that does not deform and a moving or

deforming tail. The motion of the robot body is governed by rigid-body dynamics with the added-

mass effect incorporated. Lighthill’s large-amplitude elongated-body theory is utilized to evaluate

the hydrodynamic forces generated by the actuating tail (as opposed to the whole robot). We

assume that the depth of the tail does not change abruptly along the length direction, thus meeting

the “elongated body” requirement [25]. Although the proposed modeling approach is applicable

for a general actuating tail, for ease of presentation, we focus on the case where the tail is rigid

and actuated at its base. As mentioned in Section 3.1, one contribution of this work lies in the
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combinationof the two elements, rigid-body dynamics and Lighthill’s theory, for the dynamic

modeling of robotic fish. While both elements are well known, for completeness of the chapter,

brief review of each is provided in Sections 3.2.1 and 3.2.2.1, respectively.

3.2.1 Rigid-body dynamics

Fig. 3.1 shows the top view of the robotic fish, consisting of a rigid body and a tail. We follow [12]

closely in describing the dynamics of the rigid body.[X,Y,Z] denote the inertial coordinates while

[x,y,z] denote the body-fixed coordinates with unit vectors[x̂, ŷ, ẑ]. We denote by ˆm and n̂ the

unit vectors parallel and perpendicular to the tail, respectively. We assume that both the body

and the tail are neutrally buoyant, and that, for the body, the center of gravity coincides with

the center of geometry at pointC. The velocity atC expressed in the body-fixed coordinates

~VC = [VCx,VCy,VCz]
T comprises surge (VCx), sway (VCy) and heave (VCz) components. In addition,

the angular velocity~ω = [ωx,ωy,ωz]
T comprises roll (ωx), pitch (ωy) and yaw (ωz) expressed

in the body-fixed coordinates. We useα to denote the tail deflection angle with respect to the

negativex−axis, andβ to denote the angle of attack, formed by the direction of~VC with respect to

thex−axis. Finally,ψ denotes the heading angle, formed by thex−axis relative to theX−axis.

The linear momentum~P and angular momentum~H of the body in the body-fixed coordinates

are expressed as

~P=M ·~VC+DT ·~ω, (3.1)

~H =D ·~VC+J ·~ω, (3.2)

whereM andJ are the mass and inertia matrices, respectively, andD is the Coriolis and centripetal

matrix. For a rigid body in an inviscid fluid, Kirchhoff’s equations of motion in the body-fixed
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Figure 3.1:Top view of the tail-actuated robotic fish undergoing planar motion.

frame are [111,112]

~̇P=~P×~ω +~F, (3.3)

~̇H =~H×~ω +~P×~VC+ ~M, (3.4)

where~F = [Fx,Fy,Fz]
T , ~M = [Mx,My,Mz]

T denote the external forces and moments about the

body centerC, respectively, and “×” denotes the vector product. The assumption of neural buoy-

ancy implies that these forces and moments will only come from the hydrodynamic interactions

between the robot and the fluid. We further assume that the body is symmetric with respect to

the xz−plane and the tail moves in thexy−plane. Consequently, the heave velocityVCz, the roll

rateωz, and the pitch rateωy are all equal to zero, in which case the system has three degrees of

freedom, namely, surge (VCx), sway (VCy) and yaw (ωz). We further assume that the inertial cou-
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pling between the surge, sway and yaw motions is negligible [12], implyingD = 0. Under these

assumptions, following [111], (3.3) and (3.4) can be simplified as

(mb−XV̇Cx
)V̇Cx=(mb−YV̇Cy

)VCyωz+Fx, (3.5)

(mb−YV̇Cy
)V̇Cy=− (mb−XV̇Cx

)VCxωz+Fy, (3.6)

(Jbz−Nω̇z)ω̇z=(YV̇Cy
−XV̇Cx

)VCxVCy+Mz, (3.7)

wheremb is the mass of the body, andJbz is the inertia of the body about thez−axis. XV̇Cx
, YV̇Cy

andNω̇z are the hydrodynamic derivatives that represent the effect of added mass/inertia on the

body.

3.2.2 Evaluation of the hydrodynamic forces

To complete the model (3.5) – (3.7), we need to evaluate the hydrodynamic force(Fx,Fy) and

momentMz, which are due to both the tail actuation and the interaction of the body itself with the

fluid. We first review Lighthill’s large-amplitude elongated-body theory, and use it to evaluate the

forces exerted on the tail (and transmitted to the rigid body) due to tail-fluid interactions. The drag

and lift forces on the robotic fish body will then be described.

3.2.2.1 Lighthill’s large-amplitude elongated-body theory

Consider an elongated “body” moving in theXY-plane in water; here (and throughout Section 3.2.2.1)

the term “body” could mean a live fish, a robotic fish, or in the context of our work, a flapping tail.

As illustrated in Fig. 3.2, a frame of reference is chosen such that the water far from the body

is at rest. The spinal column (analogy from a live fish) of the elongated body is assumed to be

inextensible and is parameterized byτ, with τ = 0 denoting the anterior end of the body andτ = L
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denoting the posterior end. The coordinates(X(τ, t),Y(τ, t)),0≤ τ ≤ L, denote the trajectory of

each pointτ on the spinal column at timet, which could be due to the body undulation/oscillation

or the resulting translational/rotational motion of the body.

n̂Y n

m̂
v

Y

0 ! L !

v
 

||v

Spinal 

column
XZ  

Figure 3.2:Illustration of the coordinate system for the spinal column of the elongated body (top view).

Following [25], given(X(τ, t),Y(τ, t)), the hydrodynamic reactive force density at each point

τ < L, due to the added-mass effect, is

~f (τ) =







fX(τ)

fY(τ)






=−m

d
dt

(v
⊥

n̂), (3.8)

and atτ = L, there is a concentrated force

~FL =







FLX

FLY






=

[

−
1
2

mv2
⊥

m̂+mv
⊥

v
‖
n̂

]

τ=L
. (3.9)

The two terms in (3.9) account for the pressure force acting onΠ and the force due to convection of

momentum out ofV acrossΠ, respectively, whereΠ is the plane atτ = L that is perpendicular to

m̂, andV is the half-space bounded byΠ that includes the fish but excludes the wake [25]. In (3.8)
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and (3.9),m denotes the virtual mass per unit length and can be approximated by1
4πρd2, where

ρ is the density of water andd is the depth of fish cross-section (in−Z direction) atτ (and thus

can vary withτ). As illustrated in Fig. 3.2, ˆm= (∂X/∂τ ,∂Y/∂τ)T andn̂= (−∂Y/∂τ ,∂X/∂τ)T

represent the unit vectors tangential and perpendicular to the spinal column, respectively, andv
‖

andv
⊥

represent the components of the velocity~v= (∂X/∂ t,∂Y/∂ t)T at τ in m̂ andn̂ directions,

respectively:

v
‖
=<~v,m̂>=

∂X
∂ t

∂X
∂τ

+
∂Y
∂ t

∂Y
∂τ

, (3.10)

v
⊥
=<~v, n̂>=−

∂X
∂ t

∂Y
∂τ

+
∂Y
∂ t

∂X
∂τ

, (3.11)

where< ·, · > denotes the inner product of vectors. Note that the actual mass of the considered

elongated-body is negligible (relative to the virtual mass) when the width of the body cross section

is much thinner than the depth [25]. The latter typically holds true for the tail of a robotic fish.

3.2.2.2 Hydrodynamic force due to an oscillating tail

Following Lighthill’s large-amplitude elongated-body theory, we need to know the motion of every

point along the tail over time, to evaluated the tail actuation-induced hydrodynamic force.

Refer to Fig. 3.1. The velocity~VA at the body-tail jointA can be expressed as

~VA =~VC−ωzcŷ, (3.12)

wherec is the distance from the body center to the joint. The velocity at each pointτ along the tail

is

~Vτ =~VC−ωzcŷ+(α̇ +ωz)τn̂, (3.13)
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whereα̇ denotes the angular velocity of the tail with respect to the body. Note here thatτ = 0

would represent the pointA. In (3.13),~Vτ is calculated incorporating the robot body motion (~VC

andωz), which is often ignored in the literature [12, 14, 45]. In Section 3.3.4, we will discuss the

role of incorporating the body motion in the appropriate evaluation of hydrodynamic forces.

Let~Vτ⊥ be the projection of~Vτ along the ˆn direction, i.e.,~Vτ⊥ =<~Vτ , n̂> n̂. Using (3.8), we

evaluate the hydrodynamic force density atτ as

~f (τ) =−m
d~Vτ⊥

dt
. (3.14)

Then the hydrodynamic force on the tail due to the added-mass effect is

~Fa =
∫ L

0
~f (τ)dτ = Famm̂+Fan n̂, (3.15)

whereL is the length of the tail, andFam andFan are the components ofFa alongm̂andn̂, respec-

tively.

From (3.9), the concentrated force acting at the tail tip is evaluated as~Fc = Fc1m̂+~Fc2 n̂, where

Fc1 =−
1
2

mV2
L⊥

,

Fc2 =mVL⊥
VL‖

.

The total hydrodynamic force acting on the tail is then

~Fh = Fhx· x̂+Fhy· ŷ,
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where

Fhx =− (Fam+Fc1)cosα +(Fan+Fc2)sinα, (3.16)

Fhy=− (Fam+Fc1)sinα− (Fan+Fc2)cosα. (3.17)

The hydrodynamic force-induced moment relative to the centerC of the robot body is

~Mh =
∫ L

0
~rCτ ×~f (τ) dτ +~rCL×~Fc, (3.18)

where~rCτ denotes the vector from the body centerC to the pointτ on the tail, i.e.,~rCτ = −(c+

τ cosα) x̂− (τ sinα) ŷ. It is clear that all vectors in (3.18) lie in thexy-plane, and thus the only

non-zero component of~Mh is along thez−direction, which we denote asMhz.

3.2.2.3 Drag and lift on the body

As shown in Fig. 3.1, besides the hydrodynamic force and moment transmitted from the tail, the

robot body also experiences drag forceFD, lift force FL, and drag momentMD [11,12,93]:

FD =
1
2

ρ |VC|
2SCD, (3.19)

FL =
1
2

ρ |VC|
2SCLβ β , (3.20)

MD =−KDω2
zsgn(ωz). (3.21)

whereS is a suitably defined reference surface area for the robot body.CD andKD are the drag

force coefficient and drag moment coefficient, respectively.CLβ is the lift coefficient per angle of

attackβ . The drag coefficients, as we will discuss later, are generally dependent on the angle of
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attackβ of the robot body.

Finally, by adding the hydrodynamic forces and moments from the tail and directly on the body,

we obtainFx, Fy, andMz in (3.5) – (3.7) as

Fx =Fhx−FD cosβ +FL sinβ , (3.22)

Fy =Fhy−FD sinβ −FL cosβ , (3.23)

Mz=Mhz+MD. (3.24)

Note that,Fhx, Fhy andMhz contain the derivative ofVCx, VCy, andωz since the robotic fish body’s

motion is incorporated in the evaluation of hydrodynamic forces at the tail section. With funda-

mental transformations, Eq. (5.1) could be re-written withVCx, VCy andωz on the right side of the

equations and their time derivative on the left side to avoid the numerical loop in the simulation.

3.3 Experimental Model Validation

3.3.1 Experimental setup

To validate the proposed dynamic model in Section 3.2, experiments have been conducted with

a free-swimming robotic fish prototype as shown in Fig. 3.3. The robot has a simple mechanism

for actuation, and it satisfies most of the assumptions used in the modeling work, which facilitates

model validation. Through a chain transmission mechanism, a servomotor (HS-5085MG from

Hitec) was used to control the angular position of the tail shaft and thus the tail deflection angle

α. The tail was a rectangular carbon-fiber foil, which was 8 cm long, 2.5 cm wide (deep), and

1.1 mm thick. With an onboard microcontroller, the servomotor was programmed to rotate the tail
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according to

α(t) = α0+αAsin(ωα t +φα) (3.25)

with α0, αA andωα denoting the bias, amplitude, and frequency of the tail beat, respectively; and

φα denoting the phase that indicates the initial condition. When the biasα0= 0, the robot performs

forward swimming. Whenα0 6= 0, the trajectory of the robot converges to a circular orbit. For

model validation, we measured the turning radius (radius of the circular orbit) and turning period

(time for completing a turn) during steady turning, under different combinations ofα0, αA, and

ωα . The experiments were conducted in an indoor kiddie pool (as shown in Fig. 7 of [106]), and

the turning radius and period were measured with a timer and yardstick, respectively. Specifically,

for each experiment, we would first wait until the robot entered steady turning, and then place

a yardstick (suspended slightly higher than the top of the robot) along the line connecting the

visually determined leftmost and rightmost points of the trajectory. Afterwards (while the robot

continued turning) we would mark down the pointsA and B where the robot entered and left,

respectively, the half-space defined by the yardstick. These two points were typically close to

the visually determined left/rightmost points mentioned earlier. The distance betweenA andB

and the difference between the times when the robot hit these two points (captured by a timer)

were used to determine the turning radius and period, respectively. With any prescribed open-loop

control pattern, the observed circular orbit shifted slightly over time, which could be due to the

flow disturbance created by the swimming robot in the relatively small pool (diameter 1.75 m).

To mitigate the impact of such shift on the measurement error, for each pattern, experiments were

repeated for 6 times (restarting the robot from rest every time), from which the mean and standard

deviation of the turning radius/period were evaluated. We note that, while the turning experiments

conducted in this work did offer valuable insight on how tail-beat parameters could impact turning
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behavior, their primary use is in providing data for model validation under a wide range of open-

loop inputs. This is different from [113], where the authors focused on turning control strategies

for multi-link robotic fish.

Chain transmissionServo motor

Tail

Tail shaft

Figure 3.3:A free-swimming robotic fish prototype used for model validation.

3.3.2 Parameter identif cation

The parameters in simulation are measured directly or calculated based on measurement as shown

in Table 3.1. The body inertia about thez−axis is evaluated asJbz=
1
12mb(2c)2. The added masses

and inertia are calculated by approximating the robot body as a prolate spheroid [12,112].

The drag and lift coefficientsCD, CLβ , andKD can be potentially obtained by performing tests

in a water tunnel or from the CFD simulation, while in this work, we choose a more efficient way to

empirically identify these coefficients. In particular, we have tuned these parameters to match the

turning radius, turning period, and the average of|β | obtained in simulation with the experimental

measurement under a particular tail beat pattern, with biasα0 = 20◦, amplitudeαA = 15◦, and

frequencyωA = 1.8π rad/s (0.9 Hz). The resulting coefficients areCD = 0.2231,CLβ = 4.50, and
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Table 3.1: Parameter values for simulations.

Component Parameter Value
Body mass (mb) 0.311 kg

distance from body center to the shaft (c) 0.07 m
nominal body surface area (S) 0.0108 m2

inertia (Jbz) 5.0797×10−4 kg·m2

−XV̇Cx
0.0621 kg

−YV̇Cy
0.2299 kg

−Nω̇z 1.0413×10−4 kg·m2

Tail tail length (L) 0.08 m
tail depth (d) d = 0.025m

water density (ρ) 1×103 kg/m3

KD = 11.29×10−4 kg·m2. These parameters are then used in independent model validation for

all other tail beat patterns.

For a fully submerged body taking a shape of a prolate spheroid, which we will assume in this

work, the added-mass terms can be evaluated analytically. Let the profile of the body be described

by

x2

a2 +
y2

b2 +
z2

b2 = 1, (3.26)

wherea andb are the semi-axis length. In particular, considering the robotic fish body volume and

geometric distribution, the values ofa andb are set to 7 and 3.3 cm, respectively. Then the added

mass terms are given by

XV̇Cx
= −k1mf

YV̇Cy
= −k2mf , (3.27)

Nω̇z = −k3Jf z

where positive constantk1, k2 andk3 are Lamb’sk-factors dependent on the geometry of the body,
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defined using two constantα0 andβ0:

k1 =
α0

2−α0
,α0 =

2(1−e2)

e3 (
1
2

ln
1+e
1−e

−e),

k2 =
β0

2−β0
,β0 =

1

e2 −
1−e2

2e3 ln
1+e
1−e

,

k3 =
e4(β0−α0)

(2−e2)[2e2− (2−e2)(β0−α0)]
, (3.28)

wheree=
√

1− (b
a)

2, designates the eccentricity of the ellipsoid. Furthermore, in Eq. (3.27), the

mass of the displaced fluid is evaluated usingmf = 4/3ρπab2, which is 0.3193 kg and the moment

of inertia of the fluid’s spheroid about thez−axis isJf z= 1/5mf (a
2+b2).

3.3.3 Results on model validation

Figs. 3.4 – 3.6 show the comparison between the model prediction and experimental measurement

of the turning radius and turning period, when we vary the tail beat biasα0, amplitudeαA, and

frequencyωα , respectively, while holding the other two parameters constant.

Experimental results in Fig. 3.4 show that both the turning radius and the turning period drop

monotonically with an increasing tail beat bias; in other words, the robot makes tighter and quicker

turns as the bias is increased. For these experiments, the tail beat amplitude and frequency are held

fixed at 15◦ and 0.9 Hz, respectively. From Fig. 3.4, these trends are well captured by the model

prediction, which closely matches the experimental measurement.

Fig. 3.5 shows how the turning radius and period depend on the tail beat amplitude, where the

bias and frequency are set to be 20◦ and 0.9 Hz, respectively. The model predicts that the turning

radius is nearly constant (about 27.5 cm) over the tested range for the tail beat amplitude. The

mean of the measured radii for each given amplitude stays within the band[26, 30.5] cm, which is
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Figure 3.4: Comparison between model prediction and experimental measurement of (a) turning radius
and (b) turning period as a function of the tail beat biasα0. The amplitude and frequency of the tail beat are
fixed at 15◦ and 0.9 Hz, respectively.
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close to the predicted value. The turning period is predictedby the model to decrease (i.e., faster

turning) as the tail beat amplitude increases, which is supported by the experimental data both

qualitatively and quantitatively.

The impact of the tail beat frequency on the turning behavior is shown in Fig. 3.6, where the

chosen tail beat bias and amplitude are 20◦ and 15◦, respectively. The model predicts that the

turning radius has negligible dependence on the tail frequency, while the turning period drops with

the frequency. As seen in Fig. 3.6, both trends are well supported by the experimental data.

3.3.4 Hydrodynamic forces with/without incorporating robotic f sh bodymo-

tion

It is often tempting to consider the body as anchored when evaluating fin-produced hydrodynamic

forces [12,14,45], since this would greatly simplify the model. It is of interest to assess the valid-

ity of such simplifications for a free-swimming robot where the robot body undergoes movement.

We will use the proposed model in Section 3.2, which has proven effective as shown in the pre-

vious subsection, to evaluate the necessity of incorporating the body motion, by comparing the

simulation results when such motion is and is not considered.

For this study, we take the tail beat biasα0 to be 0, and thus the robot will perform forward

swimming at the steady state. We will evaluate the impact of incorporating (or neglecting) body

motion on the computed average thrust (over a tail-beat cycle) and the robot swimming speed. The

thrust force is evaluated via

Fthrust= Fhxcos(ψ−ψ0)−Fhysin(ψ−ψ0), (3.29)

where we recall from Fig. 3.1 thatψ denotes the heading of the robotic fish with respect to the
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Figure 3.5: Comparison between model prediction and experimental measurement of (a) turning radius
and (b) turning period as a function of the tail beat amplitude. The bias and frequency of the tail beat are
fixed at 20◦ and 0.9 Hz, respectively.
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Figure 3.6: Comparison between model prediction and experimental measurement of (a) turning radius
and (b) turning period as a function of the tail beat frequency. The bias and amplitude of the tail beat are
fixed at 20◦ and 15◦, respectively.
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X−axis in the inertial frame. In (3.29),ψ0 denotes the average ofψ over a tail-beat cycle at the

steady state, whileFhx andFhy are evaluated using (3.16) and (3.17). Ignoring the body motion in

hydrodynamic force evaluation implies that the velocity~Vτ at pointτ on the tail is changed from

(3.13) to

~Vτ = α̇τ n̂. (3.30)

Fig. 3.7 compares the calculated average thrusts under different tail-beat amplitudes and fre-

quencies, when the body motion is and is not incorporated in evaluating~Vτ , respectively. It shows

clearly that ignoring the body motion would result in significant over-estimate of the thrust. For

example, when the tail beats at 0.9 Hz with an amplitude of 15◦, the average thrust is 1.188 mN

when the body motion is ignored, which is 57% larger than the value of 0.755 mN when the body

motion is considered. Fig. 3.8 further compares the computed average swimming speeds under

the two modeling schemes, from which we can see that ignoring the body motion results in an

over-estimate of steady-state speed by about 25%. These results illustrate the profound impact of

the body motion on the tail-generated hydrodynamic force.

3.4 Eff cient Adaptation of Drag Coeff cients

3.4.1 Bias-based adaptation of drag coeff cients

The drag force and moment coefficientsCD andKD in (3.19) and (3.21) have been assumed to be

constants. Most (if not all) modeling work on robotic fish has assumed constant drag coefficients

[12, 93, 94, 110]. However, it is known in fluid mechanics that the angle of attack influences the

drag on a body that is moving through a fluid [11, 94, 108, 109]. For robotic fish, one challenge is

that the angle of attack oscillates constantly because of the recoil motion of the body in response to
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Figure 3.7:Simulated average thrust force with/without incorporating the body motion: (a) Thrust force
versus tail-beat amplitude (frequency fixed at 0.9 Hz); (b) thrust force versus tail-beat frequency (amplitude
fixed at 15◦.
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Figure 3.8: Simulated average velocity with/without incorporating the body motion: (a) Velocity versus
tail-beat amplitude (frequency fixed at 0.9 Hz); (b) velocity versus tail-beat frequency (amplitude fixed at
15◦.
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tail movements. Furthermore, evaluation of the angle of attack involves a highly nonlinear function

of the velocity components,β = arctan(VCy/VCx). In this section, we present an approach to the

efficient adaptation of drag coefficients for robotic fish, to maintain or even improve model fidelity

without the need to explicitly evaluate the angle of attack. The word “efficient” here refers to

computational efficiency (or low modeling complexity), as we will show in the later part of this

section that such a varying drag effect can be well captured with a simple function of the tail-beat

bias.

At the core of our approach is the exploitation of the close correlation between the angle of

attack and the tail beat bias. Recall the form of the tail beat angleα in (3.25). While the biasα0,

amplitudeαA, and frequencyωα all could be varied over time (for example, when one controls

the robot to follow some arbitrary path), such variations typically take place at a much slower time

scale than the tail beat motion – a tail beat pattern will be repeated for at least several cycles before

it is updated. Figs. 3.4–3.6 suggest that the turning radius strongly depends on the biasα0, but

is nearly independent of the amplitudeαA and frequencyωα . The turning radius is intimately

related to the angle of attack. To explicitly reveal the relationships between the angle of attack and

the tail-beat pattern parameters, we have used the model identified in Section 4.5 to numerically

evaluate the averageβ0 of the absolute value|β | of the angle of attack over each beat cycle, i.e.,

β0 =
ωα
2π

∫ t0+2π/ωα

t0
|β (t)|dt. (3.31)

From Fig. 3.9,β0 shows nearly linear dependence on the tail-beat bias angle, with little dependence

on the amplitude or the frequency.

Based on the observations from Fig. 3.9 and on the relationships between the drag coefficients

and the angle of attack [108], we propose adapting these coefficients using the tail-beat biasα0
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Figure 3.9:Simulation results on the dependence of the angle of attack on tail beat parameters, whereβ0

is the cycle-averaged absolute value of the angle attack: (a)β0 versus the tail beat biasα0; (b) β0 versus
the tail beat amplitudeαA; (c) β0 versus the tail beat frequencyωα . In (a), the amplitude and frequency are
fixed at 15◦ and 0.9 Hz; in (b), the bias and the frequency are fixed at 20◦ and 0.9 Hz; in (c), the bias and the
amplitude are fixed at 20◦ and 15◦.

43



(note that the underlying assumption here is that, the impactof the angle of attack,β , on drag can

be well captured through the cycle-averaged absolute value ofβ , β0):

CD =C′D0+C′D1α2
0, (3.32)

KD =K′D0+K′D1α0, (3.33)

whereC′D0, C′D1, K′D0 andK′D1 are constants that are empirically identified as follows. First, as

described in Section 3.3.2, we seek values ofCD, KD, andCLβ such that the simulated turning

radius and period best match the experimental results when the tail beats at 0.9 Hz with amplitude

of 15◦ and bias of 20◦. We then maintain the value ofCLβ , and find the best parameter estimates

for CD andKD when the bias is 30◦ and 40◦, respectively. We have deliberately left out the cases

of 25◦ and 35◦ biases at this stage, so that those data can be used in independent model validation.

Table 3.2 lists the identifiedCD andKD identified for the three biases. We then use the values

in Table 3.2 to identifyC′D0, C′D1, K′D0 andK′D0 in (3.32) and (3.33) through the least-square-

error fitting. The resulting parameters areC′D0 = 0.1936,C′D1 = 0.1412/rad2, K′D0 = 9.655×

10−4 kg·m2 andK′D1 = 4.383×10−4 kg·m2/rad, respectively.

Fig. 3.10 shows the comparison between the measured turning radii and periods and the values

predicted by the model with drag coefficient adaptation. We can see that, with the bias-based

adaptation of drag coefficients, the match between the model prediction and the experimental data

is further improved over that in Fig. 3.4.

Table 3.2: Identified drag force and moment coefficients for different tail beating biases.

Biasα0 (◦) CD KD (kg·m2)
20 0.2231 1.129×10−3

30 0.2112 1.174×10−3

40 0.2712 1.282×10−3
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Figure 3.10: Comparison between experimental measurement of (a) turning radius and (b) turning period
with those predicted by the model, where the drag coefficients are adapted and the lift force is evaluated
using (3.20). The amplitude and frequency of the tail beat are fixed at 15◦ and 0.9 Hz, respectively.
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To further validate the approach for drag coefficient adaptation, we have conducted additional

experiments involving transients in forward swimming. A yellow LED powered by a button cell

was taped to the top of the robot as a marker. The weight of the LED/cell add-on was 3 g, so its

impact on the total mass (over 300 g) and inertia of the robot was negligible. Starting from at rest,

the robot was programmed to swim forward (with the tail beat biasα0 = 0◦) with the amplitude

and frequency of the tail-beat equal to 15◦ and 0.9 Hz, respectively. We video-recorded the motion

of the LED (and thus of the robot) with the ambient light turned off, and extracted the robot’s

time-trajectory by applying background subtraction to the images. The dynamic model has been

simulated with the adapted and non-adapted drag coefficients, respectively. For the model with

non-adapted drag coefficients,CD = 0.2231,KD = 11.29×10−4 kg·m2, which are identical to the

coefficients obtained from the turning experiments as presented in Section 3.3.2. For the model

with adapted drag coefficients,CD = 0.1936,KD = 9.655× 10−4 kg·m2 , which are evaluated

based on (3.32) and (3.33), withα0 = 0. Fig. 3.11(a) and (b) compare the model predictions of the

X/Y-coordinate time-trajectories of the robot with the experimental measurement, and Fig. 3.11(c)

provides the comparison on the robot path in theXY-plane. It can be seen that the model with

adapted drag coefficients outperforms the one with non-adapted coefficients, and is able to capture

well both the transient and steady-state behaviors of the robot.

3.4.2 Elimination of the angle of attack from the lift force term

Note that, while the drag coefficients in (3.32) and (3.33) do not involve the angle of attackβ ,

the evaluation of the lift force for the robot body in (3.20) still requires knowingβ . In order to

eliminateβ from the overall model and thus reduce the model complexity, in this subsection we
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Figure 3.11:Comparison between model predictions and experimental measurement for forward swim-
ming (including transients): (a) time trajectory ofX-coordinate of the robot; (b) time trajectory of the
Y-coordinate of the robot; (c) path of the robot in theXY-plane. For both the experiment and simulations,
the amplitude and frequency of the tail beat are fixed at 15◦ and 0.9 Hz, respectively.
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explore replacingβ in (3.20) with the tail-beat biasα0:

FL =
1
2

ρ |VC|
2SC′Lβ α0, (3.34)

where,C′Lβ is the new lift coefficient associated with the tail bias. To identifyC′Lβ , we tuneC′Lβ ,

CD, andKD so that the simulated turning radius, turning period, and average of|β | match those

obtained in experiments when the tail beats with biasα0=20◦, amplitudeαA= 15◦, and frequency

ωA = 1.8π rad/s. The estimates areC′Lβ = 0.935,CD = 0.2131, andKD = 1.144×10−3 kg·m2.

With C′Lβ fixed, we can then follow the similar steps as in Section 3.4.1 to determine the drag

coefficient adaptation laws (3.32) and (3.33). Note that the four parameters in (3.32) and (3.33)

are identified twice since we want to compare the two cases when the evaluation of the lift force

involves the angle of attackβ or its surrogateα0. In practice, one only needs to identify these

parameters once given the choice of (3.20) or (3.34) for the lift force evaluation.

Fig. 3.12 and Fig. 3.13 show the model prediction performance when drag coefficients are fixed

and adapted, respectively, where the lift force is evaluated using (3.34) instead of using (3.20) as

for Figs. 3.4-3.6 and 3.10. From Fig. 3.12, the model with the modified lift term (3.34) is still able

to capture the trends of how the turning radius and period vary with the tail bias, although the match

has degraded from that seen in Fig. 3.4. From Fig. 3.13, one can see that, with the drag adaption,

significantly better match between the model prediction and experimental data is achieved.

3.5 Conclusion

In this work, we have presented a complete dynamic model for robotic fish actuated by a caudal

fin, where Lighthill’s elongated-body theory is used to evaluate the tail-generated hydrodynamic
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Figure 3.12:Comparison between experimental measurement of (a) turning radius and (b) turning period
with those predicted by the model, where the drag coefficients are not adapted and the lift force is evaluated
using (3.34). The amplitude and frequency of the tail beat are fixed at 15◦ and 0.9 Hz, respectively.
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Figure 3.13:Comparison between experimental measurement of (a) turning radius and (b) turning period
with those predicted by the model, where the drag coefficients are adapted and the lift force is evaluated
using (3.34). The amplitude and frequency of the tail beat are fixed at 15◦ and 0.9 Hz, respectively.
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force. For experimental validation purpose, we have considered a rigid tail with biased sinusoid

oscillation and treated the turning radius and turning period as outputs in the comparison between

model prediction and experimental results. Additional model validation has also been conducted

with experimental data of forward swimming including the transients. We have found that, in-

corporating the body motion in the evaluation of hydrodynamic forces plays a significant role in

capturing the dynamics. We have also shown that, the drag force and moment coefficients are

strongly dependent on the tail-beat bias, and subsequently we have proposed a novel scheme to

adapt these coefficients and lift force based on the tail movement pattern. The effectiveness of this

approach has been further demonstrated in experiments.
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Chapter 4

Dynamic Modeling of Robotic Fish with a

Base-actuated Flexible Tail

4.1 Introduction

Numerous designs of actuation mechanisms have been proposed for robotic fish [5, 11, 12, 19,

24, 35–39, 41, 43–46, 49, 114]. A typical approach is to use multiple links actuated separately or

jointly to deform the body itself [5, 8, 16, 19, 115, 116], which requires multiple actuators and/or

complex transmission mechanisms. Another class of designs involves an oscillating caudal fin

(e.g., [6,11,12,44,45] ), sometimes in conjunction with pectoral fins [11]. Among various designs,

tail actuation is especially attractive since it is easy to realize, enables both forward swimming

and turning maneuvers, and leaves the majority of the body free of moving parts. The latter is

important when the robot is used in applications such as mobile sensing, where the body space can

be maximally used to house sensors and electronics [1]. Many tail-actuation designs involve rigid,

oscillating plates [11,14,15,93]. This design lends itself to simple construction and tractable analy-

sis. However, it has been recognized that the flexibility of body and fin structures has a pronounced

impact on the swimming performance of biological and robotic fish [18,117,118]. Flexible caudal

fins can be realized by motor-driven compliant beams or plates [19, 44], or directly through soft

actuation materials such as ionic polymer-metal composites (IPMCs) [6, 9, 12, 45]. While these

active materials possess intriguing properties, the thrust they can produce is still relatively weak
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and the long-term repeatability of their actuation behavioris yet to be established. Therefore,

base-actuated soft, passive structures remain a competitive option for flexible tails.

To design and control robotic fish actuated with a flexible tail, it is essential to have a faithful

and efficient dynamic model. Modeling of a flexible beam attached to a moving base in the air has

been studied by a number of researchers [119–121]. However, in this work, a major challenge in the

modeling lies in properly capturing the fluid-structure interactions and the resulting force and mo-

ment on the robot. Most existing work on modeling has dealt with rigid fins [11,14,15,90,92,93],

although modeling of flexible fins has been conducted recently by several groups [12,19,45,122].

In [19], Alvaradoet al. focused on designing compliant bodies to achieve biomimetic locomotion

efficiency and maneuverability. To demonstrate the results, they also compared the experimental

results with the linear beam model. Researchers have also developed models that capture the ac-

tuation physics of an anchored IPMC beam and the complex hydrodynamic interactions between

IPMC and fluid [12, 45]. In [122], Kopmanet al. described a modular biomimetic robotic fish

developed for educational activities, along with a modeling framework for predicting the robot’s

static thrust production. In all these studies, a linear Euler-Bernoulli beam model was adopted

to describe the beam dynamics. A disadvantage of this approach is that, under large oscillations,

these models do not accurately capture the beam dynamics [123–125] and consequently the hydro-

dynamics.

In this work, we take a significant departure from the beam model approach by approximat-

ing a flexible tail with multiple rigid segments connected in series through torsional springs and

dampers. A similar multi-segment approach has been used to model a beam under large deforma-

tion in air [125,126] and model a flexible beam in flow sensing [127]. However, the multi-segment

beam model has not been explored in the modeling of a base-actuated flexible beam subject to

complex hydrodynamic interactions. For comparison, we also present a model based on linear
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beam theory, as widely adopted in other studies [12, 19, 45, 122]. Note that, for ease of presen-

tation, a tail with uniform height is considered in this work. Despite its simple appearance, this

case captures the key essential challenges (nonlinear beam dynamics under large deformation,

coupled with hydrodynamic interactions) that would be present for cases with more general tail

shapes. We evaluate the hydrodynamic force on the actuating tail using Lighthill’s large-amplitude

elongated-body theory [25], because it has a sound balance between fidelity and simplicity and its

effectiveness in robotic fish modeling has been demonstrated in our prior work [15, 45]. A weak-

ness of Lighthill’s theory is that it neglects the effect of vortex wake on the pressure distribution

on the body and thus neglects the effect of vortex shedding on the thrust production [128]. In-

corporating such vortex-shedding effects (for example, using the vortex ring panel method [129]),

however, typically requires CFD simulation and is not amenable to the development of a model

that is suitable for robot optimization and control, which is the goal of this work.

To compare and validate the models, we conduct extensive experiments with a robotic fish

prototype. We find that both models have similar predictions that are close to the experimental

measurements when the flexible beam is under small deformations. However, the discrepancy

between the predictions becomes greater as the beam experiences larger deformations. In particu-

lar, we show that the multi-segment model is able to predict precisely the transient trajectory and

steady-state speed of the free-swimming robot, as well as the dynamic shape of the tail, under a

wide range of actuation inputs. In comparison, the linear beam model-based approach is only able

to capture the robot speed and tail shape when the tail undergoes relatively small deformations.

The remainder of the chapter is organized as follows. The overall dynamic model for a tail-

actuated robotic fish is first reviewed in Section 4.2, where the hydrodynamic forces generated

by the tail are evaluated by Lighthill’s theory. The use of Lighthill’s theory requires knowing

the tail shape as a function of time, which is the main focus of this chapter. The Euler-Bernoulli
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beam-based model and the multi-segment model for the based-actuated flexible tail are developed

in Sections 4.3 and 4.4, respectively. Experimental validation and comparison of the models are

presented in Section 4.5. Finally, concluding remarks are provided in Section 4.6.

4.2 The Model Framework for Tail-actuated Robotic Fish

The robot is assumed to comprise two parts, a rigid body and a flexible tail. The motion of the robot

body is governed by rigid-body dynamics with the added-mass effect incorporated. Lighthill’s

large-amplitude elongated-body theory is adopted to evaluate the hydrodynamic forces generated

by the flexible tail’s motion. We assume that the height of the tail does not vary abruptly along its

length, thus meeting the “elongated body” requirement [25].

Fig. 4.1 shows a schemata of the robotic fish, with[X,Y,Z] denoting the inertial coordinates,

and [x,y,z] denoting the body-fixed coordinates with unit vectors[x̂, ŷ, ẑ]. We denote by ˆm and

n̂ the unit vectors parallel and perpendicular to the tail, respectively. We assume that both the

body and the tail are neutrally buoyant, and that the center of gravity of the body coincides with

the center of geometry at pointC. The velocity atC expressed in the body-fixed coordinates

~VC = [VCx,VCy,VCz]
T comprises surge (VCx), sway (VCy) and heave (VCz) components. In addition,

the angular velocity~ω = [ωx,ωy,ωz]
T comprises roll (ωx), pitch (ωy) and yaw (ωz) expressed in

the body-fixed coordinates. We useα to denote the tail deflection angle (the tangential direction

of the flexible tail at the base) with respect to the negativex−axis, andβ to denote the angle of

attack, formed by the direction of~VC with respect to thex−axis. Finally,ψ denotes the heading

angle, formed by thex−axis relative to theX−axis.

We note that the actual mass of the tail is negligible (relative to the virtual mass) when the

width of the tail is much thinner than the height [25], which is typically true for the tail of a robotic
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Figure 4.1: Schematic representation of the robotic fish in planar motion.

fish. For example, in the model validation part of this work, we use a flexible tail with a height of

2.5 cm and a thickness of 0.3 mm, which indicates thatmw is 490.9 g per meter. In contrast, the

physical tail, which has a length of 8 cm, weighs 0.54 g, resulting in a mass of 6.75 g per meter,

which is 1.38% of the virtual mass.

4.3 Dynamic Modeling of a Tail Using Euler-Bernoulli Beam

Theory

The application of Lighthill’s theory requires knowing the shape trajectory of the base-actuated

flexible tail. We propose a multi-segment approach to the modeling of the tail that undergoes

large deformations in Section 4.4. But in this section we first develop a comparative approach

based on linear beam theory, which has been widely used in the relevant literature. We focus on
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beam modeling with the robot anchored, as typically adopted in the literature [19, 122]. Fig. 4.2

illustrates this approach; the dashed line represents a rotating frame, which coincides with the line

tangential to the tail at the base, and the blue solid curve represents the shape of the flexible caudal

fin. The transverse displacement of points on the flexible tail relative to the rotating base, due

to the beam’s vibration, is given byw(τ, t). We note that the tail is assumed to be under small

deformation in accordance with the Euler-Bernoulli theory. In other words, the motion direction

of each point along the flexible tail is perpendicular to the dashed line.
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Figure 4.2: Passive flexible tail modeled by Euler-Bernoullilinear beam approach.

The tail is excited by the oscillating support at the pointA, with:

[

∂w1(τ, t)
∂τ

]

τ=0
=

[

∂w2(τ, t)
∂τ

]

τ=0
= α(t). (4.1)
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Herew1(τ, t) denotes the beam displacement in the inertial frame andw2(τ, t) accounts for the

rigid-body (rotating base) motion:

w1(τ, t) = w2(τ, t)+w(τ, t),

w2(τ, t) = τ ·α(t). (4.2)

The forced underwater vibration of the flexible beam is described by the following equation

[122,130]

∂2

∂τ2

[

EI(τ)
∂2w1(τ, t)

∂τ2

]

+m(τ)
∂2w1(τ, t)

∂ t2
= p(τ, t), (4.3)

whereE denotes the Young’s modulus of the flexible tail,I denotes the area moment of inertia,

m(τ) denotes the mass of the tail per unit length andp(τ, t) denotes the transverse loading on the

tail which is caused by the interactions between the tail and the surrounding aquatic environment

that can be evaluated by Lighthill’s theory. Unlike [19, 122], in this work we also consider dis-

tributed viscous damping introduced by the internal resistance opposing the strain velocity [130],

which leads to

∂2

∂τ2

[

EI(τ)
(∂2w1(τ,t)

∂τ2 +κ ∂3w1(τ,t)
∂τ2∂ t

)

]

+m(τ)∂2w1(τ,t)
∂ t2

= p(τ, t), (4.4)

whereκ is the stiffness proportionality factor for Rayleigh damping.

Similar to [14, 15], we assume that the tail itself has negligible mass compared to the added

mass effects. Then following Lighthill’s theory, we obtain:

EI

[

∂4w(τ, t)
∂τ4 +κ

∂5w(τ, t)
∂τ4∂ t

]

+mw
∂2w(τ, t)

∂ t2
= Peff(τ, t) (4.5)
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in which

Peff (τ, t) = −EI

[

∂4w2(τ, t)
∂τ4 +κ

∂5w2(τ, t)
∂τ4∂ t

]

−mw
∂2w2(τ, t)

∂ t2

represents the effective distributed dynamic loading caused by the prescribed support excitations,

andmw is virtual mass per unit length defined previously, accounting for the added mass effect.

Since the first two terms ofPeff(τ, t) are equal to zero asw2(τ, t) = τ ·α(t), the tail beam can be

modeled as

EI

[

∂4w(τ, t)
∂τ4 +κ

∂5w(τ, t)
∂τ4∂ t

]

+mw
∂2w(τ, t)

∂ t2
=−mwτ · α̈(t). (4.6)

Using the modal analysis method, we can express the solution of (4.6) as the sum of an infinite

number of modes:

w(τ, t) =
∞
∑
i=1

φi(τ)ηi(t), (4.7)

whereφi(τ) is the beam shape for theith mode andηi(t) is the corresponding generalized coordi-

nate. There is no concentrated force in the ˆn direction with the anchored body assumption, which

implies that the boundary conditions forw(τ, t) is the same as those for a cantilever beam:

w(0, t) = 0,
∂w
∂τ

(0, t) = 0,

EI
∂2w

∂τ2 (L, t) = 0, EI
∂3w

∂τ3 (L, t) = 0.

(4.8)
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The mode shapeφi(τ) takes the form

φi(τ) = (cosβiτ−coshβiτ)−δi(sinβiτ−sinhβiτ), (4.9)

whereβi can be obtained by solving

1+cosβiLcoshβiL = 0,

and

δi =
cosβiL+coshβiL
sinβiL+sinhβiL

.

With the damping ratio for theith mode

ξi =
κωi

2
,

whereωi is the natural frequency for theith mode,

ωi = β 2
i

√

EI
mw

, (4.10)

ηi(t) can be solved from

d2ηi(t)

dt2
+2ξiωi

dηi(t)
dt

+ω2
i ηi(t) =

Qi(t)
Mi

, i = 1,2. . . (4.11)

where

Qi(t) =
∫ L

0
φi(τ)Peff(τ, t)dτ, (4.12)
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and

Mi =
∫ L

0
φi(τ)2mwdτ. (4.13)

When the tail shaft oscillates sinusoidally, we can obtain a closed-form solution forηi(t). Consider

in particular the following form for the base angle

α(t) = α0+αAsin(ωα t +φα ), (4.14)

whereα0, αA, ωα , andφα denote the bias, amplitude, frequency, and initial phase of the tail beat,

respectively. Then we have

ηi(t) =
mwαAω2

α
∫ L
0 τφi(τ)dτ

MiZiωα
sin(ωα t +φα +φi), (4.15)

where

Zi =

√

(2ωiξi)2+
1

ω2
α
(ω2

α −ω2
i )

2

is the magnitude of the impedance function and

φi = arctan

(

2ωαωiξi

ω2
α −ω2

i

)

is the phase lag of the oscillation relative toα(t). The total hydrodynamic force acting on the tail

is then

~F =

∫ L

0
~f (τ)dτ−

[

1
2

mwv2
⊥

m̂

]

τ=L
, (4.16)

where~f (τ) = −mw
[

(τα̈ + ∂2w
∂ t2

)n̂− α̇(τα̇ + ∂w
∂ t )m̂

]

. The corresponding moment relative to the
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centerC of the robot body is

~M =

∫ L

0
~rCτ × ~f (τ)dτ +~rCL×

(

−

[

1
2

mwv2
⊥

m̂

]

τ=L

)

, (4.17)

where~rCτ and~rCL denote the vectors from the body centerC to the pointτ andL on the tail,

respectively.

4.4 Dynamic Modeling of a Tail Using Multi-segment Approx-

imation

A fundamental underlying assumption in establishing the model described in the previous section

is that the flexible tail is under small deformation. However, based upon observation of the dynamic

shape of the tail, this assumption does not always hold, especially when the tail undergoes large

angular displacement and/or high-frequency oscillations. In this section, we propose a novel model

by representing the tail as multiple rigid elements connected in series through torsional springs and

dampers, to capture the large deformation of the beam.N rigid segments, with equal length ofl ,

are used to represent the tail, as illustrated in Fig. 4.3. Each segment is linked with its neighboring

segments through joints modeled by a torsional springKS and a viscous damperKD.

Following [125], we can evaluate the stiffness of each torsional spring as

KS=
Edh3

12l
, (4.18)

with h denoting the thickness of tail.KD can be evaluated asKD = κKS, whereκ is the proportional

constant as defined in the previous section. Following Lighthill’s large-amplitude elongated-body
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Figure 4.3: Passive flexible tail modeled by multiple rigid segments.

theory, we need to compute the motion of every point along the tail over time, in order to evaluate

the tail actuation-induced hydrodynamic force. Consequently, we need to know the joint angles

αi , made by theith link with respect to the negativex-axis (as illustrated in Fig. 4.3), so that (3.8)

and (3.9) can be applied to evaluate the hydrodynamic forces on the tail section. The displacement

~rτi of every pointτi on theith segment in the inertial frame can be described as:

~rτi = l ·
[

i−1

∑
k=1

m̂k
]

+ τim̂i , (4.19)

then the velocity perpendicular to theith segment is

vτi⊥
= l ·

[

i−1

∑
k=1

α̇kcos(αk−αi)
]

+ τiα̇i . (4.20)
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Therefore, the force density acting on theith segment can be evaluated as

~fτi = −mw
d
dt
(vτi⊥

n̂i)

= −mw

{

l
i−1

∑
k=1

[

α̈kcos(αi−αk)

−α̇ksin(αi−αk)(α̇i− α̇k)
]

+ τiα̈i

}

n̂i

+mwα̇i

{

l
i−1

∑
k=1

[

α̇kcos(αi−αk)
]

+ α̇iτi

}

m̂i . (4.21)

The total reactive force~Fi on theith segment, and the moment~Mi relative to pointAi−1 can be

evaluated using

~Fi =

∫ l
~fτi dτ, ~Mi =

∫ l
τim̂i× ~fτi dτ. (4.22)

Defining~FAi and ~MAi to be the force and the moment exerted by the(i +1)th segment on theith

segment, respectively, we can express the interactions between adjacent segments as,

~FAi
= ~Fi+1+~FAi+1

, (4.23)

~MAi
= ~Mi+1+ ~MAi+1

+ l m̂i×~FAi+1
. (4.24)

For the last segment of the tail, as illustrated in Fig. 4.3, the reactive force and moment are

~FAN
= −

1
2

mw
[

l
N

∑
k=1

α̇kcos(αN−αk)
]2m̂N

+mw
[

l
N

∑
k=1

α̇kcos(αN−αk)
]

·

[

l
N

∑
k=1

α̇ksin(αN−αk)
]

n̂N (4.25)

~MAN
= 0. (4.26)

64



Defining ~M(S+D)i
the moment produced by the spring and damper at jointAi , then the moment

balance equation implies, fori = 1,2, · · · ,N−1,

~MAi
= ~M(S+D)i

, (4.27)

where

~M(S+D)i
=
[

KS(αi+1−αi)+KD(α̇i+1− α̇i)
]

ẑ. (4.28)

Eq. (4.27) has(N−1) scalar equations involving(N−1) unknown variablesα2, · · · ,αN, which is

solvable.

~FA0
is the force that the flexible tail exerts on the robotic fish body, which can be written as

~FA0
= Fhx· x̂+Fhy· ŷ, whereFhx andFhy are the components ofFA alongx̂ andŷ, respectively. The

moment to the center of the body caused by the oscillation of the tail can be evaluated as

~MC = ~MA0
−cx̂×~FA0

. (4.29)

It is clear that~MC is along thezdirection, which we denote asMhz.

4.5 Experimental Model Validation

To evaluate the dynamic models described in Sections 4.3 and 4.4, we have conducted experiments

with the free-swimming robotic fish prototype shown in Fig. 4.4. The robot has a simple mech-

anism for actuation, and it satisfies most of the assumptions used in the modeling work, which

facilitates model validation. In particular, the height of the tail does not change abruptly along

the length direction, thus meeting the “elongated body” requirement. The thickness of the tail is
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much less than its height, so that the actual mass of the tail ismuch less than the virtual mass as

assumed. Through a chain transmission mechanism, a servomotor (HS-5085MG from Hitec) is

able to control the angular position of the tail shaft and thus the tail deflection angleα, i.e. sinu-

soidal motion, accurately. On the other hand, in the modeling work, we assume that the robot is

anchored, as typically adopted in the literature. This assumption, of course, does not hold fully dur-

ing free-swimming experiments, which might explain the slight discrepancies between the model

predictions and experimental measurement in those experiments. The tail was a rectangular plastic

slice, which was 8 cm long, 2.5 cm wide (deep), and 0.3 mm thick.

Chain transmissionServo motorProgramming port

Flexible TailFlexible TailTail shaft

Figure 4.4:A free-swimming robotic fish prototype used for model validation.

4.5.1 Parameter identif cation

The same experimental prototype (with a different tail) was used in [14] to validate a dynamic

model for a robotic fish with a rigid tail. The following parameters for the robot were identified

in [14]: c = 0.07 m,mb = 0.311 kg,ρ = 1000 kg/m3, S= 0.0108 m2, Jbz= mb(2c)2/12. The added

masses and inertias are calculated by approximating the robot body as a prolate spheroid [12,112]:
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−XV̇Cx
= 0.0621 kg,−YV̇Cy

= 0.2299 kg, and−Nω̇z = 1.0413×10−4 kg·m2.

The drag and lift coefficients,CD, CL, andCM are also identified empirically for the robotic

fish with a rigid tail and then used in validating the flexible tail models. In particular, we have

tuned these parameters to match the turning radius, turning period, and the average of|β | obtained

in simulation, with the experimental measurements recorded for a particular tail beat pattern. We

set amplitudeαA = 13.6◦, frequencyωα = 1.8π rad/s (0.9 Hz) and evaluate the suitable drag and

lift coefficients for the tail-beat biasα0 equal to 20◦, 30◦ and 40◦ as [15]. Using least-square-error

fitting, we obtainCD = 0.276,CL = 4.5, andCM = 7.4×10−4 kg·m2, whenα0 = 0.

For measuring the Young’s modulus, we set up the experiment shown in Fig. 4.5, and evaluate

E using:

E =
L3

bPL

3IbwL
, (4.30)

whereLb andIb are the length and the area of moment inertia of the testing beam, respectively.PL

is the load at the tip end, andwL is the end’s displacement. A plastic beam (the same material as

the flexible tail) is clamped at the upper surface of a rectangular block, which is fixed on a piston

that can move up and down along the stand. A custom LabVIEW (2011 SP1) virtual instrument

graphical user interface (GUI) is developed to perform the data acquisition through a dSPACE

system (RTI 1104, dSPACE). The force exerted on the beam is captured by a load cell (GS-10,

Transducer Techniques) with a custom-made amplifier circuit. The displacement of the beam tip

is measured with a laser sensor (OADM 20I6441/S14F, Baumer Electric). Prior to experiment, the

system is calibrated with a weight applied to the load cell. Three sets of data are collected to cal-

culate the Young’s modulus, and in each set, a least square error method is adopted to approximate

the slope between the force and displacement. Fig. 4.6 shows results for three tests, indicating that

E ∈ [1.41,1.51] GPa. In this work, we takes the averageE = 1.48 GPa.
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Laser displacement sensor

Stand

Load cell
Beam

Stand

Clamp

Figure 4.5:Experimental setup for measuring the Young’s modulus of the flexible tail.

When modeling a tail using the multi-segment approximation, the number of rigid segments

affects both modeling accuracy and computational complexity [127]. Specifically, a higher number

of elements results in a more accurate model, but is also more computation-intensive. Fig. 4.7

shows the simulated responses of the beam tip displacement (relative to thex axis along the body)

to a sinusoidal base excitation, when different numbers of segments are used to model the flexible

beam. The properties of the beam used in the simulation are same as those of the beam identified
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Figure 4.6:Experimental results for measuring the Young’s modulus of the flexible tail.

from the experiments. It can be observed that, the beam tip displacements gradually converge to

each other when the number of segments increases. Fig. 4.8 shows the running time needed for

the simulation illustrated in Fig. 4.7, which was conducted with Matlab/Simulink on a desktop

PC (Dell Vostro 460 with 3.1 GHz Intel i5-2400 CPU and 4 GB memory). In particular, for all

cases, the fundamental sampling time in Simulink is fixed at 0.000167 s, the simulation time is

set to be 10 s in total, and the elapsed CPU time is obtained using the Matlab macrocputime.

We can see that the computation time increases rapidly with the number of rigid segments used

in the simulation. A five-segment approximation achieves a sound tradeoff between the modeling

accuracy and computational efficiency, and therefore is adopted in this study.

According to Eq. (4.18), we haveKS= 5.2×10−3 N·m that is used in the model using multi-

segment approximation. The values ofκ are identified empirically by fitting the data of forward
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Figure 4.7:Displacement of the tail tip generated by the model using different number of rigid segments.

speed versus beating frequency for both models. In particular, we choose the value ofκ such

that the simulated steady-state speed of the robot, whenα0 = 0◦, matches the experimental results

when the tail beats at 0.45 Hz, 0.9 Hz and 1.35 Hz, respectively (for which cases the flexible tail

undergoes relatively small deformations). This results inκ = 0.0846 s for the Euler-Bernoulli

beam model andκ = 0.0731 s for the multi-segment approximation model. We take the average

κ = 0.079 s, which leads toKD = 4.1×10−3 N·m·s, usingKD = κKS. These parameters are then

applied in the simulation of all other cases.

4.5.2 Model verif cation

Fig. 4.9 compares the two models and experimental measurements in terms of the steady-state

speed of the robotic fish with respect to the actuation frequency. The trends are similar for the two
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Figure 4.8:Computation time needed to simulate the model using different numbers of rigid segments.

model predictions. In particular, the robot’s speed increases with the frequency up to a threshold

value (1.35 Hz in the simulated case) and then starts to drop. While the predictions from both

models match the experiments relatively well (due to the tuning process for parameterκ as de-

scribed in the previous subsection), the discrepancy between the predictions becomes larger as the

actuation frequency increases. The flexible tail is subjected to the added mass effect as explained

in Eq. (3.8). Under a high frequency excitation, the lateral hydrodynamic loading on the tail in-

creases and causes larger deformation of the tail. By using linear Euler-Bernoulli beam theory, we

assume that the tail is under small deformation, and thus the motion direction of each point along

the flexible tail is perpendicular to the dashed line in Fig. 4.2. The latter assumption no longer

holds when the excitation frequency gets high due to the large deformation, which explains the

poor prediction performance of the linear beam model at relatively high frequencies. On the other
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hand, the model using the multi-segment approximation matches the experimental measurement

closely throughout the actuation frequency range used in the experiments.
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Figure 4.9:Comparison between model predictions and experimental measurement of the speed versus
tail-beat frequency. The amplitude is fixed at 13.6◦.

To further compare the two models under different conditions, a second experiment has been

conducted with another tail of different dimensions, which is 2.34 cm high and 9.8 cm long. Fol-

lowing Eq. (4.18) and the linear relationshipKD = κKS, the values ofKS andKD are updated

from the originalKS= 5.2×10−3 N·m andKD = 4.1×10−3 N·m·s toKS= 4.0×10−3 N·m and

KD = 3.13×10−3 N·m·s, respectively. Fig. 4.10 shows the comparison between the two models

and the experimental measurements for the robot with the new tail. Consistent with the results in

Fig. 4.9, one can see that the model using the multi-segment approximation matches the experi-

mental measurement closely for all actuation frequencies, while the linear beam model performs

well only for low frequency actuation.
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Figure 4.10:Comparison between model predictions and experimental measurement of the speed versus
tail-beat frequency, with the new tail. The amplitude is fixed at 13.6◦.

To further assess the proposed multi-segment model, we conduct an experiment involving tran-

sients in forward motion, where the robot started from at rest. Fig. 4.11(a) and (b) compare the

model predictions of theX/Y-coordinate time-trajectories of the robot with the experimental mea-

surements, and Fig. 4.11(c) compares the predicted and actual robot paths in theXY-plane. It can

be seen that the proposed model is able to capture well both the transient and steady-state behaviors

of the robot.

We have conducted additional experiments to compare the time-dependent shape of the flexible

tail with those predicted by the models. As can be seen in Fig. 4.12, the free swimming robot shown

in Fig. 4.4 is fixed by a bracket and set to oscillate the tail. A Casio Exilim EX-FH25 high-speed

camera with a frame rate of 120 frames/s is used to record the tail’s motion from above.

Figs. 4.13 and 4.14 compare the measured time-dependent tail shape and those predicted by

73



the two models for 0.4 Hz and 0.9 Hz, respectively. To save space, we show every ninth frame

for half a period of the tail oscillation. It can be seen that when the tail beats at the relative low

frequency, 0.4 Hz, both models produce very close approximations of the tail shape. However,

at 0.9 Hz, when the beam deformation is bigger, the multi-segment modeling approach produces

much more precise predictions of the beam shape than the linear beam theory-based approach.

4.6 Conclusions

In this chapter, we have developed a model for robotic fish with a base-actuated flexible tail.

The tail is modeled as multiple rigid segments connected by springs and dampers, and Lighthill’s

elongated-body theory is used to evaluate the tail-generated hydrodynamic forces. For comparison,

we have also constructed a model using linear beam theory. We compare predictions of both mod-

els to experimental results with a robotic fish, in terms of steady-state cruising speeds and dynamic

tail shapes under different actuation frequencies. From these results, we conclude that when the

tail is excited under a relatively low frequency, and consequently experiences small deformation,

both models produce similar predictions that are close to experimental measurements. However,

when the actuation frequency increases, the two models differ, and the model using multi-segment

approximation is able to predict much better the robot speed and the tail shape. Additional experi-

mental results also indicate that the proposed model is capable of capturing the transient dynamics

of the robot.

In summary, the work presented in this chapter provides a computationally efficient and ac-

curate model for capturing large tail deformation and the resulting hydrodynamic force for a tail-

actuated robotic fish. The model will facilitate effective tail design optimization and controller

development for such robots. While one could also use nonlinear beam models and computational
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fluid dynamics (CFD) to achieve faithful modeling of the tail,the latter approach would be much

more computationally expensive, and would be difficult to integrate with the robot dynamics for

controller design.

This work can be extended in several directions. First, although this chapter has focused on

the case of a rectangular tail for ease of presentation, the mathematical derivation itself is general

and the approach can be extended to tails of other shapes (e.g., trapezoidal) following a similar

treatment, where the properties of each segment (mass, inertia) and each joint (spring and damper

constants) will depend on the local shape. Second, we are particularly interested in using the pro-

posed model to understand the effect of tail shape and stiffness properties on the robot’s locomotion

performance, and exploit such understanding for design optimization. Finally, we will utilize the

proposed model to design controllers for flexible tail-actuated robotic fish.
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Figure 4.11: Comparison between multi-segment model predictions and experimental measurement for
forward swimming (including transients): (a) time trajectory ofX-coordinate of the robot; (b) time trajec-
tory of theY-coordinate of the robot; (c) path of the robot in theXY-plane. For both the experiment and
simulations, the amplitude and frequency of the tail beat are fixed at 13.6◦ and 0.9 Hz, respectively.
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Figure 4.12:Experimental setup to capture the dynamic shape of a flexible tail actuated at the base.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13:Comparison between experimental measurement of the time-dependent tail shape with model
predictions. The tail beats at 0.4 Hz with 0◦ bias and 14◦ amplitude. The black solid line, blue dashed line
with circles and the red dash-dot line imply the experimental measurement, predictions from multi-segment
model and Euler-Bernoulli beam model, respectively.
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Figure 4.14:Comparison between experimental measurement of the time-dependent tail shape with model
predictions. The tail beats at 0.9 Hz with 0◦ bias and 13.6◦ amplitude. The black solid line, blue dashed line
with circles and the red dash-dot line imply the experimental measurement, predictions from multi-segment
model and Euler-Bernoulli beam model, respectively.
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Chapter 5

Control-oriented Averaging of Tail-actuated

Robotic Fish Dynamics

5.1 Introduction

Much of the work in the area of robotic fish has focused on the design ( [5, 6, 8, 10, 131]) and

dynamic modeling [11, 14, 15, 45, 92, 95, 96, 132]. Due to the rhythmic nature of body and fin

movements of robotic fish, averaging represents a promising approach in obtaining models that

simplify motion analysis and control design [133]. While classical averaging [134], which simply

integrates the original vector field over one period, is easy to implement, it cannot be applied

directly to robotic fish dynamics, because the latter typically involves large-amplitude oscillatory

inputs and fails to satisfy the slow-dynamics assumption required by classical averaging theory.

Geometric averaging [135, 136], on the other hand, can handle systems with highly oscillatory

inputs, but as we show in this chapter, for an original dynamic model that is reasonably accurate

(and complex), the resulting average model is overly complicated and has limited use for system

analysis and control design.

In this chapter, a novel averaging approach is proposed for robotic fish dynamics, with a focus

on planar motions of a rigid tail-actuated robotic fish. Note that among various actuation mecha-

nisms, actuation with an oscillating caudal fin is particularly attractive (e.g., [6,11,12,44,45]). This

is because the latter is easy to realize, enables both forward swimming and turning maneuvers, and
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leaves the majority of the robot body free of moving parts. We adopt a model where Lighthill’

large-amplitude elongated-body theory [25] is used to evaluate the tail-generated hydrodynamic

force, since such a model strikes a sound balance between fidelity and simplicity [15].

The proposed averaging approach consists of properly scaling the force and moment terms in

the dynamic model and then conducting classical averaging. To identify the scaling functions, a

large number of tail-beat patterns are used in simulation of the original dynamics; for each tail-beat

pattern (bias, amplitude, and frequency), the scaling coefficients for the force and moment terms

are determined such that the corresponding average model will result in turning radius and turning

period at the steady state that best match those of the original dynamics. It is found that, for a

given set of parameters for the robotic fish model, its force scaling function is a constant (thus

independent of the tail-beat pattern) while its moment scaling function is linear in the tail-beat bias

but independent of tail-beat frequency and amplitude.

The proposed averaging model is evaluated extensively with simulation and experimental re-

sults, including the comparison of predictions of turning period/radius and cruising speed at the

steady state, by the original model and the average model, respectively. Also included is the valida-

tion of the average models ability to predict transient behavior of the robot. Most of the simulation

and experimental scenarios used in the evaluation have not been used in identifying the scaling

coefficients, which provides strong support for the effectiveness of the average model.

To gain analytical insight into the obtained average model, we analyze the existence and sta-

bility of its equilibrium points. In particular, with several reasonable assumptions, we establish the

existence and uniqueness of equilibrium points for the (approximate) average model under a given

tail-beat pattern. Furthermore, through linearization analysis, we show that any equilibrium of the

average model is locally asymptotically stable.

Finally, to illustrate the utility of the proposed average model in motion analysis, we present
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a semi-analytical framework for modeling the steady turningof robotic fish. Based upon the pro-

posed average model, the force and moment balance equations during steady turning are set up

explicitly in terms of three unknowns, the turning radius, angular speed (equivalent to turning pe-

riod information) and the angle of attack. Thesealgebraicequations can then be solved to get the

turning-related parameters for any given tail-beat pattern. Such a framework is different from ex-

isting work (e.g. [14,15,137,138]), where dynamical equations are used for simulation and turning

parameters can only be found by observing the simulated trajectories. We note that the average

model also holds potential for controller design; for example, Chenet al. has used a preliminary

form of this model in backstepping-based control design for a robotic fish [139].

The remainder of the chapter is organized as follows. In Section 5.2, we summarize the dy-

namic model for a tail-actuated carangiform robotic fish. In Section 5.3 we review the first-order

geometric averaging method and the classical averaging method, and discuss why they are inade-

quate for averaging the robotic fish dynamics. The proposed averaging method is developed and

evaluated in Section 5.4. Analysis of the resulting average model is presented in Section 5.5. The

semi-analytical framework for turning is described in Section 5.6. A nonlinear controller design for

the robotic fish to achieve trajectory tracking using the average model is presented in Section 5.7.

Finally, concluding remarks are provided in Section 5.8.
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5.2 Dynamic Model of Robotic Fish

As described in Section 3.2 of Chapter 3, the equation of planar motion for a rigid body in an

inviscid fluid is governed by the Kirchhoff’s equations

(mb−XV̇Cx
)V̇Cx = (mb−YV̇Cy

)VCyωz+Fx, (5.1)

(mb−YV̇Cy
)V̇Cy = −(mb−XV̇Cx

)VCxωz+Fy, (5.2)

(Jbz−Nω̇z)ω̇z = (YV̇Cy
−XV̇Cx

)VCxVCy+Mz, (5.3)

whereFx, Fy, Mz denote the external forces and moments about the body center, which are caused

by the tail motion and the interaction between the body itself and the surrounding fluid, and can be

evaluated by


























Fx =< (
∫ L
0
~f (ζ )dζ +~FL), x̂>−FD cosβ +FL sinβ ,

Fy =< (
∫ L
0
~f (ζ )dζ +~FL), ŷ>−FD sinβ −FL cosβ ,

Mz=
∫ L
0 ~rCζ ×~f (ζ )dζ +~rCL×~FL +MD,

(5.4)

where~rCζ denotes the vector from the body center to the pointζ on the tail, i.e.,~rCζ = −(c+

ζ cosα)x̂− (ζ sinα)ŷ, andc is the distance from the body center to the joint. “×” represents the

cross product of vectors.

Finally, the dynamic model for the robotic fish can be summarized as



























V̇Cx = f1(VCx,VCy,ωz)+ f4(t),

V̇Cy = f2(VCx,VCy,ωz)+ f5(t),

ω̇z = f3(ωz)+ f6(t),

(5.5)
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where






































































































f1(VCx,VCy,ωz) =
m2
m1

VCyωz−
c1
m1

VCx

√

V2
Cx+V2

Cy

+
c2
m1

VCy

√

V2
Cx+V2

Cyarctan(
VCy
VCx

),

f2(VCx,VCy,ωz) = −
m1
m2

VCxωz−
c1
m2

VCy

√

V2
Cx+V2

Cy

−
c2
m2

VCx

√

V2
Cx+V2

Cyarctan(
VCy
VCx

),

f3(ωz) = (m1−m2)VCxVCy−c4ω2
zsgn(ωz),

f4(t) = −
c3
m1

α̈ sinα,

f5(t) = +
c3
m2

α̈ cosα,

f6(t) = −c5α̈ cosα−c6α̈,

with c1 = 1/2ρSCD, c2 = 1/2ρSCL, c3 = 1/2mL2, c4 = 1/(J3)KD, c5 = 1/(2J3)L
2mcandc6 =

1/(3J3)L
3m, m1 = mb−XV̇Cx

, m2 = mb−YV̇Cy
, J3 = Jbz−Nω̇z, whereL is the tail length and̈α

denotes the second-derivative of the tail angleα with respect to time.

5.3 Averaging with Existing Methods

Since the tail-actuation for robotic fish is typically periodic, averaging is a useful tool for gaining

insight into the effect of the input parameters (such as tail beat bias, period, and frequency) on

the dynamics [11, 133], and for designing the controller [11, 139]. In this section we review some

fundamental results on averaging theory [134, 136], apply them to the robotic fish model, and

discuss their limitations.
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5.3.1 First-order Averaging for Systems with Oscillatory Inputs

To address the averaging of the dynamics for a robotic fish, one can consider first-order averaging

for systems with oscillatory control input [136]. In particular, consider the following dynamics

ẋ= f (x)+(1/ε)g(x, t/ε), (5.6)

whereε > 0 is a small number, and
[

(1/ε)g(x, t/ε)
]

is aT−periodic, zero mean function int/ε to

indicate a high-amplitude and large-frequency oscillatory input. With the transformation of time,

t/ε 7→ τ, one can obtain

dx
dτ

= ε f (x)+g(x,τ). (5.7)

The termε f (x) can be treated as a perturbation to the primary vector fieldg(x,τ). Define the

following

F(y,τ) =
(

(Φg
0,τ)
∗ f

)

(y), (5.8)

Fav(y) =
1
T

∫ T

0
F(y,τ)dτ, (5.9)

whereΦg
0,τ is the flow of the vector fieldg, and(Φg

0,τ)
∗ f is the pull-back off by Φg

0,τ . According

to the Variation of Constants formula, the solutionx(τ) is obtained by

x(τ) = Φg
0,τ(y(τ)), (5.10)

wherey(τ) is the solution to the system

dy/dτ = εF(y,τ), (5.11)
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with y(0) = x0. An approximation to the solutiony can be obtained from the average equation

dz/dτ = εFav(z). (5.12)

It can be shown that [136]z(τ)− y(τ) = O(ε) on the time scale 1. Moreover, if the origin is

an asymptotically stable equilibrium point for the average dynamics, thenz(τ)− y(τ) = O(ε) as

ε → 0 for all τ ∈ R+ and the differential equation (5.11) possesses a unique periodic orbit that is

locally asymptotically stable and belongs to anO(ε)-neighborhood of the origin.

The pull-back used in Eq. (5.8) can be calculated as

(Φg
0,t)
∗ f (5.13)

= f +
∞
∑
k=1

∫ t

0
· · ·

∫ sk−1

0
(adg(sk)

· · ·adg(s1)
f )dsk · · ·ds1,

where adXY = [X,Y] is the Lie bracket ofX andY, or the Lie derivative ofY with respect toX.

The convergence of the infinite sum in (5.13) is generally not guaranteed unless the series contains

only a finite number of non-vanishing terms.

5.3.2 First-Order Averaging for Robotic Fish Model

In [133], Morgansenet al. applied the first and higher-order averaging method to a simplified

carangiform robotic fish model and demonstrated its effectiveness with trajectory stabilization con-

troller design. We now apply the first-order averaging analysis to the robotic fish model presented

in Section 5.2.
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We consider the following periodic pattern for the tail deflection angle:

α(t) = α0+αAsin(ωα t), (5.14)

whereα0, αA andωα denote the bias, amplitude, and frequency of the tail beat, respectively.

Defineε = 1/ωα andτ = t/ε, which allows us to express

α(t) = α0+αAsin(τ), (5.15)

α̈(t) = −
1
ε

ωα αAsin(τ). (5.16)

Define the statesx1 = u, x2 = v, x3 = ω. The system (5.5) can be rewritten in the form of (5.6)

ẋ(t) = f (x)+
1
ε

g(
t
ε
), (5.17)

whereg(·) is zero mean over a period ofT. To facilitate the computation of the average, we

first use the second-order Taylor series expansion to approximate sinα ≈ α − 1
6α3 and cosα ≈

1− 1
2α2. The terms like arctan(VCy/VCx) in Eq. (5.5) impede the averaging process due to its

highly nonlinear nature. To address this challenge, we further simplify (5.5) with the assumptions

thatVCx≫VCy andVCx> 0. In other words, the forward velocity is positive, and much larger than

the sideway velocity. These assumptions are reasonable, and they imply that the terms
√

V2
Cx+V2

Cy

and arctan(VCy/VCx) can be approximated byVCx andVCy/VCx, respectively. We also neglect the

coupling term(m1−m2)VCxVCy, when evaluating the total moment in Eq. (10), based upon the

observation that it is usually less than 2% of the momentMz that is caused by external forces. With
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the aforementioned simplifications, the system (5.5) can be re-written as:















ẋ1

ẋ2

ẋ3















= f (x)+
1
ε

g(
t
ε
) =















f1(x)

f2(x)

f3(x)















+















g1(t)

g2(t)

g3(t)















(5.18)

where

f1(x) =
m2
m1

x2x3−
k1
m1

x2
1+

k2
m1

x2
2+k4,

f2(x) = −
m1
m2

x1x3−
(k1+k2)

m2
x1x2+k5,

f3(x) = −k3x2
3sgn(x3)−k6,

g1(t) =
{

k7(k8sinωα t−k9cos2ωα t−k10sin3ωα t

+k11cos2ωα t−k12cos4ωα t)
}

,

g2(t) = −k13(k14sinωα t +k15cos2ωα t−k16sin3ωα t),

g3(t) =
{

k17(k18sinωα t +k19cos2ωα t−k20sin3ωα t)

+k21sinωα t
}

.

with k1=
1
2ρSCD, k2=

1
2ρSCL, k3=

KD
J3

, k4=
m

12m1
L2α2

Aω2
α (3αA−

3
2α2

0αA−
3
8α3

A), k5=
m

4m2
L2α0α2

Aω2
α ,

k6=
L2
4J3

mcα0α2
Aω2

α , k7=
m

12m1
L2αAω2

α , k8= 6α0−α3
0, k9= 3αA−

3
2α2

0αA, k10= 3α0α2
A, k11=

1
2α3

A, k12 =
1
8α3

A, k13 =
m

4m2
L2αAω2

α , k14 = 2−α2
0, k15 = α0αA, k16 = α2

A, k17 =
L2
4J3

mcαAω2
α ,

k18 = 2−α2
0, k19 = α0αA, k20 = α2

A, andk21 =
L3m
3J3

αAω2
α ; note thatg1(t), g2(t) andg3(t) are

T−periodic, zero mean functions.

For the approximate model (5.18), the pull-back operation can be obtained directly using its

original definition rather than through (5.13), since theg field does not involve the state vari-
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ables. It can be easily shown that
(

(Φg
0,τ)
∗ f

)

= f (Φg
0,τ). With the definition of pull-back function

(Φg
0,τ)
∗ f , we get

ẏ1 =
m2
m1

(y2+h2)(y3+h3)−
k1
m1

(y1+h1)
2

+
k2
m1

(y2+h2)
2+k4, (5.19)

ẏ2 = −
(k1+k2)

m2
(y1+h1)(y2+h2)

+k5−
m1
m2

(y1+h1)(y3+h3), (5.20)

ẏ3 = −k3(y3+h3)
2sgn(y3+h3)−k6, (5.21)

whereh1(t) =
∫ t
0 g1(τ)dτ, h2(t) =

∫ t
0 g2(τ)dτ, h3(t) =

∫ t
0 g3(τ)dτ, respectively. The term(y3+

h3)
2sgn(y3+h3) in (5.21) will make the averaging overly complicated.

Define k22 = k17k18−
3
4k17k20+ k21, k23 = 1

2k17k19, k24 = 1
12k17k20, andk25 = k17k18−

3
4k17k20+k21+

1
12k17k20. We have

h3(t) =

{

−k22cosωα t +k23sin2ωα t−k24cos3ωα t +k25
}

ωα

≈
1

ωα

{

−k22cosωα t +k22
}

, (5.22)

since the size ofk22 is typically two orders of magnitude bigger than those ofk23, k24, |k22−k25|.
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With such an approximation, the average dynamics (5.12) is given below,

ż1 = z2z3+ h̄2z3+ h̄3z2+ h̄23−k1z2
1

−2k1h̄1z1−k1h̄11+k2z2
2+2k2h̄2z2, (5.23)

ż2 = −z1z3− h̄1z3+ h̄3z1+ h̄13− (k1+k2)z1z2+k5

−(k1+k2)h̄1z2− (k1+k2)h̄2z1− (k1+k2)h̄12, (5.24)

ż3 = −k3

{

{π−2arccos(1+
ωα

k22z3
)/π}

−2k3z3
{k22

ωα
+

2k22
π

[ 1
ωα

√

1− (1+
ωα
k22

z3)
2
]

−
1

ωα
arccos(1+

ωα
k22

z3)
}

−k3
{

−2
k2
22

ωα π
[ 1
4ωα

sin(2arccos(1+
ωα
k22

z3))

−
2

ωα

√

1− (1+
ωα
k22

z3)
2+

3
2ωα

arccos(1+
ωα
k22

z3)
]

+
3k2

22

2ω2
α

}

}

(5.25)

with h̄1 = 1
T
∫ T
0 h1dt, h̄2 = 1

T
∫ T
0 h2dt, h̄3 = 1

T
∫ T
0 h3dt, h̄11 = 1

T
∫ T
0 h2

1dt, h̄12 = 1
T
∫ T
0 h1h2dt,

h̄13=
1
T
∫ T
0 h1h3dt, andh̄23=

1
T
∫ T
0 h2h3dt. Then the first-order average model isx(t) =Φg

t
(

z(t)
)

,

according to Variation of constants formula [136].

With the tail-beat bias, frequency, and amplitude set to be 20◦, 1 Hz, and 15◦, respectively,

we compare the turning radii and periods predicted by the model (5.18) and the corresponding

average model. The parameters used in the simulation are based on those identified for the robotic

fish as discussed later in the next section. The results are (0.26776 m, 59.7734 s) and (0.270276 m,

60.0873 s), respectively, which indicates that the first-order averaging is able to capture the original

dynamics reasonably well. However, the resulting average model (5.23)-(5.25) is overly complex
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to be useful for analysis or controller design, even though itis derived based on simplifications of

the original dynamics.

5.3.3 Classical Averaging

Considering its simplicity, we have also examined the possible use of the classical averaging

method. The classical averaging can be applied to a slow system of the form

ẋ= ε f (t,x), x(0) = x0, (5.26)

whereε is a small positive number andf (t,x) is T−periodic int. The associated averaging system

is

ẏ= ε fav(y), y(0) = x0, (5.27)

where

fav(y) =
1
T

∫ T

0
f (τ,y)dτ. (5.28)

Theorem 1 [134] There exists a positiveε0, such that for all0< ε ≤ ε0,

1) x(t)−y(t) = O(ε) asε → 0 on the time scale1/ε and

2) if the origin is asymptotically stable for fav, then x(t)−y(t) = O(ε) asε → 0 for all t ∈ R+

and the system (5.26) possesses a unique periodic orbit which is locally asymptotically stable and

belongs to an O(ε) neighborhood of the origin.

This averaging method is easy to implement; however, it cannot be directly applied to the

robotic fish dynamics as the latter is not a slow system that satisfies Eq. (5.26). To illustrate this

point, we have conducted simulation comparison of the original dynamic model and the averaged

model with classical averaging, for the tail-beat patterns ofα0=20◦, ωα =2π rad/s, andαA=15◦.
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As shown in Fig. 5.1, the averaged model predicts a motion orbit that is significantly different from

that predicted by the original dynamics.

−0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.5

−0.4

−0.3

−0.2

−0.1

0

X (m)

Y
 (

m
)

 

 

Original Model
Averaged Model

Figure 5.1:The trajectories of robotic fish predicted by the original model and by the classical average
model, respectively.

5.4 Computationally Eff cient Averaging with Scaled Forcing

5.4.1 Proposed Averaging Approach

As demonstrated in the previous section, although the first-order averaging method for systems

with oscillatory inputs can approximate well the original dynamics for robotic fish, the resulting

model is overly complex for controller design and other applications. On the other hand, classical

averaging is easy to implement with simple expressions, but it cannot be applied to the robotic fish

model directly since the latter does not satisfy the slow dynamics requirement. Motivated by these

92



observations, we propose scaling the original forcing termsby some functions that are potentially

dependent on the tail-beat parameters,α0, αA andωα , and then conduct the classical averaging

over the modified dynamics. Specifically, we modify the original system (5.5) to



























ẋ1 = f1(x)+K f orce· f4(t),

ẋ2 = f2(x)+K f orce· f5(t),

ẋ3 = f3(x)+Kmoment· f6(t),

(5.29)

whereK f orce, Kmomentare scaling functions dependent on tail-beat parameters. Note that the phys-

ical meanings off4(t) and f5(t) are the projections of instantaneous hydrodynamic forces along

the longitudinal and transverse directions in the body-fixed coordinates, so the scaling functions

for them are the same. Using the second-order Taylor series expansion to approximate the sinα

and cosα terms in (5.29), we obtain the averaged system as



























ẋ1 = f1(x)+K f orce
[ m

12m1
L2ω2

α α2
A(3−

3
2α2

0−
3
8α2

A)
]

,

ẋ2 = f2(x)+K f orce
[ m

4m2
L2ω2

α α2
Aα0

]

,

ẋ3 = f3(x)+Kmoment
[

(− m
4J3

L2cω2
α α2

Aα0)
]

.

(5.30)

We have conducted extensive simulations with different sets ofα0, αA, andωα , to identify the

corresponding values ofK f orce andKmomentthat would result in good match between the average

model (5.30) and the original dynamics (5.5).

In the simulation, we use the parameters identified for a free-swimming robotic fish prototype

as shown in Fig. 3.3, which has been reported in Chapter 3. The tail deflection angleα is controlled

by a servomotor through the tail shaft. The hydrodynamic coefficients for the body areCD = 0.386,

CL = 4.50, andKD = 7.82×10−4 kg·m2.
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For a tail-beat pattern (5.14) withα0 6= 0, the trajectory of the robotic fish will converge to

a circular orbit. For example, Figs. 5.2 and 5.3 show the simulated trajectory and heading of the

robotic fish, respectively, based on the original dynamics, when the tail beats atωA = 2π rad/s with

biasα0 = 20◦ and amplitudeαA = 15◦. The trajectory is close to a circle with oscillatory ripples,

as seen in the close-up in Fig. 5.2b. The average heading changes continuously with similar small-

amplitude oscillations as seen in Fig. 5.3b. From the simulation, we can extract the turning radius

and turning period (time taken to complete one turn) of the robot at the steady state.

With the average model (5.30), the trajectory of the robot converges to a circle free of ripples.

Analysis of the stability properties for the average model will be presented in Section 5.5. For

each set of(α0,αA,ωα), we have conducted blanket-search of parametersK f orce andKmoment,

such that the resulting average model would produce the best match in turning radius and period

with the original dynamics.

In the simulation, we have used five tail-beat frequencies: 1, 2, 3, 4, 5 Hz; five bias angles:

10, 20, 30, 40, 50 degrees; and five amplitudes: 10, 15, 20, 25, 30 degrees, and find the optimal

coefficients for all 5×5×5= 125 combinations of these parameters. Fig. 5.4 shows the optimal

coefficients for different combinations of tail-beat bias and amplitude when the tail beats at 1 Hz.

The results for other frequencies are nearly identical to those in Fig. 5.4, and are thus not presented

in the interest of brevity. From Fig. 5.4(a), we can see that the optimal force coefficient is nearly

constant for different biases and amplitudes. On the other hand, as shown in Fig. 5.4(b), the

optimal moment coefficient shows linear dependence on the bias angle and barely changes with

the amplitude.

Fig. 5.5 shows how the scaling coefficients vary with the bias and the frequency for a given

amplitude (15◦); nearly identical results hold for the other amplitudes simulated. Again,K f orce

is nearly constant for different combinations of tail-beat bias and frequency, andKmomentshows
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Figure 5.2: Simulated trajectory of the center of the robotic fish when the tail beats at 1 Hz with
bias 20◦ and amplitude 15◦: (a) The global path; (b) close-up view of the segment within the red
rectangular region in (a).

linear dependence on the bias and independence of the frequency. Fig. 5.6 shows the obtained

coefficients versus the frequency and the amplitude, for a fixed bias of 20◦. In consistency with

Figs. 5.4 and 5.5, we see that both coefficients are independent of the frequency and the amplitude.

In addition, in all cases, the values ofK f orce are very close, as are the slopes ofKmomentwith
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Figure 5.3: Simulated heading angle of the robotic fish when the tail beats at 1 Hz with bias 20◦

and amplitude 15◦: (a) The heading angle trajectory; (b) close-up view of the segment within the
red rectangular region in (a).

respect to the bias.

Based upon above observations, we get the force scaling coefficient by taking the average of
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Figure 5.4:K f orce andKmomentversus the tail-beat bias and amplitude. In all cases, the tail beats
at 1 Hz.

all corresponding coefficients obtained in 125 individual simulations, which gives

K f orce= 0.8485.

For each tail beating bias, we take the average of the optimalKmomentfor 25 different combinations
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Figure 5.5:K f orce andKmomentversus the tail-beat bias and frequency. In all cases, the tail beats
with amplitude 15◦.

of amplitude and frequency, as summarized in Table 5.1. Then the least-square-error fitting is used

to identify the relationship betweenKmomentand the biasα0, resulting in

Kmoment=−0.0074+0.4831α0,
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Figure 5.6:K f orce andKmomentversus the tail-beat amplitude and frequency. In all cases, the tail
beats with bias 20◦.

whereα0 is expressed in radians.
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Table 5.1: Average of moment coefficients for different bias angles.

Bias (◦) Average of moment coefficient
10 0.0796
20 0.1596
30 0.2424
40 0.33
50 0.416

5.4.2 Numerical Evaluation of the Average Model

In order to evaluate the proposed averaging approach, we simulate the average model (5.30) with

the obtained scaling functions. Fig. 5.7 shows the comparison of the turning radii and turning

periods predicated by the original model and the average model, respectively, under different tail-

beat biases, where the tail-beat frequency and amplitude are fixed at 1 Hz and 20◦, respectively.

We have deliberatively chosen cases of 25◦ and 35◦ biases at this stage (and the latter part in this

section), which are not in the aforementioned 125 motion combinations, to provide independent

validation for the proposed averaging approach. It can be seen that the average model is able to

capture the original dynamics in the steady turning motion with high fidelity.

We then validate the effectiveness of the proposed averaging approach by comparing the cruis-

ing speeds predicted by the original and average models, when the tail beat biasα0 = 0. Note that

α0 = 0 has not been used in obtaining the scaling coefficientsK f orce andKmoment, and thus this

new set of simulation provides a meaningful test for the averaging approach. For this simulation,

we randomly pick some tail-beat frequencies and amplitudes, and the simulated velocities using

the original and average models are shown in Table 5.2. It can be seen that the prediction error by

the average model is less than 2% for all cases.

To further evaluate the generality of the proposed averaging method, we compare the origi-

nal and average models for new sets of parameters. In particular, we double the weight of the

robot (and the inertia of robot’s body, correspondingly) frommb = 0.311 kg tomb = 0.622 kg,
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Figure 5.7: Comparison of steady-state turning radii and periods predicted by the original and average
models. In all cases, the tail-beat frequency is 1 Hz and amplitude is 20◦.

Table 5.2: Surge velocities predicted by the original and average models, and the relative error by
the average model.

Frequency (Hz) Amplitude (◦) Original Averaged Evel (%)
3.1181 18.7749 0.112114 0.114017 1.70
1.0955 17.6312 0.036991 0.037648 1.78
1.8308 25.3103 0.088677 0.089746 1.21
1.1385 25.9040 0.056431 0.057084 1.16
1.2914 13.7375 0.033976 0.034661 2.0
3.4704 19.7953 0.131556 0.133695 1.62
3.0845 18.9117 0.111713 0.113599 1.69
1.9513 22.9263 0.085645 0.086837 1.39
3.8507 24.1873 0.178275 0.180581 1.29
1.1033 25.0937 0.052984 0.053632 1.22

while keeping the other parameters unchanged (note that the added mass/inertia are determined by

robot’s dimensions and independent of robot’s mass/inertia). Then following the same procedure

as described in the early part of this section, one could identify the best scaling functions for the
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system, by matching the turning parameters (radius and period) from the original dynamic model

and from the average model. We fix the tail-beat amplitude and frequency to be 20◦ and 1 Hz,

respectively, and vary the tail-beat bias. We note that, instead of blanket-searching of parameters

by running extensive simulations, the observations of behaviors forK f orce andKmomentcan be ex-

ploited to find these parameters in a significantly more efficient manner. In particular, we find the

best scaling coefficients for the system when the bias is 10◦, 20◦ and 30◦, respectively, as shown

in Table 5.3.

Table 5.3: Best scaling coefficients for different bias angle. (mb = 0.622 kg in the simulation)

Bias (◦) Force coefficients Moment coefficient
10 0.8780 0.2500
20 0.8980 0.4650
30 0.8980 0.610

The force coefficient is then chosen to beK′f orce= 0.891 by averaging the coefficients. The

moment coefficients can be obtained by a linear interpolationK′moment= 0.0817+1.0313α0. Then

the simulations are conducted with the updated force and moment coefficients and the results are

shown in Figures 5.8 and 5.9. We can see that the predictions by average model match well those

predicted by the original dynamic model.

To investigate the performance of the average model when the tail-beat parameters vary over

time, in particular, under a feedback control context, we design a simple proportional controller for

the original system. In the simulations, the proportional controller depends on the present error,

which is defined as the difference between the orientation of the target relative to the robot center

and the heading of the robot. The tail is programmed to beat at 1 Hz, with an amplitude of 15◦,

while the bias is updated by the proportional controller every five seconds. Fig. 5.10a shows the

simulation trajectory of the robot, where it starts at the origin from rest and moves to the target

location(2,2). The corresponding bias obtained from the feedback is shown in Fig. 5.10c. The
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Figure 5.8:Simulation results from the original and average models (versus different tail-beat bias), when
mb = 0.622 kg. In all cases, the tail-beat frequency is 1Hz and amplitude is 20◦.

time trajectory of this bias is then applied to the averaged system, which predicts the robot trajec-

tory as shown in Fig. 5.10b. With the same bias input, the terminal point with the original model

is (1.9176,2.2430) while the robot trajectory with the average model stops at(2.0849,2.2803)

after 200 s of simulation time. By comparing Fig. 5.10a and 5.10b, we can see that there is some

modest error, which can be explained by that the average model does not account for the transients

when the tail-beat parameters change. However, overall the average model is able to predict the

trajectory of the robot.

5.4.3 Experimental Evaluation of the Average Model

For model validation purpose, we have conducted experiments with the robot in forward swim-

ming. We note that this forward swimming case (α0 = 0) was not used in obtaining the scaling
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Figure 5.9:Simulation results from the original and average models (versus different tail-beat amplitude),
whenmb = 0.622 kg. In all cases, the tail-beat frequency is 1Hz and bias is 20◦.

functions, and thus this experimental result provides a significant validation for the averaging ap-

proach. Fig. 5.11 shows the experimental and simulation results by comparing the time that the

robotic fish travels 50 cm long after it reaches steady speed, and we can see that the average model

is able to not only capture the original dynamics but also predict the robot’s motion with high

fidelity.

Previous discussions have exclusively focused on the steady motion behavior of a robotic fish.

It is of interest to investigate the performance of the average model in predicting the transient

dynamics. For this purpose, we have conducted experiments to record the transient trajectories

of the robot when it is started from at rest. A yellow LED is taped to the top of the robot as

a marker and its motion has been video-recorded with the ambient light turned off. The robot’s

time trajectory, as shown in Fig. 5.12, is then extracted by applying background subtraction to the
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Figure 5.10: Trajectory of the center of the robot when the tail-beat bias is updated by a pro-
portional feedback controller law (a) The simulated trajectory using the original model; (b) The
simulated trajectory using the average model; (c) The control input to both the original and average
models.

images. Fig. 5.12(a) and (b) compare the model predictions of time-trajectories of the robot with

the experimental measurements inX andY coordinates, respectively. Fig. 5.12(c) provides the

comparison of the trajectories in theXY-plane. It can be seen that the developed average model is

able to capture not only the steady motion but also the transients.
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Figure 5.11:Comparison between prediction from original dynamic model, average model and experimen-
tal measurement for forward swimming.

5.5 Analysis of the Average Model

It is of interest to analyze the average model (5.30) in terms of its stability properties. In particular,

for a given tail-beat pattern, it is important to know whether the model admits an equilibrium, and

if so, whether the equilibrium is unique and stable.

The equilibrium points can be obtained by settingẋ = 0. The highly nonlinear terms like

arctan(x2/x1) make it impossible to get an analytical solution. However, if we make the same

assumptions as in Section 5.3.2,x1≫ x2 andx1 > 0, then we can obtain unique, analytical so-

lutions. In particular, with these assumptions, we can approximate arctan(x2/x1) ≈ (x2/x1) and
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Figure 5.12:Comparison between predictions from the average model and experimental measurement for
forward swimming (including transients): (a) time trajectory ofX-coordinate of the robot; (b) time trajectory
of theY-coordinate of the robot; (c) path of the robot in theXY-plane. For both the experiments and the
simulation, the amplitude and frequency of the tail beat are fixed at 15◦ and 0.9 Hz, respectively.
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(x2
1+x2

2)≈ x2
1. The equilibrium point is then solved as

x1 =

√

K f orcemL2ω2
αα2

A(3−
3
2α2

0−
3
8α2

A)

6ρSCD

x2 =
K f orce

2ρS(CD+CL)

√

√

√

√

6mρSCDL2ω2
α α2

Aα2
0

K f orce(3−
3
2α2

0−
3
8α2

A)

+
2m1

ρS(CD+CL)

√

KmomentmL2cω2
α α2

Aα0

4KD

x3 = −

√

KmomentmL2cω2
α α2

Aα0

4KD

Next we analyze the stability property of the equilibrium for the model (5.30). Due to the

highly nonlinear nature of the model, analysis of global asymptotic stability is difficult. Instead,

we focus on the local stability in the neighborhood of the equilibrium. We rewrite Eq. (5.30) in a

compact form

ẋ= f(x,u),

wherex= [x1,x2,x3]
T andu= [α0,αA,ωα ]T . We then linearize the system

A=
∂ f
∂x

=















a11 a12 a13

a21 a22 a23

a31 a32 a33















(5.31)
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to get the Jacobian matrixA, the elements of which are

a11= −
c1
m1

x2
1

√

x2
1+x2

2

+
c2
m1

x1x2
√

x2
1+x2

2

arctan(
x2
x1
)

−
c1
m1

√

x2
1+x2

2−
c2
m1

√

x2
1+x2

2
x2
2

x2
1+x2

2

,

a12 =
m2
m1

x3−
c1
m1

x1x2
√

x2
1+x2

2

+
c2
m1

√

x2
1+x2

2arctan(
x2
x1
)

+
c2
m1

x2
2

√

x2
1+x2

2

arctan(
x2
x1

)+
c2
m1

√

x2
1+x2

2
x1x2

x2
1+x2

2

,

a13 =
m2
m1

x2,

a21 = −
m1
m2

x3−
c1
m2

x1x2
√

x2
1+x2

2

−
c2
m2

√

x2
1+x2

2arctan(
x2
x1

)

−
c2
m2

x2
1

√

x2
1+x2

2

arctan(
x2
x1

)+
c2
m2

√

x2
1+x2

2
x1x2

x2
1+x2

2

,

a22 = −
c1
m2

x2
2

√

x2
1+x2

2

−
c2
m2

x1x2
√

x2
1+x2

2

arctan(
x2
x1
)

−
c1
m2

√

x2
1+x2

2−
c2
m2

√

x2
1+x2

2
x2
1

x2
1+x2

2

,

a23 = −
m1
m2

x1,

a31 = 0,

a32= 0,

a33= −2c4x3sgn(x3).

By examining the Hurwitz property ofA, we can know whether the averaged system is asymptoti-

cally stable at its equilibrium points. Note thata33 is negative except whenx3 = 0. Since botha31
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anda32 are 0, we only need to check the Hurwitz property of a two-two matrix

A′ =







a11 a12

a21 a22






,

the characteristic equation of which is

λ 2− (a11+a22)λ +(a11a22−a12a21) = 0.

In order to show thatA′ is a Hurwitz matrix, we need to havea11+a22< 0 anda11a22−a12a21>

0. It is easy to see thata11+a22 = −(3c1+ c2)
√

x2
1+x2

2, and thus is less than 0 except when

x1 = x2 = 0. By canceling the terms
m2
m1

x3 and−
m1
m2

x3 in view of the negligible coupling terms in

(8)-(9), we havea11a22−a12a21= 1/(m1m2)
[

(2c2
1+2c1c2)(x

2
1+x2

2)+2c2
2(x

2
1+x2

2)arctan2(
x2
x1
)
]

,

which is always positive.

From the above analysis, we show that the linearization matrixA is Hurwitz at an equilibrium

point independent of its specific values, which proves the local asymptotic stability of the average

model given a particular set of control input(α0,αA,ωα).

5.6 Application to Semi-analyticalModeling of Steady Turning

5.6.1 Semi-analytical Modeling Framework

The proposed averaging approach is instrumental in several ways. For example, it facilitates

model-based controller design, as was demonstrated in [139], where a backstepping approach is

developed for tracking control of robotic fish. In this section, we present another application of the

average model, where it is used to gain analytical insight into steady turning of robotic fish.
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Section 5.2 provides a complete dynamic model for a tail-actuated robotic fish, and one can

extract turning information by observation from simulated trajectories as in [14]. However, these

simulations are time-consuming and cannot provide analytical insights into how the turning pa-

rameters are related to system parameters or tail-beat parameters. In our group’s prior work [106],

a modeling framework was proposed for computation of steady-state turning motion given asym-

metric, periodic body/tail deformation of a robotic fish. In that approach, it is postulated that the

two key parameters of turning motion, the radius and the period, can be obtained by solving the

implicit force and moment balance equations for the averaged, steady-state motion. However, the

modeling framework there adopts two major assumptions: 1) the body direction is aligned with

the motion direction, i.e. the angle of attack remains to be zero during the robot’s motion; 2) the

classical averaging method can be directly applied to robotic fish dynamics (which, as we show in

Section III-C, is generally not true). In this section, we apply the average model obtained with the

proposed approach in this chapter, to develop an semi-analytical modeling framework understand-

ing the turning behavior of robotic fish.

Fig. 5.13 illustrates a robotic fish undergoing a steady turning motion.[X,Y,Z] and [x,y,z]

denote the aforementioned inertial coordinates and body-fixed coordinates, respectively.[x′,y′,z′]

denote the moving coordinates attached to the fish body, wherex′ points to the tangential direction

of the circular path.α is the aforementioned oscillating input (tail angle).

With the averaging method developed in Section IV, the time-explicit oscillating terms are

replaced with constant inputs, particularly, the tail-beat parameters,α0, αA andωα in (5.30). Then

the robotic fish can be treated as a rigid body under force and moment balances. The averaged
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Figure 5.13:Top view of the tail-actuated robotic fish undergoing “steady” turning motion.

forces along and perpendicular to the body direction are











Fx = K f orce
[ m

12m1
L2ω2

α α2
A(3−

3
2α2

0−
3
8α2

A)
]

,

Fy = K f orce
[ m

4m2
L2ω2

α α2
Aα0

]

.

(5.32)

Then the forces along the radial and tangential directions (with respect to the steady circular

path) are










Fx′ = Fx cosβ +Fysinβ ,

Fy′ =−Fx sinβ +Fycosβ .
(5.33)

As the robot is under steady turning, we have the following force and moment balance equa-
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tions:


























Fx′−FD = 0,

Fy′−FL+mbω2R = 0,

Mz−MD = 0,

(5.34)

whereMz is the moment relative to the center of mass caused by the tail motion, which is equal to

Kmoment
[

(− m
4Jbz

L2cω2
α α2

Aα0)
]

. The unknowns in (5.34) are angular speedω (which is related to

turning periodTp by Tp=
2π
ω ), turning radiusR, and the angle of attackβ . Therefore, these turning

parameters can be directly obtained by solving the algebraic equation (5.34), instead of simulating

the differential equation (5.30) and observing its steady-state orbit, as done in Section IV-B and

IV-C. Note that Eq. (5.34) can only be numerically solved (hence explaining our term “semi-

analytical”), due to its transcendental nature. In particular, we limit the values ofβ ∈ [0◦,20◦] and

use thefsolvecommand in Matlab to get the solution.

5.6.2 Experimental Evaluation

To validate the steady turning framework, we compare the model predictions and experimental

results. The experiments were conducted in our previous work [15]. As shown in Figures 5.14 -

5.16, the steady turning framework can capture the original dynamic model very well and predict

the robot’s turning behavior in all cases. Here the turning radius and turning period under “the

average model” are obtained by solving the algebraic equations discussed in Section VI-A, instead

of through integration of the differential equations as in Section IV. We note that the tail-beat

motion here is numerically different (for example, tail-beat frequency is 0.9 Hz) from those in

obtaining the scaling function in Section 5.4, and thus these results provide strong support for the

proposed approach.
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Figure 5.14:Comparison between model predictions and experimental measurement of turning behavior
versus tail-beat bias.
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Figure 5.15:Comparison between model predictions and experimental measurement of turning behavior
versus tail-beat frequency.

5.7 Nonlinear Controller Design

One promising application of robotic fish is their use as mobile sensing platforms in aquatic envi-

ronment to monitor water quality and track oil spills. To execute such tasks, robotic fish will need
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Figure 5.16:Comparison between model predictions and experimental measurement of turning behavior
versus tail-beat amplitude.

be able to track a given trajectory or a set of target points. A fish-like swimming robot is a system

that is difficult to control due to its nonlinear, nonholonomic nature.

Most prior work on the control of carangiform robotic fish proposed to use model-free con-

trollers, such as fuzzy logic control [140,141]. These approaches are useful for engineering appli-

cation, but they are not amenable to stability analysis, which is fundamental to understanding the

closed-loop system’s behavior. In this work, we investigate target tracking control problem for a

tail-actuated robotic fish, based on the averaged robot dynamic model, as reported in Section 5.4 in

this Chapter. To simplify the problem and emphasize the controller design, the tail-beat frequency

and amplitude are fixed and the only control input is the tail-beat biasα0.

5.7.1 System Description

Fig. 5.17 shows the target tracking control schematic diagram. Here,(xs,ys) and(x,y) denote the

locations of the target and the robot’s center of mass, respectively, relative to the inertial coordinate
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Figure 5.17:Target tracking control schematic diagram.

Definer as the distance between(xs,ys) and(x,y), andθ as the orientation error, specified by

the angle between the robotic fish heading direction and the line connecting the body center to the

target. The pair(r,θ) can be considered as the target location in the body-fixed polar coordinates.

We takeθ andr as auxiliary state variables, which are expressed as











r =
√

x2
e+y2

e,

θ = ψ−ϕ,
(5.35)

whereye = ys− y,xe = xs− x,ϕ = arctan(ye/xe). The target tracking is achieved ifr converges

to zero, which is the goal of the controller’s design in this chapter. The dynamic equations for the
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two new variablesθ andr can be written as











ṙ =−VCxcosθ +VCysinθ ,

θ̇ =
VCx

r sinθ +
VCy

r cosθ +ωz.

(5.36)

5.7.2 Hybrid Controller Design

In order to driver to zero (or the neighborhood of zero), consider a Lyapunov function

V1 =
1
2

r2. (5.37)

However, we cannot shoẇV1 negative no matter what kind of control input is provided. Define a

second Lyapunov equation as

V2 =V1+
1
2

z2
1, (5.38)

wherez1 = kr r−VCxcosθ +VCysinθ , andkr is a positive coefficient. We check the value ofV̇2

and it turns ouṫV2 would be negative if there exists anα0 satisfying f (α0) = 0, where

f (α0) = Aα2
0 +Bα0+C= 0 (5.39)
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and,

A=
1
2

c̄1kf ω2
α α2

Acosθ ,

B= c̄1kf ω2
αα2

Asinθ ,

C= c̄1kf ω2
αα2

Acosθ(1−
1
8

α2
A)

+(k1+kr)(−VCxcosθ +VCysinθ)+(k1kr)r

−cosθ [VCyω + fu(VCx,VCy)]+sinθ [−VCxω + fv(VCx,VCy)]

+(VCxsinθ +VCycosθ)(
VCx

r
sinθ +

VCy

r
+ω).

We can show that there exists a solution of Eq. (5.39) when orientation error|θ |< 45◦, which

brings in the second controller design.

As shown in [15], the robotic fish converges to a circle when the bias is nonzero, and the larger

the bias, the smaller the radius of the circle will be. If the orientation angle error is not in the

interval where the approaching controller works, we set the bias to the allowable maximum, which

indicates the most effective turning. The sign of the bias will be determined by the sign ofθ . The

turning controller can be described as

α0 = α0maxsgn(θ), (5.40)

whereα0max is a positive constant which denotes the allowable maximal tail-beat bias.

To avoid, possible frequent switching between two controllers, a hysteretic switching strategy

is adopted by introducing two thresholdsθ1 andθ2, as shown in Fig. 5.18.
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Figure 5.18:Switching strategy between two controllers.

5.7.3 Simulation and Experimental Results

Extensive simulations have been conducted to verify the effectiveness of the proposed method.

Fig. 5.19 shows the results of target tracking from different initial locations but the same initial

orientations.

Figure 5.19: Simulation results with the target located at the origin and the robotic fish starting from
different initial conditions (denoted by solid blue squares). The locations of controller switching are denotes
by green diamonds.
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To further verify the proposed method, experiments have beenconducted and the setup is

shown in Fig. 5.20. Two LED makers are fixed on the fish body and a camera is installed on

the ceiling above a large indoor water tank. A computer which is connected to the camera is used

to process the acquired images of the two LED markers, to obtain the state estimates for the robot.

The robotic fish can communicate with the computer via Zigbee. The proposed control scheme

is implemented with Visual C++ development tools. The control input is calculated based on the

state information obtained by camera every oscillating period and is then sent to robotic fish via the

Zigbee wireless module. We select several target points randomly in the field of view of camera

and the target point is updated whenr reaches 0.02 m. Fig. 5.21 shows final experimental results

which validate the effectiveness of the proposed hybrid controller.

Results from this section have been published in Proceeds of 2013 ASME Dynamics Systems

and Control Conference [139]. Beyond my advisor, the other author of this work Songlin Chen

is an associated professor at Harbin Institute of Technology, Harbin, China, and visited our lab at

2012. Dr. Chen derived most of the back-stepping based hybrid controller and I was in charge of

experimental validation and part of the theoretical derivations.

5.8 Conclusions

In this chapter, a novel averaging method has been presented for dynamics of a carangiform robotic

fish model actuated through a tail. The merit of the approach lies in its simplicity, with the result-

ing average model amenable to analysis and control design. In particular, the proposed method

builds upon classical averaging, but with the forcing terms in the original dynamic model scaled

appropriately. It is found that the scaling functions take simple forms – constant for the force scal-

ing while linear in bias for the moment scaling. The validity of the approach has been evaluated
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Figure 5.20:Experimental setup.

with simulation and experimental results, where steady-state and transient behaviors predicted by

the average model and the original model, respectively, are compared under various scenarios not

used in obtaining the scaling functions. We have further conducted analysis of the average model

in terms of the existence and stability of its equilibria. As an application of the proposed average

model, we have demonstrated a new framework for studying steady turning behavior of a robotic

fish without having to simulate the differential equations for the original dynamic model or the
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Figure 5.21:Experimental results on tracking multiple target points continuously.

average dynamic model.

In the future work, we will explore analytical insight as to why the scaling functions take the

specific simple forms. We will also seek to extend the approach to the dynamic model of robotic

fish actuated with a flexible tail [132], as well as explore the validity of the approach for a wider

class of systems with oscillatory inputs.
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Chapter 6

Environmental Monitoring with Robotic

Sensor Network: Sampling and

Reconstruction of Low-rank Matrix Fields

6.1 Introduction

Monitoring aquatic environments is of growing interest to public health, marine biology and

ecosystem sustainability. In recent years, aquatic environments have been faced with a variety

of threats from climate change and industrial pollutions [142–144]. For instance, there was an

oil spill in Kalamazoo River, Michigan in 2010, when a pipeline burst and oil flowed into the

river [145]. In another incident, more than 300,000 gallons of diesel fuel spilled in Arthur Kill,

New Jersey after a storage tank was ruptured [146]. During and after these accidents, monitoring

the water quality and detecting pollutants in the water is a vital task [147,148].

Manual sampling using hand-held devices, is still the most common practice in monitoring

aquatic environment. This approach is labor-intensive and has difficulty in capturing large-scale

spatially distributed phenomena of interest. An alternative approach is in-situ sensing on fixed

buoys [56]. However, since buoyed sensors cannot move around, they have limited adaptability

in monitoring and forecasting dynamic aquatic processes. There is a growing interest in using
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underwater sensor platforms like autonomous underwater vehicles (AUVs) [74, 149, 150] and sea

gliders [151] to monitor the environment. However, it is not applicable to deploy many of them due

to their high manufacturing and operational cost. In this chapter, we propose to use inexpensive,

highly adaptive and maneuverable robotic fish platforms to sample and reconstruct spatiotemporal

aquatic fields.

Sampling and reconstruction of physical fields using mobile sensor networks have received

significant interest. Early work has dealt with optimal placement of static sensors to reduce the

uncertainty [152], or guidance of one mobile sensor to reduce the field reconstruction error, given

the measurements of the a static sensor network [153]. Field reconstruction using mobile sensor

networks has been studied recently by several groups [154–156].

In this work, we investigate data-adaptive path planning schemes for wireless networks of

robotic sensor platforms. Traditional sampling theory deals with data collection processes that are

independent of the target map to be estimated, aside from some possible prior knowledge and/or

assumptions. On the other hand, sequential, adaptive data collection strategies [157, 158] have

gained increasingly interests due to the fact that the existing observations can be used to guide the

future actions to achieve more efficient solutions.

Field reconstruction using robotic sensor networks has been extensively studied, for fields mod-

eled by Gaussian processes [154,157–159]. In [157], a data-driven adaptive sampling algorithm is

presented. The next sample locations are selected such that the closest neighbors are able to com-

municate with each other while the distances between the robots are maximized at the same time.

It also has other rules such as taking samples in area where present sampling density is lower and

avoiding areas where measurements. In [158], the authors present an adaptive sampling algorithm

for multiple autonomous underwater vehicles by assuming that field variables vary linearly with

the location. A cost function is proposed to measure the dissimilarity between current sampling
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and the next sampling, and the algorithm selects the new sampling locations to minimize the cost

function. In [21], researchers present an adaptive sampling framework to scan and reconstruct

a Gaussian temporal-spatial field using robotic fish sensor networks. In particular, these robots

are controlled to work collaboratively in the form of a swarm to sense the environment in a se-

ries of carefully chose rendezvous regions. While all these approaches have their own merits, in

real-world applications, the dynamics of the processes of interest could be very complicated and

sometimes kernel modeling-based techniques may not provide adequate performance.

On the other hand, Compressive Sensing (CS) [160,161] techniques have been applied to field

monitoring, as they allow the reconstruction of a field with a subset of samples and hence save

time and energy. In [162], trajectory planning algorithms based on the standard CS paradigm are

presented for robots with a variety of mobility patterns, including Random Walk, Random Travel-

ing Salesman, and Randomized Boustrophedon. The target is to minimize the cost function (i.e.,

traveling distance) by comparing these motion patterns and recovering the data using CS. Similar

work has been reported in [163,164], where the authors assume that the data has a sparse structure

and come up with an optimal sampling solution by leveraging CS techniques. The major drawback

of these techniques is that they do not take into account the underlying data structure obtained

or estimated using real-time measurements, which makes them not amendable to implementing

adaptive sampling strategies.

This work presents a novel adaptive sampling framework to guide mobile robots to conduct

samplings more efficiently in an environmental field of interest, while maintaining the accuracy

of the recovered data. We consider a two-dimensional space (for example, the horizontal plane at

a certain depth), where the field can be represented by a low-rank matrix. The idea is to succes-

sively span the sampling area and reconstruct the field analytically. The methods are illustrated in

simulations based on the temperature data collected in a large indoor water tank. The results show
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that the proposed adaptive sampling scheme is more computationally efficient and requires shorter

travel distances than an existing low-rank matrix completion scheme [165].

The remainder of the chapter is organized as follows. First, the problem formulation is de-

scribed in Section 6.2. An matrix completion approach using Augmented Lagrange Method (MC-

ALM) is reviewed in Section 6.3. Our proposed adaptive sampling and reconstruction framework

is discussed in Section 6.4. In Section 6.5, simulation results using real trace-driven data are pre-

sented to compare the performances of our proposed approach and the MC-ALM method. Discus-

sions of weaknesses of the proposed method and potential solutions are presented in Section 6.6.

Finally, concluding remarks are provided in Section 6.7.

6.2 Problem Formulation

The goal of this work is to develop an active mobile sensing approaching using a group of mobile

robots (for example, robotic fish), to recover an unknown field with minimal energy consumption.

Fig. 6.1a shows the field of oil distribution on the the surface of Kalamazoo River following the

2010 spill. Traditional sampling methods suggest uniform sampling according to the Shannon

sampling theorem to recover the (discretized) field in Fig. 6.1b. While the latter approach is able

to provide the data field with high resolution, it could waste a significant amount of sensing re-

sources, because many measurements collected might not provide any additional information. CS

for sparse matrices and Matrix Completion (MC) [166] for low-rank matrices are two approaches

for recovering the field of interest by collecting only a fewrandommeasurements, as illustrated

in Fig. 6.1c. MC is able to reconstruct the data with good fidelity, however, random samples do

not accommodate the mobility constraints of the robots and makes them unsuitable to implement

adaptive sampling strategies.
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(a)

(b)

(c)

Figure 6.1: Oil spill in the Kalamazoo River. 2010 (Photo Credit: National Wildlife Federation) (a)
Oil map on the surface of Kalamazoo River; (b) discrete uniform sampling; (c) random samplings
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In this work, we assume that the original field can be represented with a matrix as illustrated in

Fig. 6.1b, where the field values within each grid are identical. Matrix completion is a very useful

tool in many applications, e.g., machine learning [167], control [168], and computer vision [169].

It is often reasonable to assume that the matrix to recover is of low rank. The problem is formulated

as: given a number of mobile robotic sensing platforms (i.e. robotic fish [1,15]), how to drive those

robots to sample the low-rank matrix and recover the missing entries with high accuracy and low

energy consumptions.

6.3 Matrix Completion Using the Augmented Lagrange Multi-

plier Method

In this section, for the purpose of comparison, we first provide a summary of an existing algo-

rithm that solves the matrix completion problem using Augmented Lagrange Multiplier (MC-

ALM) [165].

The general matrix completion problem can be expressed as

min
A
‖A‖∗, subject to Ai j = Di j , ∀(i, j) ∈Ω (6.1)

where‖·‖∗ denotes the nuclear norm of a matrix (sum of its singular values),Ω is the set of indices

of samples, andD denotes the original low-rank matrix. It has been shown that most matricesA

of low rank r can be perfectly recovered by solving the following optimization problem [166],

provided the numberp of samples satisfiesp≥Crn6/5 lnn for some constantC. This bound has

then been improved by the work of others [170, 171]. In [165], Linet al. proposed to use MC-

ALM algorithm to solve a robust principle component analysis problem and extend it to complete
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low-rank matrices. The problem is re-formulated as

min
A
‖A‖∗, subject to A+E = D, πΩ(E) = 0, (6.2)

whereπΩ : Rm×n→ R
m×n is a linear operator that keeps the entries inΩ unchanged and sets

those outsideΩ zeros. Since the error matrixE will compensate for the unknown entries ofD, the

unknown entries ofD are simply set as zeros. Then the augmented Lagrangian function of (6.2) is

given by [165]:

L(A,E,Y,µ) = ‖A‖∗+<Y,D−A−E >+
µ
2
‖D−A−E‖2F , (6.3)

where‖ · ‖F is the Frobenius norm,µ is a positive scalar, andY denotes the optimal Lagrange

multiplier. Following [165], the MC-ALM approach is described in Algorithm 1, whereE is

updated with the constraintπΩ(E) = 0 enforced when minimizingL(A,E,Y,µ).
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Algorithm 1: Matrix Completion via ALMMethod [165]

Inputs: Observation samplesDi, j , (i, j) ∈Ω, of matrixD ∈ R
m×n.

1 Y0 = 0; E0 = 0; µ0 > 0; ρ > 1; k = 0;

2 while not convergeddo

3 // Lines 4-5 solveAk+1 = argminAL(A,Ek,Yk,µk).

4 (U,S,V) = svd(D−Ek+µ−1
k Yk);

5 Ak+1 =UT
µ−1

k
[S]VT .

6 // Line 7 solvesEk+1 = argminπΩ(E)=0L(Ak+1,E,Yk,µk).

7 Ek+1 = πΩ(D−Ak+1+µ−1
k Yk).

8 Yk+1 =Yk+µk(D−Ak+1−Ek+1).

9 Updateµk to µk+1.

10 k← k+1.

11 end while

Output: (Ak, Ek).

Tε [x] is the soft-thresholding operator:

Tε [x] =



























x− ε, if x> ε,

x+ ε, if x<−ε,

0, otherwise.
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6.4 Analytical Reconstruction via Successive Expansion of Sam-

pling Area

A fundamental requirement for the low-rank MC algorithm described in the previous section is

that the original matrix is sampled randomly. Such a requirement is difficult to satisfy for mobile

robots due to their mobility constraints. In this section, we propose a new strategy for sampling

and field-reconstruction by successively growing sub-matrices of the original matrix.

The algorithm is illustrated in Fig. 6.2. For each iterations, new samples (indicated by blue

crosses in Fig. 6.2a) are taken to recover the new row and new column. For instance, consider the

case where a matrixM ∈ R
(k+1)×(k+1) needs to be recovered fully based on its known sub-matrix

M′ ∈Rk×k and some new samples in its outer row and column. For ease of explanation, we assume

that the rank ofM is equal to the rank ofM′, which is denoted byr, wherer ≤ k. M′ thus hasr

linearly independent columns that can be used as a basisB for representing any other column~v .

In particular, we can represent~v through the set of coefficients with respect to the basisB:

RepB(~v) =























c1

c2

...

cr























whereB=< ~β1, ...,
~βr > and~v= c1

~β1+c2
~β2+ · · ·+cr~βr . In M, those basis column vectors are

also independent from each other and the rank ofM is r, thus the columns corresponding toB will

form a basis forM ∈ R
(k+1)×(k+1) and can be used to recover other columns with RepB(~v). The

same discussion applies to the rows. The sampling and reconstruction algorithm is summarized in
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Algorithm 2.

Algorithm 2: Matrix Completion via Analytical Reconstruction

Inputs: Rankr of the original matrixr

1 Sample the firstr× r matrix by initializingk= r

2 while the dimension of the recovered matrix is less than that of the original field,do

3 // Lines 4-12 reconstructM

4 Findr linearly independent columns as the basisBcol

5 Take new samples (on the outer row) in thoser columns to form the new basisB′col

6 Express the other columnsi as a linear combination ofBcol with (ci1, . . .cir )
T

7 Recover the outer row by multiplying coordinates with new basisB′col

8 Findr linearly independent rows as the basisBrow

9 Take new samples (on the outer column) in thoser rows to form the new basisB′row

10 Express the other rowsj (including the outer row) as a linear combination of

Brow with (c j1, . . .c jr )
T

11 Recover the outer column by multiplying coordinates with new basisB′row

12 Updatek to (k+1)

13 end while

Output: Recovered matrix.

6.5 Trace-Driven Simulations

We evaluate the performance of the MC-ALM method and our proposed algorithms through trace-

driven simulations.1

1Trace driven simulation is getting the actual data from a real experiment and feeding it to the
simulation
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Figure 6.2: Sequential reconstruction of field of interest. (a) Successive expansion of sampling
area, where the new samples in each iteration are only taken from the outer row and column; (b)
Illustration of the sampling strategy with the oil spill example.

6.5.1 Measurement of temperature f eld in a water tank

Experiments are first conducted to measure the distribution of water surface temperature in a water

tank, as illustrated in Fig. 6.3. A 1000W water heater (the red dot point in Fig. 6.3) is fixed in the

tank. The heater is powered on five hours before the measurements and remains on through the

whole experiment, so that the distribution of temperature reaches its equilibrium and is considered

to be time-invariant during the sampling.
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Heat source

Figure 6.3: Sketch of the experimental setup for measuring the water-temperature distribution near the
surface.

The 2-D scalar water-temperature field is then described by a matrixA∈ R
24×24 with singular

value decomposition:

A=USVT , S= diag(σ1,σ2, . . . ,σ24),

where the singular values are ordered in a decreasing order. To test the matrix completion algo-

rithms, we approximateA with a low rank matrixÃ by setting

Ã=US̃VT , S̃= diag(σ1,σ2, . . . ,σ6,0, . . . ,0),

Fig. 6.4 shows the sensing field̃A with pixels being scaled between 0 and 255.
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Figure 6.4:Scalar field of water-temperature.

6.5.2 Simulation results

In this subsection we evaluate the performance of MC-ALM and our proposed algorithms using

the collected temperature data.

For the MC-ALM method, 50% measurements are randomly taken to recover the field. Fig. 6.5

shows the random sampling locations and the reconstructed field using those samples. It shows

that the MC-ALM method is able to reconstruct the field with good fidelity. The simulation is

conducted with Matlab on a desktop PC (Dell Vostro 460 with 3.1 GHz Intel i5-2400 CPU and 4

GB memory), and the elapsed CPU time is 0.4 s, obtained using the Matlab macrocputime.

For our proposed iterative adaptive sampling approach, 6 new samples are taken to recover
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(a)

(b)

Figure 6.5: Reconstruction of field of interest using MC-ALM method. (a) sampled data; (b)
reconstructed field.

the every new row or new column in each iteration, and thus 43.75% measurements are taken

sequentially. The reconstructed data is identical to the original field as shown in Fig. 6.6 and the
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CPU time for calculation is 0.04 s, which is 10% of that using the ALM-MC method.

Figure 6.6:Reconstruction of field of interest using the proposed method.

6.5.3 Comparisons of energy cost for data sampling

In order to evaluate the energy cost of each sampling strategy, consider a simplified energy model

for robotic fish:

E =
n

∑
j=1

(

κ1

mj

∑
i=1

Li +κ2mj

)

(6.4)

whereE is the expended energy,κ1 and κ2 are coefficients that imply the linear motion cost

and measurement cost, respectively.Li is the moving distance of stepi, andmj is the number
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of measurements of thejth robotic moving platform. Here we neglect other costs, e.g., wireless

communication cost, cost to change the motion direction of the robot, etc., to simplify the problem.

By settingκ1 andκ2 with different values, we can simulate different scenarios. For instance, if

κ1≫ κ2, it implies the movement cost is very expensive while the measurement cost is cheap and

negligible, and then the sampling strategy should drive the robots to have shorter travels. On the

other hand, ifκ1≪ κ2, the sampling strategy should minimize the number of samplings to reduce

the total cost. In this work, we primarily consider the first scenario, because that locomotion is the

biggest source of energy expenditure for autonomous robotic fish [1].

For the MC-ALM approach, the question is given a set of sampling locations, what is the

shortest possible route that visits every sampling point and returns to the initial point. In the

simulation, we setn = 2, to denote that the sampling algorithm is conducted with 2 robots. It is

a NP-complete multiple traveling salesman problem (MTSP) and its solution is shown in Fig. 6.4.

The total traveling distance of the two robots is 382 inches after about 50,000 iterations using a

genetic algorithm.

On the other hand, the movement planning of robots using our proposed adaptive sampling

framework is a natural result when determining the next sampling points at every time step, and

the results are shown in Fig. 6.8. The total traveling distance (including back to the initial locations

- a direct line back to the initial point) is 290 inches, which is 24% less than that using the MC-

ALM approach.
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Figure 6.7:Robot paths to cover all the sampling points using the multiple traveling salesman method. The
red line and the blue denotes the paths of the two robots.

6.6 Discussions

6.6.1 Impact of more accurate energy model

The current work uses the distance to approximate the movement energy cost of the robotic fish

system. In reality, the cost is dependent on not only the distance but also the effort for changing

the direction. Compared with Eq. (6.5), a more accurate energy model is given below:

E =
n

∑
j=1

(

κ1

mj

∑
i=1

Li +κ2mj +κ3

mj

∑
i=1

n(∆θi)
2
)

, (6.5)
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Figure 6.8:Robot paths to cover all the sampling points using our proposed adaptive sampling algorithm.
The red line and the blue denotes the paths of two robots.

whereκ3 is the coefficient to denote the direction change cost and∆θi is the magnitude of the

direction change in stepi. Using this new model for the cost function, the path planning for the

robotic sensor networks using our proposed successive sampling method is no longer intuitive and

needed to be carefully addressed.
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6.6.2 Limitation of the proposed matrix completion algorithm via successive

reconstruction

If the rank of the initial sampling matrix is less than that of the full field, then in each iteration, the

rank of the new sub-matrix might be different from that of its immediate predecessor. The proposed

algorithms in Section 6.4 will not work for this situation. In this part, we improve the proposed

method as explained in Algorithm 3, with the cost of taking more samplings. We note that the

extra samplings are picked randomly and there is no guarantee that a new linearly independent row

or column (if existing) would be caught using Algorithm 3.
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Algorithm 3: Matrix Completion via Analytical Reconstruction

Inputs: Rankr of the original matrixr

1 Sample the firstr× r matrix by initializingk= r

2 while the dimension of the recovered matrix is less than that of the original fielddo

3 // Lines 4-16 reconstructM

4 Calculate the rankr ′ of M′

5 If r = r ′, go to Algorithm 2, else, continue to line 6

6 Findr ′ linearly independent columns as the basisBcol

7 Take samples (on the outer row) inr ′ columns to form the new basisB′col and

another columnv′col randomly

8 If v′col is independent ofB′col, sample every new points, and go to line 11

9 Express other columnsi as a linear combination of the basis vectorsBcol with (ci1, . . .cir )
T

10 Recover the outer row by multiplying coordinates with new basisB′col

11 Findr ′ linearly independent rows as the basisBrow

12 Take samples (on the outer column) inr ′ rows to form the new basisB′row and

another rowv′row randomly

13 If v′row is independent ofB′row, sample every new points, and go to step 16

14 Express other rowsj (including the outer row) as a linear combination of the

basis vectorsBrow with (c j1, . . .c jr )
T

15 Recover the outer column by multiplying coordinates with new basisB′row

16 Updatek to (k+1)

17 end while

Output: Recovered matrix.
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To demonstrate the effectiveness of Algorithm 3, we generatea 20×20 matrix (shown in Fig. 6.9)

with rank 8, and its first 10×10 sub-matrix has rank 7 and the first 11×11 sub-matrix has rank 8.

Figure 6.9:Scalar field described by a 20×20 matrix.

Using Algorithm 2, the reconstructed matrix is shown in Fig. 6.10, which has a big error com-

pared with the original scalar field.

Fig. 6.11 shows the reconstructed field using Algorithm 3, which is able to perfectly recover

the original data (matrix). Fig. 6.12 shows the sampling points when using Algorithm 3 to guide

the robotic networks with the red stars denoting the additional samplings that needed to be taken

compared with Algorithm 2.
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Figure 6.10:Reconstruction of field of interest using Algorithm 2.

6.7 Conclusions

In this work, an adaptive sampling framework is proposed to reconstruct aquatic environmental

fields using a group of robotic sensor platforms. In particular, it is assumed that the field of interest

can be approximated by a low rank matrix, and then an iterative matrix completion approach via

analytical solutions is proposed and explored. For comparison, an MC approach using Augmented

Lagrange Multiplier optimization is also presented. Simulation results show that our proposed

approach is more computationally efficient and requires shorter travel distances for the robots.

The future work can be extended in two directions. First, it will be of interest to explore ignor-

ing weakly linearly independent columns in the rank computation and analyze the propagation of
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Figure 6.11:Reconstruction of field of interest using Algorithm 3.

reconstruction error caused by this approximation, and the performance of the proposed analytical

matrix reconstruction algorithm. Second, we will explore the validity of the approach using the

robotic fish prototypes developed at the Smart Microsystems Lab.
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Figure 6.12:Locations of samplings using Algorithm 3.

146



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work, the design, development, modeling, control of robotic fish and an adaptive sampling

framework have been studied.

First, the guidelines for robotic fish system design have been provided and demonstrated by

presenting several robot prototypes. Applications with these robots, including aquatic environ-

mental monitoring, robot-animal interaction study, education and outreach, are also presented.

Second, a complete dynamic model for robotic fish actuated by a caudal fin has been developed,

where Lighthill’s elongated-body theory is used to evaluate the tail-generated hydrodynamic force.

It shows that incorporating the body motion in the evaluation of hydrodynamic forces, which is

often ignored in literatures, plays a significant role in capturing the dynamics. Besides, simulation

studies show that the drag force and moment coefficients are strongly dependent on the tail-beat

bias, and subsequently a novel scheme is developed to adapt these coefficients and lift force using

the parameters of tail movement.

Third, a model for robotic fish with a base-actuated flexible tail has been developed. The tail is

modeled as multiple rigid segments connected by springs and dampers, and Lighthill’s elongated-

body theory is used to evaluate the tail-generated hydrodynamic forces. Extensive experimental

results have been collected, and for comparison, a model using linear beam theory is also con-

structed. From these results, it can be concluded that when the tail is excited under a relatively
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low frequency, and consequently experiences small deformation, both models produce similar pre-

dictions that are close to experimental measurements. However, when the actuation frequency

increases, the two models differ, and the model using multi-segment approximation is able to pre-

dict much better the robot speed and the tail shape.

Fourth, a novel control-oriented data-driven averaging approach has been studied that can ap-

proximate well the original dynamics to provide better insight for the controller design. To demon-

strate the merit of the proposed averaging approach, a semi-analytical framework for studying the

robot’s turning motion and a hybrid controller to make the robot follow a set of waypoints have

been developed based upon the averaged model.

Last, an adaptive sampling framework for a group of robotic sensing platforms has been de-

veloped for the mapping of aquatic fields, where the original field is assumed to be represented by

a low-rank matrix. The proposed method successfully expands the sampling area and computes

the missing data points analytically. Real trace-driven simulation results show that the proposed

approach is more computationally efficient and requires shorter travel distances than an established

matrix completion scheme.

7.2 Future work

The future work can be extended in several directions. First, for the averaging of robotic fish dy-

namics, it is of interest to explore analytical insight as to why the scaling functions take the specific

simple forms. Second, We will also seek to extend the approach to the dynamic model of robotic

fish actuated with a flexible tail, as well as explore the validity of the approach for a wider class

of systems with oscillatory inputs. Third, for the environmental reconstruction using the proposed

successively spanning the sampling area strategy, it will be of interest to explore ignoring weakly
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linearly independent columns in the rank computation and analyze the propagation of reconstruc-

tion error caused by this approximation, and the performance of the proposed analytical matrix

reconstruction algorithm. Forth, we will explore the validity of the approach using the robotic fish

prototypes developed at the Smart Microsystems Lab.

149



BIBLIOGRAPHY

150



BIBLIOGRAPHY

[1] X. Tan, “Autonomous robotic fish as mobile sensor platforms: Challenges and potential
solutions,”Marine Technology Society Journal, vol. 45, no. 4, pp. 31–40, 2011.

[2] F. Zhang, J. Wang, J. Thon, C. Thon, E. Litchman, and X. Tan, “Gliding robotic fish for
mobile sampling of aquatic environment,” inProceedings of the 11th IEEE International
Conference on Networking, Sensing and Control, Miami, FL, 2014, pp. 167–172.

[3] G. V. Lauder and E. G. Drucker, “Morphology and experimental hydrodynamics of fish fin
control surfaces,”IEEE Journal of Oceanic Engineering, vol. 29, no. 3, pp. 556–571, 2004.

[4] F. E. Fish and G. V. Lauder, “Passive and active flow control by swimming fishes and mam-
mals,”Annual Review of Fluid Mechanics, vol. 38, pp. 193–224, 2006.

[5] M. S. Triantafyllou and G. S. Triantafyllou, “An efficient swimming machine,”Scientific
America, vol. 273, no. 3, pp. 64–70, 1995.

[6] S. Guo, T. Fukuda, and K. Asaka, “A new type of fish-like underwater microrobot,”
IEEE/ASME Transactions on Mechatronics, vol. 8, no. 1, pp. 136–141, 2003.

[7] M. Epstein, J. E. Colgate, and M. A. MacIver, “Generating thrust with a biologically-
inspired robotic ribbon fin,” inProceedings of the 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Beijing, China, 2006, pp. 2412–2417.

[8] H. Hu, J. Liu, I. Dukes, and G. Francis, “Design of 3D swim patterns for autonomous robotic
fish,” in Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Beijing, China, 2006, pp. 2406–2411.

[9] B. Kim, D. Kim, J. Jung, and J. Park, “A biomimetic undulatory tadpole robot using ionic
polymer-metal composite actuators,”Smart Materials and Structures, vol. 14, pp. 1579–
1585, 2005.

[10] X. Tan, D. Kim, N. Usher, D. Laboy, J. Jackson, A. Kapetanovic, J. Rapai, B. Sabadus, and
X. Zhou, “An autonomous robotic fish for mobile sensing,” inProceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp.
5424–5429.

151



[11] K. A. Morgansen, B. I. Triplett, and D. J. Klein, “Geometric methods for modeling and con-
trol of free-swimming fin-actuated underwater vehicles,”IEEE Transactions on Robotics,
vol. 23, no. 6, pp. 1184–1199, 2007.

[12] M. Aureli, V. Kopman, and M. Porfiri, “Free-locomotion of underwater vehicles actuated
by ionic polymer metal composites,”IEEE/ASME Transactions on Mechatronics, vol. 15,
no. 4, pp. 603–614, 2010.

[13] K. H. Low, “Locomotion and depth control of robotic fish with modular undulating fins,”
International Journal of Automation and Computing, vol. 4, pp. 348–357, 2006.

[14] J. Wang, F. Alequin-Ramos, and X. Tan, “Dynamic modeling of robotic fish and its ex-
perimental validation,” inProceedings of the 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, San Francisco, CA, 2011, pp. 588–594.

[15] J. Wang and X. Tan, “A dynamic model for tail-actuated robotic fish with drag coefficient
adaptation,”Mechatronics, vol. 23, no. 6, pp. 659–668, 2013.

[16] J. Yu, M. Tan, S. Wang, and E. Chen, “Development of a biomimetic robotic fish and its con-
trol algorithm,”IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 34, no. 4, pp. 1798–1810, 2004.

[17] Z. G. Zhang, N. Yamashita, M. Gondo, A. Yamamoto, and T. Higuchi, “Electrostatically
actuated robotic fish: Design and control for high-mobility open-loop swimming,”IEEE
Transaction on Robotics, vol. 24, no. 1, pp. 118–129, 2008.

[18] E. Kanso and P. K. Newton, “Passive locomotion via normal-mode coupling in a submerged
spring-mass system,”J. Fluid Mech, vol. 641, pp. 205–215, 2009.

[19] P. V. Alvarado and K. Youcef-Toumi, “Design of machines with compliant bodies for
biomimetic locomotion in liquid environments,”Journal of Dynamic Systems, Measure-
ment, and Control, vol. 128, pp. 3–13, 2006.

[20] Y. Wang, R. Tan, G. Xing, J. Wang, and X. Tan, “Profiling aquatic diffusion process profiling
using robotic sensor networks,”IEEE Transactions on Mobile Computing, vol. 13, no. 4,
2014.

[21] Y. Wang, R. Tan, G. Xing, X. Tan, J. Wang, and R. Zhou, “Spatiotemporal aquatic field
reconstruction using cyber-physical robotic sensor systems,”ACM Transactions on Sensor
Networks, vol. 10, no. 57, 2014.

152



[22] Y. Wang, R. Tan, G. Xing, J. Wang, and X. Tan, “Accuracy-aware aquatic diffusion process
profiling using robotic sensor networks,” in11th ACM/IEEE Conference on Information
Processing in Sensor Networks, Beijing, China, 2012, pp. 281–292.

[23] Y. Wang, R. Tan, G. Xing, X. Tan, J. Wang, and R. Zhou, “Spatiotemporal aquatic field
reconstruction using robotic sensor swarm,” inProceedings of the 33st IEEE Real-Time
Systems Symposium (RTSS), San Juan, Puerto Rico, 2012, pp. 205–214.

[24] S. Marras and M. Porfiri, “Fish and robots swimming together: attraction towards the robot
demands biomimetic locomotion,”Journal of The Royal Society Interface, vol. 9, no. 73,
pp. 1856–1868, 2012.

[25] M. J. Lighthill, “Large-amplitude elongated-body theory of fish locomotion,”Proceedings
of the Royal Society of London B, vol. 179, pp. 125–138, 1971.

[26] T. Y. Wu, “Hydromechanics of swimming propulsion. Part 1. Swimming of a two-
dimensional flexible plate at variable forward speeds in an inviscid fluid,”Journal of Fluid
Mechanics, vol. 46, pp. 337–355, 1971.

[27] B. Ahlborn, S. Chapman, R. Stafford, R. W. Blake, and D. G. Harper, “Experimental simu-
lation of the thrust phase of fast-start swimming of fish,”Journal of Experimental Biology,
vol. 200, pp. 2301–2312, 2007.

[28] I. L. Y. Spierts and J. L. Van Leeuwen, “Kinematics and muscle dynamics of C- and S-starts
of carp (cyprinus carpiol.),” Journal of Experimental Biology, vol. 202, pp. 393–406, 1999.

[29] U. K. Muller, E. J. Stamhuis, and J. J. Videler, “Riding the waves: The role of the body wave
in undulatory fish swimming,”Integrative and Comparative Biology, vol. 42, pp. 981–987,
2002.

[30] M. S. Triantafyllou, D. K. P. Yue, and G. S. Triantafyllou, “Hydrodynamics of fishlike
swimming,”Annu. Rev. Fluid Mech., vol. 32, pp. 33–53, 2000.

[31] M. S. Triantafyllou, A. H. Techet, and F. S. Hover, “Review of experimental work in
biomimetic foils,”IEEE Journal of Oceanic Engineering, vol. 29, no. 3, pp. 585–594, 2004.

[32] H. Liu, R. J. Wassersug, and K. Kawachi, “A computational fluid dynamics study of tadpole
swimming,”Journal of Experimental Biology, vol. 199, pp. 1245–1260, 1996.

[33] R. Mittal, “Computational modeling in biohydrodynamics: Trends, challenges, and recent
advances,”IEEE Journal of Oceanic Engineering, vol. 29, no. 3, pp. 595–604, 2004.

153



[34] D. Byun, J. Choi, K. Cha, J. Park, and S. Park, “Swimming microrobot actuated by two
pairs of helmholtz coils system,”Mechatronics, vol. 21, no. 1, pp. 357–364, 2011.

[35] N. Kato, “Control performance in the horizontal plane of a fish robot with mechanical pec-
toral fins,” IEEE Journal of Oceanic Engineering, vol. 25, no. 1, pp. 121–129, 2000.

[36] J. Anderson and N. Chhabra, “Maneuvering and stability performance of a robotic tuna,”
Integrative and Comparative Biology, vol. 42, no. 1, pp. 118–126, 2002.

[37] P. R. Bandyopadhyay, “Maneuvering hydrodynamics of fish and small underwater vehicles,”
Integrative and Comparative Biology, vol. 42, pp. 102–117, 2002.

[38] J. Yu, M. Tan, S. Wang, and E. Chen, “Development of a biomimetic robotic fish and its con-
trol algorithm,”IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 34, no. 4, pp. 1798–1810, 2004.

[39] J. H. Long, A. C. Lammert, C. A. Pell, M. Kemp, J. A. Strother, H. C. Crenshaw, and
M. J. McHenry, “A navigational primitive: Biorobotic implementation of cycloptic helical
klinotaxis in planar motion,”IEEE Journal of Oceanic Engineering, vol. 29, no. 3, pp. 795–
806, 2004.

[40] J. Liu and H. Hu, “Biologically inspired behavior design for autonomous robotic fish,”In-
ternational Journal of Automation and Computing, vol. 4, pp. 336–347, 2006.

[41] M. Krieg and K. Mohseni, “Dynamic modeling and control of biologically inspired vortex
ring thrusters for underwater robot locomotion,”IEEE Transactions on Robotics, vol. 26,
no. 3, pp. 542–554, 2010.

[42] G. V. Lauder, E. J. Anderson, J. Tangorra, and P. G. A. Madden, “Fish biorobotics: Kine-
matics and hydrodynamics of self-propulsion,”Journal of Experimental Biology, vol. 210,
pp. 2767–2780, 2007.

[43] P. Kodati, J. Hinkle, A. Winn, and X. Deng, “Microautonomous robotic ostraciiform
(MARCO): Hydrodynamics, design, and fabrication,”IEEE Transactions on Robotics,
vol. 24, no. 1, pp. 105–117, 2008.

[44] K. H. Low and C. W. Chong, “Parametric study of the swimming performance of a fish
robot propelled by a flexible caudal fin,”Bioinsp. Biomim., vol. 5, p. 046002, 2010.

[45] Z. C. S. Shatara and X. Tan, “Modeling of biomimetic robotic fish propelled by an ionic
polymer-metal composite caudal fin,”IEEE/ASME Transactions on Mechatronics, vol. 15,
no. 3, pp. 448–459, 2010.

154



[46] J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, and J. Zhang, “On a bio-inspired amphibious
robot capable of multimodal motion,”IEEE/ASME Transactions on Mechatronics, vol. PP,
no. 99, pp. 1–10, 2011.

[47] P. C. Strefling, A. M. Hellum, and R. Mukherjee, “Modeling, simulation, and perfor-
mance of a synergistically propelled ichthyoid,”IEEE/ASME Transactions on Mechatronics,
vol. 17, no. 1, pp. 36–45, 2012.

[48] F. Liu, K.-M. Lee, and C.-J. Yang, “Hydrodynamics of an undulating fin for a wave-like
locomotion system design,”Mechatronics, IEEE/ASME Transactions on, vol. 17, no. 3, pp.
554–562, 2012.

[49] C. Zhou and K. H. Low, “Design and locomotion control of a biomimetic underwater vehicle
with fin propulsion,”IEEE/ASME Transactions on Mechatronics, vol. 17, no. 1, pp. 25–35,
2012.

[50] J. W. Paquette and K. J. Kim, “Ionomeric electroactive polymer artificial muscle for naval
applications,”IEEE Journal of Oceanic Engineering, vol. 29, no. 3, pp. 729–738, 2004.

[51] T. Tao, Y.-C. Liang, and M. Taya, “Bio-inspired actuating system for swimming using shape
memory alloy composites,”International Journal of Automation and Computing, vol. 4, pp.
366–373, 2006.

[52] J. Tangorra, P. Anquetil, T. Fofonoff, A. Chen, M. Del Zio, and I. Hunter, “The application
of conducting polymers to a biorobotic fin propulsor,”Bioinspiration & Biomimetics, vol. 2,
pp. S6–S17, 2007.

[53] T. Wiguna, S. Heo, H. C. Park, and N. S. Goo, “Design and experimental parameteric study
of a fish robot actuated by piezoelectric actuators,”Journal of Intelligent Material Systems
and Structures, vol. 20, pp. 751–758, 2009.

[54] Y. Zhang, M. Cong, D. Guo, and D. Wang, “Design optimization of a bidirectional mi-
croswimming robot using giant magnetostrictive thin films,”IEEE/ASME Transactions on
Mechatronics, vol. 14, no. 4, pp. 493–503, 2009.

[55] P. Valdastri, E. Sinibaldi, S. Caccavaro, G. Tortora, A. Menciassi, and P. Dario, “A novel
magnetic actuation system for miniature swimming robots,”IEEE Transactions on Robotics,
vol. 27, no. 4, pp. 769–779, 2011.

[56] S. A. Ruberg, R. W. Muzzi, S. B. Brandt, J. C. Lane, T. C. Miller, J. J. Gray, S. A. Constant,
and E. J. Downing, “A wireless internet-based observatory: The Real-time Coastal Observa-

155



tion Network (ReCON),” inProceedings of Marine Technology Society/IEEE Oceans 2007
Conference, 2007, 6 pp.

[57] K. W. Doherty, D. E. Frye, S. P. Liberatore, and J. M. Toole, “A moored profiling instru-
ment,”J Atmos Ocean Technol., vol. 16, pp. 1816–1829, 1999.

[58] J. V. Reynolds-Fleming, J. G. Fleming, and R. A. Luettich, “Portable autonomous vertical
profiler for estuarine applications,”Estuaries, vol. 25, pp. 142–147, 2002.

[59] H. Hongji, A. Kaneko, and K. Kawatate, “Self-governing profiling system,”Cont. Shelf
Res., vol. 7, pp. 1257–1265, 1987.

[60] R. E. Davis, D. C. Webb, L. A. Regier, and J. Dufour, “The autonomous Lagrangian cir-
culation explorer (ALACE),”Journal of Atmospheric and Oceanic Technology, vol. 9, pp.
264–285, 1992.

[61] R. A. Luettich, “PSWIMS, a profiling instrument system for remote physical and chemical
measurements in shallow-water,”Estuaries, vol. 16, pp. 190–197, 1993.

[62] P. R. Bandyopadhyay, “Trends in biorobotic autonomous undersea vehicles,”IEEE Journal
of Oceanic Engineering, vol. 30, no. 1, pp. 109–139, 2005.

[63] D. R. Yoerger, A. M. Bradley, M. Jakuba, C. R. German, T. Shank, and M. Tivey, “Au-
tonomous and remotely operated vehicle technology for hydrothermal vent discovery, ex-
ploration, and sampling,”Oceanography, vol. 20, no. 1, pp. 152–161, 2007.

[64] B. Bingham, B. Foley, H. Singh, R. Camilli, K. Delaporta, R. Eustice, A. Mallios, D. Min-
dell, C. Roman, and D. Sakellariou, “Robotic tools for deep water archaeology: Surveying
an ancient shipwreck with an autonomous underwater vehicle,”J. Field Robot., vol. 27,
no. 6, pp. 702–717, 2010.

[65] L. L. Whitcomb, M. V. Jakuba, J. C. Kinsey, S. C. Martin, S. E. Webster, J. C. Howland,
C. L. Taylor, D. Gomez-Ibanez, and D. Yoerger, “Navigation and control of the Nereus
hybrid underwater vehicle for global ocean science to 10,903 m depth: Preliminary results,”
in Proceedings of the 2010 IEEE International Conference on Robotics and Automation,
Anchorage, AK, 2010, 594-600.

[66] F. S. Hover, R. M. Eustice, A. Kim, B. Englot, H. Johannsson, M. Kaess, and J. J. Leonard,
“Advanced perception, navigation and planning for autonomous in-water ship hull inspec-
tion,” The International Journal of Robotics Research, vol. 31, no. 12, pp. 1445–1464, 2012.

156



[67] S. B. Williams, O. Pizarro, J. Webster, R. Beaman, I. Mahon, M. Johnson-Roberson, and
T. Bridge, “AUV-assisted surveying of drowned reefs on the shelf edge of the Great Barrier
Reef, Australia,”J. Field Robot., vol. 27, no. 5, pp. 675–697, 2010.

[68] S. B. Williams, O. R. Pizarro, M. V. Jakuba, C. R. Johnson, N. S. Barrett, R. C. Babcock,
G. A. Kendrick, P. D. Steinberg, A. J. Heyward, P. J. Doherty, I. Mahon, M. Johnson-
Roberson, D. Steinberg, and A. Friedman, “Monitoring of benthic reference sites: Using an
autonomous underwater vehicle,”IEEE Robot. Automat. Mag., vol. 19, no. 1, pp. 73–84,
2012.

[69] D. C. Webb, P. J. Simonetti, and C. P. Jones, “SLOCUM, an underwater glider propelled by
environmental energy,”IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 447–452,
2001.

[70] J. Sherman, R. E. Davis, W. B. Owens, and J. Valdes, “The autonomous underwater glider
“Spray”,” IEEE Journal of Oceanic Engineering, vol. 26, pp. 437–446, 2001.

[71] C. C. Ericksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and
A. M. Chiodi, “Seaglider: A long-range autonomous underwater vehicle for oceanographic
research,”IEEE Journal of Oceanic Engineering, vol. 26, pp. 424–436, 2001.

[72] J. B. Newman and B. H. Robison, “Development of a dedicated ROV for ocean science,”
Marine Technology Society Journal, vol. 26, pp. 46–53, 1994.

[73] J. Lee, M. Roh, K. Kim, and D. Lee, “Design of autonomous underwater vehicles for cage
aquafarms,” inProceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul,
Turkey, 2007, pp. 938–943.

[74] ScienceDaily, “Rensselaer researchers experiment with solar underwater robots,” December
2004. [Online]. Available: http://www.sciencedaily.com/releases/2004/12/041212081548.
htm

[75] G. S. Sukhatme, A. Dhariwal, B. Zhang, C. Oberg, B. Stauffer, and D. A. Caron, “De-
sign and development of a wireless robotic networked aquatic microbial observing system,”
Environmental Engineering Science, vol. 24, no. 2, pp. 205–215, 2007.

[76] J. R. Higinbotham, J. R. Moisan, M. Schirtzinger, C.and Linkswiler, and P. Yungel, J.and Or-
ton, “Update on the development and testing of a new long duration solar powered au-
tonomous surface vehicle,” inProceedings of the 2008 OCEANS Conference, Quebec City,
QC, 2008, 10 pp.

157



[77] M. Stealey, A. Singh, M. Batalin, B. Jordan, and W. Kaiser, “NIMS-AQ: A novel system
for autonomous sensing of aquatic environments,” inProceedings of the 2008 IEEE Inter-
national Conference on Robotics and Automation, Pasadena, CA, 2008, 621-628.

[78] A. Goldstein and S. Bentley, “Use of highly portable micro-sized remotely operated vehicles
for environmental monitoring and mapping,” inProceedings of OCEANS 2010 Conference,
Seattle, WA, 2010, 6 pp.

[79] J. Das, H. Heidarsson, A. Pereira, F. Arrichiello, I. Cetnic, L. Darjany, M.-E. Garneau,
M. Howard, C. Oberg, M. Ragan, E. Seubert, E. Smith, B. Stauffer, A. Schnetzer, G. Toro-
Farmer, D. Caron, B. Jones, and G. Sukhatme, “USC CINAPS builds bridges,”IEEE Robot.
Automat. Mag., vol. 17, no. 1, pp. 20–30, 2010.

[80] R. N. Smith, Y. Chao, P. P. Li, D. A. Caron, B. H. Jones, and G. S. Sukhatme, “Planning and
implementing trajectories for autonomous underwater vehicles to track evolving ocean pro-
cesses based on predictions from a regional ocean model,”International Journal of Robotics
Research, vol. 29, no. 12, pp. 1475–1497, 2010.

[81] M. Dunbabin and A. Grinham, “Experimental evaluation of an Autonomous Surface Vehicle
for water quality and greenhouse gas emission monitoring,” inProceedings of the 2010
IEEE International Conference on Robotics and Automation, Anchorage, AK, 2010, pp.
5268–5274.

[82] L. Elkins, D. Sellers, and W. R. Monach, “The Autonomous Maritime Navigation (AMN)
project: Field tests, autonomous and cooperative behaviors, data fusion, sensors, and vehi-
cles,”J. Field Robot., vol. 27, no. 6, pp. 790–818, 2010.

[83] S. J. M. Hughes, D. O. B. Jones, C.Hauton, A. R. Gates, and L. E.Hawkins, “An assessment
of drilling disturbance on echinus acutus var. norvegicus based on in-situ observations and
experiments using a remotely operated vehicle (ROV),”J. Exp. Marine Biol. Ecol., vol. 395,
no. 1-2, pp. 37–47, 2010.

[84] G. Hitz, F. Polerleau, M. Gameau, C. Pradalier, T. Posch, J. Pernthaler, and R. Y. Siegwart,
“Autonomous inland water monitoring: Design and application of a surface vehicle,”IEEE
Robot. Automat. Mag, vol. 19, no. 1, pp. 62–72, 2012.

[85] F. Zhang and X. Tan, “Gliding robotic fish and its tail-enabled yaw motion stabilization us-
ing sliding mode control,” inProceedings of the 2013 ASME Dynamic Systems and Control
Conferece, Palo Alto, CA, 2013, paper DSCC2013-4015 (10 pp).

158



[86] K. Cannon, M. Lapoint, N. Bird, K. Panciera, H. Veeraraghavan, N. Papanikolopoulos, and
M. Gini, “Using robots to raise interest in technology among underrepresented groups,”
Robotics Automation Magazine, IEEE, vol. 14, no. 2, pp. 73–81, 2007.

[87] N. Abaid, V. Kopman, and M. Porfiri, “An attraction toward engineering careers: The story
of a brooklyn outreach program for k-12 students,”Robotics Automation Magazine, IEEE,
vol. 20, no. 2, pp. 31–39, 2013.

[88] E. Matson, S. DeLoach, and R. Pauly, “Building interest in math and science for rural and
underserved elementary school children using robots,”Journal of STEM Education, vol. 5,
no. 3, pp. 35–46, 2004.

[89] H. Hu, “Biologically inspired design of autonomous robotic fish at essex,” inProceedings
of the IEEE SMC UK-RI Chapter Conference, Sheffield, UK, 2006, pp. 1–6.

[90] K. A. Harper, M. D. Berkemeier, and S. Grace, “Modeling the dynamics of spring-driven
oscillating-foil propulsion,”IEEE Journal of Oceanic Engineering, vol. 23, no. 3, pp. 285–
296, 1998.

[91] S. D. Kelly, “The mechanics and control of robotic locomotion with applications to aquatic
vehicles,” Ph.D. dissertation, California Institute of Technology, 1998.

[92] S. D. Kelly and R. M. Murray, “Modelling efficient pisciform swimming for control,”Inter-
national Journal of Robust and Nonlinear Control, vol. 10, pp. 217–241, 2000.

[93] R. Mason and J. W. Burdick, “Experiments in carangiform robotic fish locomotion,” in
Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San
Francisco, CA, 2000, pp. 428–435.

[94] R. Mason, “Fluid locomotion and trajectory planning for shape-changing robots,” Ph.D.
dissertation, California Institute of Technology, 2003.

[95] E. Kanso, J. E. Marsden, C. W. Rowley, and J. B. Melli-Huber, “Locomotion of articulated
bodies in a perfect fluid,”Nonlinear Science, vol. 15, pp. 255–289, 2005.

[96] F. Boyer, M. Porez, A. Leroyer, and M. Visonneau, “Fast dynamics of an eel-like robot
c Comparisons with Navier-Stokers simulations,”IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1274–1288, 2008.

[97] Y. Or, S. Zhang, and R. M. Murray, “Dynamics and stability of low-reynolds-number swim-
ming near a wall,”SIAM J. Applied Dynamical Systems, vol. 10, no. 3, pp. 1013–1041,
2011.

159



[98] K. A. McIsaac and J. P. Ostrowski, “Motion planning for anguilliform locomotion,” IEEE
Transactions on Robotics and Automation, vol. 19, no. 4, pp. 637–652, 2003.

[99] J. E. Colgate and K. M. Lynch, “Mechanics and control of swimming: A review,”IEEE
Journal of Oceanic Engineering, vol. 29, no. 3, pp. 660–673, 2004.

[100] J. Guo and Y.-J. Joeng, “Guidance and control of a biomimetic autonomous underwater
vehicle using body-fin propulsion,”Proceedings of the Institution of Mechanical Engineers,
Part M: Journal of Engineering for the Maritime Environment, vol. 218, pp. 93–111, 2004.

[101] S. Saimek and P. Y. Li, “Motion planning and control of a swimming machine,”Interna-
tional Journal of Robotics Research, vol. 23, no. 1, pp. 27–53, 2004.

[102] J. B. Melli, C. W. Rowley, and D. S. Rufat, “Motion planning for an articulated body in a
perfect planar fluid,”SIAM J. Applied Dynamical Systems, vol. 5, no. 4, pp. 650–669, 2006.

[103] J. Cochran, A. Siranosian, N. Ghods, and M. Krstic, “3-D source seeking for underactuated
vehicles without position measurement,”IEEE Transactions on Robotics, vol. 25, no. 1, pp.
117–129, 2009.

[104] Y.-H. Zhang, J.-H. He, J. Yang, and S.-W. Zhang, “A computational fluid dynamics (CFD)
analysis of an undulatory mechanical fin driven by shape memory alloy,”International Jour-
nal of Automation and Computing, vol. 4, pp. 374–381, 2006.

[105] M. Anton, Z. Chen, M. Kruusmaa, and X. Tan, “Analytical and computational modeling of
robotic fish propelled by soft actuation material-based active joints,” inProceedings of the
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO,
2009, pp. 2126–2131.

[106] X. Tan, M. Carpenter, J. Thon, and F. Alequin-Ramos, “Analytical modeling and experimen-
tal studies of robotic fish turning,” inProceedings of the IEEE International Conference on
Robotics and Automation, Anchorage, AK, 2010, pp. 102–108.

[107] H. Chen, C. Zhu, X. Yin, X. Xing, and G. Cheng, “Hydrodynamic analysis and simulation
of a swimming bionic robot tuna,”Journal of Hydrodynamics, Ser. B, vol. 19, no. 4, pp.
412–420, 2009.

[108] N. E. Leonard and J. G. Graver, “Model-based feedback control of autonomous underwater
gliders,” IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 633–645, Oct. 2001.

160



[109] P. Bhatta and N. E. Leonard, “A Lyapunov function for vehicles with lift and drag: stability
of gliding,” in Proceedings of the 43rd IEEE Conference on Decision and Control, Dec.
2004, pp. 4101–4106 Vol.4.

[110] K. A. Morgansen, V. Duindam, R. J. Mason, J. W. Burdick, and R. M. Murray, “Nonlinear
control methods for planar carangiform robot fish locomotion,” inProceedings of the 2001
IEEE International Conference on Robotics & Automation, Seoul, Korea, 2001, pp. 427–
434.

[111] T. I. Fossen,Guidance and Control of Ocean Vehicles. New York: Wiley, 1994.

[112] H. N. Arafat, D. J. Stilwell, and W. L. Neu, “Development of a dynamic model of a small
high-speed autonomous underwater vehicle,” inProceedings of Oceans, Boston, MA, 2006,
pp. 1–6.

[113] J. Yu, L. Liu, L. Wang, M. Tan, and D. Xu, “Turning control of a multilink biomimetic
robotic fish,”IEEE Transactions on Robotics, vol. 24, no. 1, pp. 201–206, 2008.

[114] F. Liu, K.-M. Lee, and C.-J. Yang, “Hydrodynamics of an undulating fin for a wave-like
locomotion system design,”IEEE/ASME Transactions on Mechatronics, vol. 17, no. 3, pp.
554–562, 2012.

[115] S. Lee, J. Park, and C. Han, “Optimal control of a mackerel-mimicking robot for energy
efficient trajectory tracking,”Journal of Bionic Engineering, vol. 4, no. 4, pp. 209–215,
2007.

[116] D. S. Barrett, M. S. Triantafyllou, D. K. P. Yue, M. A. Grosenbaugh, and M. J. Wolfgang,
“Drag-reduction in fish-like locomotion,”Journal of Fluid Mechanics, vol. 392, pp. 183–
212, 1999.

[117] J. H. Long, Jr., T. J. Koob, K. Irving, K. Combie, V. Engel, H. Livingston, A. Lammert, and
J. Schumacher, “Biomimetic evolutionary analysis: testing the adaptive value of vertebrate
tail stiffness in autonomous swimming robots,”Journal of Experimental Biology, vol. 209,
no. 23, pp. 4732–4746, 2006.

[118] J. L. Tangorra, G. V. Lauder, I. W. Hunter, R. Mittal, P. G. A. Madden, and M. Bozkurttas,
“The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish
pectoral fin,”Journal of Experimental Biology, vol. 213, pp. 4043–4054, 2010.

[119] T. R. Kane, R. Ryan, and A. K. Banerjee, “Dynamics of a cantilever beam attached to a
moving base,”Journal of Guidance, Control, and Dynamics, vol. 10, no. 2, pp. 139–151,
1987.

161



[120] T. P. Mitchell and J. C. Bruch, “Free vibrations of a flexible arm attached to a compliant
finite hub,” Journal of Vibration, Acoustics Stress and Reliability in Design, vol. 1, no. 1,
pp. 118–120, 1988.

[121] K. H. Low, “Eigen-analysis of a tip-loaded beam attached to a rotating joint,”Journal of
Vibration and Acoustics, vol. 112, no. 4, pp. 497–500, 1990.

[122] V. Kopman and M. Porfiri, “Design, modeling, and characterization of a miniature robotic
fish for research and education in biomimetics and bioinspiration,”IEEE Transactions on
Mechatronics, vol. 18, no. 2, pp. 471–483, 2013.

[123] H. Yang, J. Hong, and Z. Yu, “Dynamics modelling of a flexible hub-beam system with a
tip mass,”Journal of Sound and Vibration, vol. 266, no. 4, pp. 759–774, 2003.

[124] P. Shi, J. McPhee, and G. R. Heppler, “A deformation field for Euler-Bernoulli beams with
applications to flexible multibody dynamics,”Multibody System Dynamics, vol. 5, no. 1, pp.
79–104, 2001.

[125] A. K. Banerjee and S. Nagarajan, “Efficient simulation of large overall motion of beams
undergoing large deflection,”Multibody System Dynamics, vol. 1, no. 1, pp. 113–126, 1997.

[126] N. Wereley, G. Wang, and A. Chaudhuri, “Demonstration of uniform cantileverd beam be-
ding vibration using a pair of piezoelectric actuators,”J. Intell. Mater. Syst. Struct., vol. 22,
no. 4, pp. 307–316, 2011.

[127] X. Chen, G. Zhu, X. Yang, D. L. S. Hung, and X. Tan, “Model-based estimation of flow
characteristics using an ionic polymer-metal composite beam,”IEEE/ASME Transactions
on Mechatronics, vol. 18, no. 3, pp. 932–943, 2013.

[128] T. J. Pedley and S. J. Hill, “Kinematic condition for maximizing the thrust of a robotic fish
using a compliant caudal fin,”The Journal of Experimental Biology, vol. 202, pp. 3431–
3438, 1999.

[129] J. Cheng, L. Zhuang, and B. Tong, “Analysis of swimming three-dimensional waving
plates,”Journal of Fluid Mechanics, vol. 232, pp. 341–355, 1991.

[130] R. W. Clough and J. Penzien,Dynamics of Structures, 3rd ed. 1995 University Ave, Berke-
ley, CA: Computers & Structures Inc, 2003.

[131] V. Kopman and M. Porfiri, “A miniature and low-cost robotic fish for ethorobotics research
and engineering education: Iłbioinspired design,” inProceedings of the ASME 2011 Dy-
namic Systems and Control Conference, Oct. 2011, pp. 209–216.

162



[132] J. Wang, P. K. McKinley, and X. Tan, “Dynamic modeling ofrobotic fish with a flexible
caudal fin,” inProceedings of the 2012 ASME Dynamic Systems and Control Conference,
Fort Lauderdale, FL, 2012, dSCC2012-MOVIC2012-8695.

[133] K. A. Morgansen, P. A. Vela, and J. W. Burdick, “Trajectory stabilization for a planar
carangiform robot fish,” inProceedings of the 2002 IEEE International Conference on
Robotics and Automation, Washington, DC, May 2002, pp. 756–762.

[134] J. A. Sanders, F. Verhulst, and J. Murdock,Averaging Methods in Nonlinear Dynamical
Systems. New York: Springer, 2007.

[135] P. A. Vela, K. A. Morgansen, and J. W. Burdick, “Second order averaging methods for
oscillatory control of underactuated mechanical systems,” inProceedings of the American
Control Conference, Anchorage, AK, May 2002, pp. 576–581.

[136] F. Bullo and A. D. Lewis,Geometric Control of Mechanical Systems: Modeling, Analysis,
and Design for Simple Mechanical Control Systems. New York: Springer, 2004.

[137] J. Liu and H. Hu, “Mimicry of sharp turning behaviours in a robotic fish,” inProceedings
of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005,
pp. 3318–3323.

[138] J. Yu, L. Liu, and L. Wang, “Dynamics and control of turning manerver for biomimetic
robotic fish,” inProceedings of 2006 the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Beijing, China, 2006, pp. 3318–3323.

[139] S. Chen, J. Wang, and X. Tan, “Backstepping-based hybrid target tracking control for a
carangiform robotic fish,” inProceedings of the 2013 ASME Dynamic Systems and Control
Conferece, Palo Alto, CA, 2013, paper DSCC2013-3963 (9 pp).

[140] Y. Hu, W. Zhao, L. Wang, and Y. Jia, “Underwater target following with a vision-based
autonomous robotic fish,” inProceedings of the 2009 American Control Conference, St.
Louis, MO, 2009, pp. 5265–5270.

[141] J. Yu, S. Wang, and M. Tan, “Basic motion control of a free-swimming biomimetic robot
fish,” in Proceedings of the 42nd IEEE International Conference on Decision and Control,
Maui, HI, 2003, pp. 1268–1273.

[142] R. P. Schwarzenbach, T. Egli, T. B. Hofstetter, U. Von Gunten, and B. Wehrli, “Global
water pollution and human health,”Annual Review of Environment and Resources, vol. 35,
pp. 109–136, 2010.

163



[143] N. F. Grayet al., Water technology: an introduction for environmental scientists and engi-
neers. IWA Publishing, 2010, no. Ed. 3.

[144] R. Rajagopalan,Environmental studies: from crisis to cure. Oxford University Press, 2011.

[145] USEPA, “EPA Response to Enbridge Spill in Michigan.” [Online]. Available: http:
//www.epa.gov/enbridgespill/documents.html

[146] Wikipedia, “Oil Spill.” [Online]. Available: http://en.wikipedia.org/wiki/Oilspill

[147] United States National Oceanographic and Atmospheric Administration, “Erma gulf
response.” [Online]. Available: http://response.restoration.noaa.gov/maps-and-spatial-data/
environmental-response-management-application-erma/erma-gulf-response.html

[148] Office of the Maritime Administrator, “Deepwater horizon marine casualty investigation
report,” August 2011, Retrieved on February 25, 2013.

[149] B. Chen and D. Pompili, “Team formation and steeing algorithms for underwater gliaders
using acoustic communication,”Computer Communications, vol. 35, no. 9, pp. 1017–1028,
2012.

[150] B. Chen, P. Pandey, and D. Pompili, “A distributed adaptive sampling soluting using au-
tonomous underwater vehicles,” inProceedings of the Seventh ACM International Confer-
ence on Underwater Networks and Systems, New York, USA, 2012, article No. 29.

[151] D. L. Rudnick, R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry, “Underwater
gliders for ocean research,”Marine Technology Society Jouranl, vol. 38, no. 2, pp. 73–84,
2004.

[152] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg, “Near-optimal sensor placements: Max-
imizing information while minimizing communication cost,” inThe 5th International Con-
ference on Information Processing in Sensor Networks (IPSN). ACM/IEEE, 2006, pp.
2–10.

[153] B. Zhang and G. Sukhatme, “Adaptive sampling for estimating a scalar field using a robotic
boat and a sensor network,” inIEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2007, pp. 3673–3680.

[154] Y. Xu, J. Choi, and S. Oh, “Mobile sensor network navigation using gaussian processes
with truncated observations,”IEEE Transactions on Robotics, vol. 27, no. 6, pp. 1118–1131,
2011.

164



[155] J. Cortés, “Distributed kriged kalman filter for spatial estimation,”IEEE Transactions on
Automatic Control, vol. 54, no. 12, pp. 2816–2827, 2009.

[156] K. Low, J. Dolan, and P. Khosla, “Adaptive multi-robot wide-area exploration and mapping,”
in The 7th International Conference on Autonomous Agents and Multiagent Systems, 2008,
pp. 23–30.

[157] A. Munafo, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater
vehicle teams for adaptive ocean sampling: A data-driven approach,”Ocean Dynamics,
vol. 61, no. 11, pp. 1981–1994, 2011.

[158] D. Popa, A. Sanderson, R. Komerska, S. Mupparapu, D. Blidberg, and S. Chappel, “Adap-
tive sampling algorithms for multiple autonomous underwater vehicles,” inProceedings of
IEEE INternational Conference on Autonomous Underwater Vehicles, Maine, USA, 2004,
pp. 108–118.

[159] Y. Xu and J. Choi, “Adaptive sampling for learning gaussian processes using mobile sensor
networks,”Sensors, vol. 11, no. 3, pp. 3051–3066, 2011.

[160] D. L. Donoho, “Compressed sensing,”IEEE Transactions on Information Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

[161] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruc-
tion from highly incomplete frequency information,”IEEE Transactions on Information
Theory, vol. 52, no. 2, pp. 489–509, 2006.

[162] R. Hummel, S. Poduri, F. Hover, U. Mitra, and G. Sukahatme, “Mission design for compres-
sive sensing with mobile robots,” inProceedings of 2011 IEEE International Conference on
Robotics and Automation, Shanghai, China, 2011, pp. 2362–2367.

[163] S. Huang and J. Tan, “Adaptive sampling using mobile sensor networks,” inProceedings of
2012 IEEE International Conference on Robotics and Automation, Minnesota, USA, 2012,
pp. 657–662.

[164] ——, “Compressive mobile sensing in robotic mapping,” inProceedings of 2009 the
IEEE/RSJ International Conference on Intelligent Robots and Systems, Saint Louis, USA,
2009, pp. 3070–3075.

[165] Z. Lin, M. Chen, and Y. Ma, “The augmented lagrange multiplier method for exact recovery
of corrupted low-rank matrices,” 2009, uIUC Technical Report UILU-ENG-09-2215, 2009.

165



[166] E. Candes and B. Recht, “Exat matrix completion via convex optimization,”Foundations of
Computational Mathematics, vol. 9, pp. 717–772, 2009.

[167] A. Argyriou, T. Evgeniou, and M. Pontil, “Convex multi-task feature learning,”Machine
Learning, vol. 73, no. 3, pp. 243–272, 2008.

[168] M. Mesbahi and G. Papavassilopoulos, “On the rank minimization problem over a positive
semidefinite linear matrix inequality,”IEEE Transactions on Automatic Control, vol. 42,
no. 2, pp. 239–243, 1997.

[169] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography: a
factorization method,”International Journal of Computer Vision, vol. 9, no. 2, pp. 137–154,
1992.

[170] J. Cai, E. J. Candes, and Z. Shen, “A singular value thresholding algorithm for matrix com-
pletion,” SIAM Journal on Optimization, vol. 20, no. 4, pp. 1956–1982, 2010.

[171] K. Toh and S. Yun, “An accelerated proximal gradient algorithm for nuclear norm regular-
ized least squares problems,”Pacific Journal of Optimization, vol. 6, pp. 615–640, 2010.

166


