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Tail-Enabled Spiraling Maneuver
for Gliding Robotic Fish

Gliding robotic fish, a new type of underwater robot, combines both strengths of under-
water gliders and robotic fish, featuring long operation duration and high maneuverabil-
ity. In this paper, we present both analytical and experimental results on a novel gliding
motion, tail-enabled three-dimensional (3D) spiraling, which is well suited for sampling a
water column. A dynamic model of a gliding robotic fish with a deflected tail is first estab-
lished. The equations for the relative equilibria corresponding to steady-state spiraling
are derived and then solved recursively using Newton’s method. The region of conver-
gence for Newton's method is examined numerically. We then establish the local as-
ymptotic stability of the computed equilibria through Jacobian analysis and further
numerically explore the basins of attraction. Experiments have been conducted on a
fish-shaped miniature underwater glider with a deflected tail, where a gliding-
induced 3D spiraling maneuver is confirmed. Furthermore, consistent with model
predictions, experimental results have shown that the achievable turning radius of
the spiraling can be as small as less than 0.4 m, demonstrating the high maneuver-
ability. [DOI: 10.1115/1.4026965]

1 Introduction

Aquatic environmental sampling is a key challenge worldwide
in securing sustainable water resources. Autonomous underwater
robots hold the potential in this domain for monitoring water qual-
ity, tracking oil spills, and patrolling seaports, to name a few.
High energy-efficiency and high maneuverability are desired char-
acteristics for such robots in order to operate in versatile environ-
ments such as lakes, rivers, and the ocean. Underwater gliders,
which propel themselves by changing the net buoyancy and the
center of gravity, have demonstrated low power consumption and
long operating duration. Examples of commercial underwater
gliders include the Seaglider [1], Spray [2], and Slocum [3]. These
gliders are designed for ocean sampling purposes with typical
length of 1-2m and weight of 50 kg or more. It is generally not
energy efficient for underwater gliders to operate in environ-
ments such as rivers and shallow lakes. Furthermore, the
maneuverability of gliders is typically poor. A different class
of aquatic robots that mimics fish motion has received great
attention over the past two decades. These robots, often called
robotic fish, can swim by deforming the body and fish-like
appendages [4—17]. Like their biological counterparts, robotic
fish are highly maneuverable in a broad range of environ-
ments. However, they require constant actuation for locomo-
tion and maneuvering and cannot operate for extended periods
of time without battery recharge.

An intriguing design concept is to combine attractive features
of underwater gliders and robotic fish [18] to offer maneuverabil-
ity and endurance at the same time. Termed gliding robotic fish,
such a robot would achieve locomotion mostly through adjusting
its net buoyancy and center of mass, like an underwater glider. On
the other hand, steering is mostly realized by actively controlled
fins, similar to a robotic fish. In addition, gliding robotic fish can
be designed to have much smaller size than a commercial under-
water glider and operate in shallow water for an extended period
of time.
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The typical operation of underwater gliders is rectilinear,
zigzag gliding in a vertical plane, while the nominal operation of
robotic fish is fin-flapping-enabled swimming. There are also a
few studies about the three-dimensional (3D) spiral gliding of
underwater gliders, which is predominantly realized by translating
or rotating an internal mass [19-24]. In this paper, we investigate
a novel form of gliding where a deflected tail induces 3D spiraling
motion [25], which enables energy-efficient maneuvering without
constant actuation of the tail. Throughout the paper, the term
“spiral” refers to a 3D helical motion and, in most part, to a helical
motion with constant radius under a given set of (fixed) inputs. On
the application side, the spiraling motion carries significant
relevance to water column sampling. A water column is a concep-
tual narrow volume (like a narrow cylinder) of water stretching
vertically from the surface to the bottom. Water column sampling
is a routine surveying method in environmental studies for
evaluating the stratification or mixing of water layers and for
monitoring the distributions of physical and biological processes
[26]. Existing approaches for water column sampling typically
involve lowering and raising sensors off a boat or ship, which are
time consuming and costly. The spiraling motion produced by
underwater gliders has a typical turning radius on the order of
30-50m, not suitable for the water-column sampling tasks in
lakes and shallow waters where higher spatial resolution is
needed. In this paper, we will show that with tail-deflected glid-
ing, a gliding robotic fish can achieve a spiraling radius as small
as less than 0.4m, showing great potential for sampling water
columns in versatile environments.

The dynamics of underwater gliders have been studied mostly
for movable mass and net buoyancy-controlled gliding in the liter-
ature [19-24,27,28]. In this paper, we focus on the influence of a
deflected tail and study the resulting 3D spiraling motion. For
path planning and control, it is important to know the parameters
characterizing the spiral under a given set of control inputs. For
this purpose, based on the dynamic model, we derive the equa-
tions for the relative equilibria corresponding to steady-state spira-
ling. These equations are highly nonlinear and cannot be solved
analytically. We introduce Newton’s method to obtain the equili-
bria recursively and investigate the impacts of various control
inputs (net buoyancy, movable mass location, and tail deflection
angle) on the spiraling parameters, such as the turning radius and
vertical speed. We also numerically explore the region of conver-
gence for the algorithm to gain insight into the proper choice of
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The mass distribution of the gliding robotic fish (side

initial conditions. For the computed relative equilibria, we show
that they are locally asymptotically stable through Jacobian analy-
sis. Through simulation of the dynamic model, we further explore
the basins of attraction for the equilibria and the convergence
speeds from different initial conditions, which seems to suggest
that the equilibria are asymptotically stable with large basins of
attraction. Finally, we have performed experiments on a fish-
shaped miniature underwater glider [29] with a swappable tail to
confirm the spiral motion and validate the derived model.

The remainder of the paper is organized as follows. In Sec. 2,
we present the full dynamic model of the gliding robotic fish
incorporating the influence of a deflectable tail. The steady-state
spiraling motion is characterized in Sec. 3. In particular, six non-
linear equations corresponding to the relative equilibria are
derived in Sec. 3.1 and then solved with Newton’s method in Sec.
3.2. The region of convergence for the algorithm is discussed in
Sec. 3.3. Local stability analysis is conducted using linearization
in Sec. 3.4, while the analysis of the basins of attraction is pre-
sented in Sec. 3.5. Experimental results are presented in Sec. 4.
Concluding remarks are provided in Sec. 5.

2 Dynamic Modeling of Gliding With a Deflected Tail

2.1 Full Dynamic Model. A gliding robotic fish is a combi-
nation of a miniature underwater glider and a robotic fish, and its
modeling will need to incorporate the effects of both. For the spi-
raling motion, the tail is not constantly flapping and we treat it as
a control surface and a source for external forces and moments.
The robot is modeled as a rigid-body system, including an internal
movable mass for center-of-mass control and a water tank for
buoyancy adjustment [27,29]. On the other hand, the deflected tail
provides external thrust force and side force as well as the yaw
moment.

L

v
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Fig. 2
forces

lllustration of the reference frames and hydrodynamic

Figure 1 shows the mass distribution within the robot. The sta-
tionary body mass mj, (excluding the movable mass) has three
components: hull mass n;, (assumed to be uniformly distributed),
point mass m,, accounting for nonuniform hull mass distribution
with displacement r,, with respect to the geometry center (GC),
and ballast mass m,;, (water in the tank) at the GC, which is a rea-
sonable simplification since the effect on the center of gravity
caused by the water in the tank is negligible compared with the
effect from the movable mass. The movable mass 7, which is
located at r, with respect to the GC, provides a moment to the
robot. The motion of the movable mass is restricted to the longitu-
dinal axis. The robot hull displaces a volume of fluid of mass m.
Let my = my; + m — m represents the excess mass (negative net
buoyancy). The robot will sink if my > 0 and ascend if my < 0.

The relevant coordinate reference frames are defined following
the standard convention. The body-fixed reference frame, denoted
as Oxpypz, and shown in Fig. 2, has its origin O at the geometry
center, so the origin will be the point of application for the buoy-
ancy force. The Ox, axis is along the body’s longitudinal axis
pointing to the head; the Oz, axis is perpendicular to Ox, axis in
the sagittal plane of the robot pointing downward, and Oy, axis is
automatically formed by the right-hand orthonormal principle. In
the inertial frame Axyz, Az axis is along gravity direction, and Ax/
Ay are defined in the horizontal plane, while the origin A is a fixed
point in space.

As commonly used in the literature, R represents the rotation
matrix from the body-fixed reference frame to the inertial frame,
following the conventional 3-2-1 intrinsic rotation sequence [30].
R is parameterized by three Euler angles: the roll angle ¢, the
pitch angle 0, and the yaw angle . Here

cosflcos¢p sin¢gsinOcosy —cos¢psinyy  cos ¢ sin 0 cosyy + sin ¢ sin
R = | cosOsinyy cos¢cosy+singsinfOsiny —sin ¢ cosy + cos ¢p sin 0 siny @))
—sinf sin ¢ cos 0 cos ¢ cos 0

Letvy = (vivav3 )T and wp = (0 W w3 )T represent the transla-
tional velocity and angular velocity, respectively, expressed in the
body-fixed frame. The subscript b indicates that the vector is
expressed in the body-fixed frame, and this notation is applied
throughout this paper.

We assume that the tail fin is rigid and pivots at the junction
between the body and the tail about the Oz, axis. The tail induces
an external thrust force F, on the robot when it flaps. There are
also other hydrodynamic forces and moments generated because
of the relative movement between the tail and the surrounding
water, like the side force and the yaw moment.

041028-2 / Vol. 136, JULY 2014

By extending the previous modeling work for underwater
gliders [29], we obtain the dynamic model for a gliding robot with
a deflected tail fin as the following:

Vo =M (Mvy x @y + mogR"k + Fey,) )
d)b = 171 (*I.wb +I(Db X My +Mvh X vy + Text
+mygry x (RTk) + mgr, x (R"k)) 3)

Here M = (m; + m)I3 + My, where 15 is the 3 x 3 identity ma-
trix, and My is the added-mass matrix, which can be calculated
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via strip theory [31]. I is the sum of the inertia matrix due to the
stationary mass distribution and the added inertia matrix in water.
In addition, k is the unit vector along the Az direction in the iner-
tial frame, r,, is a constant vector, and r,, is the controllable mova-
ble mass position vector, which has one degree of freedom in the
Ox;, direction, r, =(r, 0 0 )T. F., stands for all external
forces: the external thrust force F; induced by tail flapping, and
the external hydrodynamic forces (lift force, drag force, and side
force) acting on the gliding robotic fish body, expressed in the
body-fixed frame. Finally, Ty is the total hydrodynamic moment
caused by Fy.

2.2 Hydrodynamic Model. In order to model the hydrody-
namics, we first introduce the velocity reference frame Ox,y,z,.
Ox,, axis is along the direction of the velocity, and Oz, lies in the
sagittal plane perpendicular to Ox,. Rotation matrix R}, represents
the rotation operation from the velocity reference frame to the
body-fixed frame

cosocosff —cosasinffi —sina
R, = sin f§ cos f§ 0 %)
sinocos f —sinasinff  cosa

where the angle of attack o = arctan(vs;/v) and the sideslip angle
p = arcsin(v/||vs]|)-

The hydrodynamic forces include the lift force L, the drag force
D, and the side force F's; the hydrodynamic moments include the
roll moment M, the pitch moment M,, and the yaw moment M3.
All of those forces and moments are defined in the velocity frame
[32]. And if we further assume that the tail is not flapping, which
means F; = 0, we will have the following relationship:

Fe=Rp(-D Fs L)' ®)
Tow =Ryn(My My M3)' ©)
The hydrodynamic forces and moments are dependent on the

angle of attack o, the sideslip angle f3, the velocity magnitude V
[30,33], and the tail angle ¢

D = 1/2pV2S(Cpo + CHo* + C56%) 7
Fs = 1/2pV?S(Ch B+ C2.0) ®)
L=1/2pV*S(Cro + C3a) ©

My = 1/2pV2S(Chy B+ Kpo) (10)

My = 1/2pV>S(Cy, + Ciy, o + Kgp2) an
M; = 1/2pV2S(Chy. B+ K33 + Cyy, 3) (12)

where p is the density of water and S is the frontal cross-sectional
area of the gliding robotic fish, defined as the characteristic area
of the robot. The tail angle ¢ is defined as the angle between the
longitudinal axis Oxj, and the center line of the tail projected into
the Oxpy, plane, with Oz, axis as the positive direction.
K,1,K 2, K3 are rotation damping coefficients. All other constants
with “C” in their notations are hydrodynamic coefficients, whose
values can be evaluated through computational fluid dynamics
(CFD)-based water tunnel simulation [29,34].

3 Three-Dimensional Spiraling Motion of the Gliding
Robotic Fish

We have three control variables available to manipulate the
locomotion profile of the gliding robotic fish: excess mass i, the
position of the movable mass r,, and the tail angle . In this sec-
tion, we derive the steady-state spiraling equations with three con-
trol inputs fixed and the use of Newton’s method to solve the
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equations recursively, followed by numerical exploration of the
region of convergence for the method. Then, local stability is
checked through linearization, and the basins of attraction are
studied through the simulation of full dynamics.

3.1 Steady-State Spiraling Equations. If control inputs are
fixed with a nonzero tail angle, we can treat the influence of the
tail on the hydrodynamic forces and moments as the effects of
increased hydrodynamic angles (o, ). The robot will perform
three-dimensional spiraling motion, where the yaw angle
changes at constant rate while the roll angle ¢ and pitch angle 0
are constants at the steady state. Then, RTk is constant since

0 —sinf
RTk=R"| 0| = | sin¢cos0 (13)
1 cos ¢ cos 0
Take time derivative of RTk, we have
oy X (RTk) =0 (14)

so the angular velocity has only one degree of freedom with an
amplitude of ws; in the Oz direction in the inertial frame. Then

oy = w3;(RTk) (15)

The translational velocity of the robot expressed in the body-fixed

frame

vo =Ry, (V 0 0) (16)

There are two important parameters in the spiraling motion: the

turning radius R and the vertical speed Vyerical- By projecting the

robot trajectory onto the horizontal plane and the velocity into the

vertical direction, we have the following approximations for the
turning radius and the vertical speed

R =Vcos(0 — a)/wj;
Vvertical =V Sil’l(0 - OC)

an
(18)

The steady-state spiraling equations are obtained by setting time
derivatives to zero in Egs. (2) and (3)

0 = Mv;, X o + mogRTk + Foy (19)
0 :Iwb X My +Mvh X vy + Text
+ mygry x (R"k) + mgr, x (R"k) (20)

From Egs. (1), (4), (15), (16), and the above steady-state spira-
ling equations, we know that there are six independent states for
describing the steady spiral motion: (0 ¢ w3 V o f) with
(mg r, 0) as the three control inputs. Expanding Egs. (2) and (3),
and then transforming the original states to the above six inde-
pendent states, we can obtain the nonlinear steady-state spiraling
equations as in the equations below:

0 = m, sin iV cos ¢ cos Ows; — m3 sin o cos fV sin ¢ cos Ows;
— mogsin0 + 1/2pV2S(Cro + C2a) sina
- I/ZszS(Cgsﬁ + Cgsé) cos osin f§

—1/2pV28(Cpo + CHa* + €2,6%) cos acos @21)
0 = —mj sinacos fV sin Ows; — my cos o cos BV cos ¢ cos Ows;

—1/2pV28(Cpo + CHo> + C56%) sin

+ 1/2pVZS(C£Sﬁ + Cgsé) cos f + myog sin ¢ cos 6 (22)
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0 = my cos acos BV sin ¢ cos Ows; + my sin fV sin Ows;

—1/2pV28(Cpo + CHa* + €26 sin acos

- 1/2pV2S(C£S[3 + Cgsé) sinasin f§

— 1/2pV*S(Cprp + CF) cos o + mgg cos ¢ cos O (23)
0 = (I, — I3) sin ¢ cos 0 cos ¢ cos O3,

+ (my — m3) sin Bsin o cos BV — my,gr, sin ¢ cos 0

— l/2pVZS(CM0 + Cyy, o + K2 sin ¢ cos w3, ) cos o sin B

+ 1/2pV2S(C,’\3,,Rﬁ — K1 sin Ows;) cos ocos ff

- 1/2pV2S(C,/\3,,y[f + K3 cos ¢ cos Ows; + C,‘Z,,yé) sino

24

0 = (I; — I3) sin O cos ¢ cos 03,

+ (m3 — my) cos acos ffsin o cos fV/2

— my,gry sin 0 — mgr, cos ¢ cos 0

+ 1/2pVZS(Cf4R[§ — K1 sin Ows;) sin f§

+ 1/2pV?S(Cuty + Ciy, o + Ko sin ¢ cos Ows;) cos B (25)
0= (I — 1) sin0sin ¢ cos (9w§,

+ (my — my) cos o.cos ffsin pV? + mgr, sin ¢ cos 0

— 1/2pV2S(Cy, + Cly, o+ Ko sin ¢ cos Ows;) sin asin f8

+ 1/2pVZS(C,/f,,Rﬁ — K1 sin Ows;) sinocos ff

+ 1/2pV2S(Cf,Iyﬁ + K3 cos ¢ cos Ows; + ijlyé) cos o

(26)

Here, we assume that the mass matrix and the inertia matrix have
the following form:

m 0 0 L, 0 0
M=\ 0 m 0 I=({0 I, O
0 0 ns 0 0 13

3.2 Newton’s Method for Solving the Nonlinear Steady-
State Spiraling Equations. The steady-state spiraling equations
are highly nonlinear due to the terms involving trigonometric
functions and inverse trigonometric functions. Given the angle of
attack a, the sideslip angle f3, and the velocity magnitude V, a re-
cursive algorithm based on fixed-point iteration could potentially
be applied to solve the equations for the other system states and
control inputs [24]. However, we are more interested in the con-
verse problem of how to calculate steady-state solutions given
fixed control inputs, which are more useful for path planning and
control purposes. Unfortunately, this problem does not admit ana-
Iytical solutions and the convergence condition for the corre-
sponding fixed-point problem is not satisfied. In the following, we
apply Newton’s method to solve the problem.

Let x=(0¢ w3 Vaf) be the six states that we want
to solve for steady-state spiral gliding equations. And let
T . -
u=(myr,d) be the three control inputs. For convenience
of presentation, we write the governing equations in a compact
form

0=f(x,u) = (filx,u)zy 6 @7
For example, f; is the right-hand side of Eq. (21).
The iterative algorithm for Newton’s method reads [35]
X =% —J (% u)f (%, u) (28)

Here x; is the ith-step iteration for the steady states, and J(x, u) is
the Jacobian matrix of f(x, u)

041028-4 / Vol. 136, JULY 2014

(o
J(x,u) = P (8xf)6x6 (29)

The first-row elements of the Jacobian matrix are given in
Egs. (30)—(35), while the other elements, which can be calculated
analogously, are omitted in the interest of succinct presentation.

9f1/0x1 = —my sin BV cos ¢ sin Ows;

+ my3 sin o cos fV sin ¢ sin Ows; — mpgcos O (30)
Of1/0xa = —my sin fV sin ¢ cos Ows;
— m3 sina cos iV cos ¢ cos Ows; 31
9f1/0x3 = my sin BV cos ¢ cos 0 — mj3 sin o cos BV sin ¢ cos 0
(32)

9f1/0x4 = my sin ff cos ¢ cos Owsz; — m3 sin o cos f§sin ¢ cos Ows;
— pVS(Cpo + CHo* + C56%) cos acos
- pVS(Cf-Sﬁ + Cﬁsé) cososin f§

+ pVS(Cro + Cja) sino (33)
9f1/0xs = —m3 cos o.cos BV sin ¢ cos Ows; — pVZSC}‘)oc cosocos f§
+1/2pV2S(Cpo + CHo* + C36%) sinacos
+1/2pV2S(CE B+ €y, 0) sinasin
+1/2pV2SCY sina 4 1/2pV2S(Cro 4 Ca)coso (34)
0f1/0x¢ = my cos iV cos ¢ cos Ows;
+ mj3 sin o sin SV sin ¢ cos Ows;
+1/2pV*S(Cpo + Co? + €36%) cos asin B
- 1/2pVZSC,€S cososin f§
— 1/2pV2S(CL B+ €3, 0) cos cos f (35)

To emulate the gliding and spiraling motions of a gliding
robotic fish, in this paper we consider a fish-shaped miniature
underwater glider [29] with a swappable tail. This lab-developed
robot changes its net buoyancy by pumping water in and out of an
interior tank and varies its center of gravity via moving the battery
pack using a linear actuator. Tails with different bending angles
can be easily set up for the spiraling experiments. The prototype
weighs 4.2 kg in total including a 0.8 kg movable battery pack and
measures 50cm long. Hydrodynamic coefficients are determined
by CFD simulation as in Ref. [29]. Here, we want to add that the
hydrodynamic coefficients regarding the tail are obtained by curve

2.26e+01
. 1.99e+01
1.72e+01

1.46e+01
1.19e+01
9.176+00
6.48e+00
3.78e+00 ’ 2
1.09¢+00 > -
-1.606+00 s

o -4.29e+00
-6.99e+00
-9.68e+00
-1.24e+401
-1.51e+01 ‘
-1.78e+01

-2.05e+01
-2.31e+01
-2.58e+01 Y
-2.85e+01
-3.12¢401 7y

Contours of Static Pressure (pascal) Mar 05, 2012

ANSYS FLUENT 12.1 (3d, pbns, lam)

Fig.3 Contours of the static pressure with tail angle at 45 deg
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Table 1 Parameters of the lab-developed underwater robot
used in the steady-state spiraling equations

Parameter Value Parameter Value
ny 3.88kg ny 9.9kg
ms 5.32kg m 0.8 kg
Cho 0.45 c 17.59rad >
Cch —2rad™! cl L5rad™!
Cro 0.075 c: 19.58 rad ™!
I, 0.8kg-m* I 0.05kg-m?
I 0.08 kg-m? Cu, 0.0076m

s B o() 0 0 )
Ciuy 0.3 m/rad Ch, 0.57 m/rad
ch, 5m/rad el ~0.2m/rad
K, —0.1 m-s/rad Ky —0.5m-s/rad
K3 —0.1 m-s/rad S 0.012 m

fitting of the coefficients at different tail angles, which are eval-
uated by simulating the flow and pressure distribution using
FLUENT6.2.16 in the CFD-based water channel experiments
(Fig. 3).

Based on the parameters of this prototype as listed in Table 1,
Newton'’s iterative formula is used to solve the steady-state spira-
ling equations. Characteristic parameters for steady spiraling
motion, including the turning radius and ascending/descending
speed, are obtained with different inputs as shown in Table 2. To
apply Newton’s method, the initial values of states for iteration

oy (rad/s)

are chosen to be 0= —10deg,¢ = —10deg, w;; = 0.1 rad/s,
V =0.3m/s,0 = 0deg, § = 0deg. From the calculated results,
we can see that a small turning radius requires a large tail angle, a
large displacement of movable mass, and a small net buoyancy,
while a low descending or ascending speed demands a small tail
angle, a small displacement of movable mass, and a medium net
buoyancy.

3.3 Region of Convergence for Newton’s Method. For
Newton’s method, the choice of the initial condition is important
to the convergence of the algorithm. Here, we numerically explore
the region of convergence. For a fixed set of control inputs, e.g.,
r, =5mm,my = 30g, and 6 = 30deg, we carry out the conver-
gence test by running the algorithm starting from different initial
values of the states and record whether a given initial condition

Fig. 4 Convergence test results for Newton’s method with
respect to initial conditions. Color yellow (light) means that
convergence to the steady-state spiraling equilibrium is
achievable with the corresponding initial values; color blue
(dark) means that there is no convergent solution or the
convergent solution is not at the steady-state spiraling equilib-
rium. In the test, the used set of control inputs is
r, =5mm, my =309, =45deg; and the corresponding equilib-
rium state values are 6= -42.1281deg,¢= —34.2830deg,
w3;=0.4229rad/s,V =0.2809m/s,«= —0.9014deg, f=4.2414 deg.
(a) Convergence with respect to the roll angle, pitch angle, and
spiraling speed; (b) convergence with respect to the angle of
attack, sideslip angle, and angular speed.

angle 0, and spiraling speed V while the initial values of the other
three states are set as o = Odeg,§ = 0deg, w3 = 0.1rad/s;
Fig. 4(b) shows the results for different initial conditions of the

angle of attack o, sideslip angle f3, and the angular speed ws; with
the initial values of the other three states set as ¢ = —10deg,

leads to convergence. Figure 4(a) shows the convergence test
results for different initial conditions of the roll angle ¢, pitch

Table2 Computed spiraling steady states through Newton’s method

g (g) 7, (cm) o(deg) (0, ¢, w3, Vo, B)(°,°,rad/s, m/s,° °) (Vvertical, R) (m/s, m)
25 0.3 45 (—44.5, —31.0,0.425, 0.264, —0.914, 4.10) (0.182, 0.450)
25 0.4 45 (—46.8, —36.6,0.448,0.267, —1.32,4.52) (0.190, 0.417)
25 0.5 45 (—48.3, —40.6, 0.464, 0.268, —1.61, 4.87) (0.195, 0.396)
25 0.6 45 (—49.3, —43.8,0.476, 0.267, —1.84, 5.18) (0.197, 0.380)
25 0.7 45 (—50.2, —46.5, 0.486, 0.267, —2.04, 5.48) (0.211, 0.338)
10 0.5 45 (—70.8, —49.3,0.589, 0.184, —3.64, 7.36) (0.169, 0.121)
15 0.5 45 (—63.5, —52.7,0.571, 0.218, —3.30, 6.98) (0.189, 0.190)
20 0.5 45 (—55.5, —47.8,0.517,0.247, —2.46, 5.85) (0.197, 0.287)
30 0.5 45 (—42.1, —34.3,0.423, 0.281, —0.901, 4.24) (0.185, 0.500)
35 0.5 45 (—36.9, —29.3,0.392, 0.289, —0.306, 3.85) (0.172, 0.591)
40 0.5 45 (—32.3, —25.3,0.368, 0.293, 0.224, 3.60) (0.157, 0.670)
25 0.5 30 (—=37.6, —11.9,0.235, 0.242, 0.854, 2.19) (0.151, 0.806)
25 0.5 35 (—43.4, -20.7,0.311, 0.258, 0.0698, 2.87) (0.178, 0.602)
25 0.5 40 (—46.8, —31.2,0.389, 0.266, —0.761, 3.77) (0.192, 0.474)
25 0.5 50 (—49.2, —48.8,0.537,0.264, —2.54, 6.19) (0.192, 0.337)
25 0.5 55 (=51.1, —=56.4,0.615, 0.257, —3.62, 7.86) (0.190, 0.283)
25 0.5 60 (—55.0, —63.8,0.705, 0.247, —4.95, 10.0) (0.189, 0.225)
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Fig. 5 Convergence time in seconds for spiraling dynamics
with respect to different initial values of states in roll angle ¢,
pitch angle 0, and translational velocity v; along the Ox, direc-
tion, for the control inputs of r,=5mm,m;=30g, and
0=45deg. The corresponding equilibrium state values are

= —42.1281deg, ¢ = — 34.2830deg, and v; =0.2801m/s. (a)
Display in orthogonal slice planes and (b) display in a half
sphere surface.

0 = —10deg,V = 0.3m/s. From the results, we see that a small
roll angle, a small pitch angle, and a large velocity in the reasona-
ble range will lead to convergence; and the signs of the angle of
attack and sideslip angle are very important to the convergence of
the solution. These observations offer insight into how to properly
choose the initial conditions when running the Newton’s method
to obtain the steady spiraling path; for example, one may want to

0 0

0 0

dxg 0 0
where —— = h(x)¢,6 =

dx (o — cos Ows; 0

— sin ¢ sin Ows;

—cos ¢sinws;  —sin ¢ cos Ow

and its determinant |dx,/dx| = —V2w2 cos ff cos 0, which is not
zero if the robot’s translational speed V and orbiting speed ws; are
not zero, and if the sideslip angle f and pitch angle 0 are not
+7/2. These conditions are satisfied for a spiraling maneuver,
which implies that the inverse of matrix dx,/dx in Eq. (36) always
exists.
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cos ¢ cos Ows;

3i

o, (rad/s)

-05 -05

o, (rad/s) o, (rad/s)

Fig. 6 Convergence time in seconds for spiraling dynamics with
respect to different initial values of states in angular velocities,
for the control inputs of r, =5 mm, my =309, and J = 45 deg, dis-
played in orthogonal slice planes. The corresponding equilib-
rium state values are w1 =0.2837rad/s, w, = — 0.1767 rad/s, and
w3 =0.2592rad/s.

select 0 deg for the initial values of the angle of attack and
sideslip angle when having no idea about the signs of those two
variables.

3.4 Stability Analysis of Spiraling Motion. It is of interest
to understand the stability of the spiral motion under a given set of
control inputs. Global stability analysis, however, is very difficult
if not impossible due to the highly nonlinear dynamics of the sys-
tem. In this subsection, we perform local stability analysis for the
steady spiraling motion obtained from Eqgs. (21)—(26). A solution
to these equations can be considered a relative equilibrium of the
system since it is independent of the coordinates of the robot in
the inertial frame. We denote with J,(x4, u) the Jacobian matrix
for the dynamics (2) and (3), where in a compact form the
system state vector is represented as xz = (v, wp )T and the
system dynamics as X; = f;(xq,u). As the (relative) equilibrium
point is computed using a different set of system states
x=(0¢ ws « B), and the Jacobian matrix J(x,u) for the
steady-state equations has been evaluated with those states (Sec.
3.2), we can evaluate J, through the chain rule

-1
Ja(xa,u) = (M(; l s )J(x, ) (%) (36)
0 cosocosff —Vsinaocosff —Vcosasinfi
0 sin f§ 0 Vecosp
0 sinoccosff  Vcosacosff —Vsinasinff
—sin 6 0 0 0
sin ¢ cos 0 0 0 0
cos ¢ cos 0 0 0 0

So the value of linearization matrix J,; at the equilibrium point
can be obtained by just plugging the steady-state values x, com-
puted in Sec. 3.2 into the above equation, and by checking the
Hurwitz property of the linearization matrix J, we can under-
stand the local stability property of the steady-state spiraling
motion.
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Fig. 7 Snap shots of the robot spiraling in the experiment tank. A full video of this maneuver

can be accessed at?

We test the listed steady-state spiral motions in Table 2 for
local stability. For example, for the steady spiral corresponding to
the control input set my = 25g,7, = 0.3cm, and 0 = 45deg, the
eigenvalues of Jacobian matrix J, are —0.91%5.02i, —6.69,
—2.09, —0.42, —0.090, which suggests stability. We find that all
spirals in Table 2 have a Hurwitz Jacobian matrix and thus the
equilibrium of each spiral is locally asymptotically stable.

3.5 Basins of Attraction for the Spiraling Dynamics. The
analysis in the previous subsection suggests that the relative equi-
libria associated with steady spiraling are locally stable. It is of in-
terest to gain some insight into the sizes of basins of attraction for
those equilibria. In this subsection, we run the dynamics simula-
tion starting from different initial conditions for a given fixed con-
trol input, and then record whether each initial state configuration
will lead to convergence to steady spiraling, and if yes, what is the
approximate time it takes to converge. Since one cannot visualize
a state space of more than three dimensions, we have chosen to
visualize the basin of attraction in three-dimensional subspaces of
the original state space.

Figure 5 shows the simulation results of convergence time
based on the parameters of our experimental prototype with
respect to three states ¢, 0, v;. To obtain the results shown in this
figure, the control inputs are given as 7, = 5mm,mp = 30 g, and
0 = 45deg. Following this simulation method, we can get the
basins of attraction with convergence time for any other set of
control inputs. Similarly, we can obtain the convergence test
results, shown in Fig. 6, when we vary the initial conditions for
the angular velocities in the body-fixed frame. From the results, it
seems that the basin of attractions for the spiraling dynamics is
very large, which means that, starting from almost every state
configuration in a reasonable state value range, the glider is able
to achieve the steady spiraling motion eventually. However, we
also notice that the convergence time varies significantly with the
starting condition. When the pitch angle and roll angle are nega-
tive and the speed is neither too high nor too low, the convergence
time is relatively short. This provides us with some ideas about
when to switch to a desired gliding profile and how long we
expect for the transient period. We also notice that among all three
angular velocity states, only the initial condition of w,; takes a
noticeable influence on the convergence time of the glider dynam-
ics. This is consistent with the slow dynamics of the rotation
motion in Ox,, direction due to the enhanced inertia from the large
wings.

2http://www.youtube.com/watch?v=te_L2sNus4L.
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Fig. 8 Spiraling radius with respect to the tail angle, with fixed
movable mass displacement of 0.5 cm and fixed excess mass of
309

4 Experimental Results

With the miniature underwater glider prototype featuring a
swappable tail fin, experiments are conducted in order to confirm
the spiraling motion and validate the derived mathematical model.
The experiments are performed in a large water tank that meas-
ures 4.6 m (15 ft) long, 3.0 m (10 ft) wide, and 1.2 m (4 ft) deep,
as shown in Fig. 7. We set the net buoyancy (negatively buoyant),
the linear actuator position and the tail angle to fixed values.
Then, the glider is released on the water surface and enters into
the spiraling mode. Cameras are set to record the videos in both
top view and side view. The turning radii of the spirals are
extracted after video processing. The comparison between model
predictions and experiment results on turning radius for different
tail angles and different excess masses are shown in Figs. 8 and 9,
respectively. From the results, we can see that the turning radius
of the spiral is smaller with a larger deflected tail angle and a
smaller net buoyancy. The error bar in the figures shows the aver-
age value and standard deviation of the turning radius out of ten
repeated experiments. The model prediction shares the same trend
with the experimental results, and generally speaking, the match
between those two are good.

There are some factors contributing to the measurement errors.
First, the scales of camera images are different at different distan-
ces. Here, an average scale is used in the information acquisition
during video processing. A grid board is used for calibration, cap-
tured with the camera at the average distance. Second, there are
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Fig. 9 Spiraling radius with respect to the excess mass, with
fixed movable mass displacement of 0.5 cm and fixed tail angle
of 45deg

some initial transient processes, which is difficult to be completely
separate from the steady spiraling period. Experimental environ-
ment with deeper water will effectively reduce the influence of
initial transient; however, the complexity of the experimental
setup will be increased as a result. The environmental disturban-
ces such as currents will also affect the experimental results. So
with these uncertainties, we consider the match between our ex-
perimental results and the model predictions satisfactory.

5 Conclusion

In this paper, we investigated a novel spiral motion for a gliding
robotic fish, achieved by gliding with a deflected tail. Such spirals
allow energy-efficient 3D maneuvering and thus hold strong
promise in water column sampling and other mobile sensing
applications. A dynamic model of gliding robotic fish was pre-
sented and the steady-state spiraling equations were derived and
analyzed. Newton’s method was used to solve the equations, and
the stability of the resulting equilibria was analyzed. A miniature
underwater glider featuring a swappable (passive) tail was used to
experimentally validate the mathematical model.

The studies in this paper facilitate the future work. The pre-
sented results on the basins of attraction of the spiral motion and
the convergence times at different initial conditions tell us how
fast we can expect the robot to stabilize itself in the water-column
sampling application, and gives insight into how to design the
sampling paths and control commands in order to accommodate
the limitation of the robot dynamics, in terms of response speed
and motion stability.

For future work, we will first complete a full gliding robotic
fish prototype that has an active tail so that one can vary the tail
angle continuously in a quasi-static manner. This would allow us
to study spiraling with a varying radius (for example, spiral-in and
spiral-out) and thus more complex maneuvers. We will also inves-
tigate the path planning and control of gliding robotic fish for
spiraling-based 3D maneuvers.
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