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1.  Introduction

The lateral line system of fish, comprised of arrays 
of mechanoreceptive units called neuromasts, is an 
important organ sensitive to fluid motion around 
the fish’s body [1]. It is involved in various biological 
behaviors [2], such as schooling [3], station holding 
[4], rheotaxis [5], predator sensing [6], and objects 
detection [7]. There are two types of neuromasts, 
superficial neuromasts and canal neuromasts. The 
superficial neuromasts are located externally on the 
fish skin and respond to flow velocities [8]. The canal 
neuromasts can be found in fluid-filled canals below 
the skin surface, responding to flow accelerations [8]. 
The interactions between the flow and the neuromasts 
generate neuronal pulses which are transmitted to 
the central nervous system for further information 
processing [9].

The biological lateral line has inspired several efforts 
in developing an engineering equivalent of analogous 
sensing modality for underwater applications. Over the 
last decade, microfabricated flow sensors, motivated by 

fish neuromasts, have been developed at micro-to-mil-
limeter scales, which are based on hot wire anemom-
etry (HWA) [10, 11], strain gauge [12], pressure sensor 
[13], and novel sensing materials such as ionic polymer-
metal composites (IPMCs) [14]. An artificial lateral line 
(ALL) system (figure 1) can function as a novel sens-
ing modality generating no noise to the environment 
[15], and assist underwater robots and vehicles for the 
navigation and control when traditional underwater 
sensing strategies such as vision or sonar are inhibited.

There has been some theoretical work on flow 
modeling and information processing to extract 
information from ALLs [16–21]. Some studies have 
demonstrated the correlation between the biologi-
cal lateral line layout and the hydrodynamic pressure 
distribution on moving fish [22], and the influence 
of fish self-motion on lateral line sensing [23], which 
give some insights into the configuration of distrib-
uted pressure sensors of an ALL system. Most previ-
ous studies focused on the localization of a vibrating 
sphere, i.e. the dipole source [24–26], which emulates 
tail movements of fish or flickering of insects in water. 
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Abstract
Inspired by the lateral line of aquatic vertebrates, an artificial lateral line (ALL) system can localize 
and track an underwater moving object by analyzing the ambient flow caused by its motion. There 
are several studies on object detection, localization and tracking by ALL systems, but only a few 
have investigated the optimal design of the ALL system, the one that on average provides the highest 
characterization accuracy. Design optimization is particularly important because the uncertainties 
in the employed flow model and in sensor measurements deteriorate the reliability of sensing. This 
study investigates the optimal design of the ALL system in three-dimensional (3D) space for dipole 
source characterization. It highlights some challenges specific to the 3D setting and demonstrates the 
shortcomings of the designs in which all sensors and their sensing directions are in the same plane. 
As an alternative, it proposes two design concepts, called ‘Offset Strategy’ and ‘Angle Strategy’ to 
overcome these shortcomings. It investigates potentials of having a swarm of cooperative ALLs as 
well. It performs design optimization in the presence of sensor and model uncertainties and analyzes 
the trade-off between the number of sensors and characterization accuracy. The obtained solutions 
are analyzed to reveal their strategies in solving the problem efficiently. The dependency of the 
optimized solutions on the uncertainties is also demonstrated.
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Some other studies aimed at tracking moving objects or 
vortices [27–30], where arrays of commercial pressure 
sensors were typically adopted.

Most of the aforementioned studies adapted fixed 
designs following engineering intuition or biological 
observations. In the simplest and the most common 
case, the ALL consists of one or two sets of aligned sen-
sors with uniform spacing [24, 28–31]. The diversity 
of information gained by such an arrangement of sen-
sors could be limited. A cylindrical ALL body with two 
perpendicular arrays of sensors, as used in [32], can 
provide more diverse information from the sensors. 
Sensor arrangement mimicking biological inspiration 
may justify the design employed in [27], in which 16 
sensors were scattered in 3D space around the nose, 
which was inspired by the goldfish lateral line. The 
advantages of such 3D arrangement over 2D arrange-
ment was demonstrated for unsteady flow characteriza-
tion. Nevertheless, there is no analytical evidence that 
this is the best arrangement, especially considering that 
the optimal design depends on the number of sensors 
and the amount of uncertainties in sensing and in the 
employed model [33]. Here by optimal design, we mean 
a design that provides the maximal average characteri-
zation accuracy when all possible dipole sources with 
different locations, vibration amplitudes and orienta-
tions are considered

Despite numerous studies on dipole detection or 
localization using an ALL system, very few have con-
centrated on finding the optimal ALL system. DeVries 
and Paley [18] optimized the placement of flow sensors 
based on the observability for the control purpose. The 
proposed estimation and optimization were performed 
in a uniform flow field. The adopted flow model was 
assumed to be accurate, while like most other analyti-
cally derived models, it relies on assumptions such as 
inviscid laminar flow and absence of walls or interfer-
ing objects that may be violated in real situations. In 
[26], micro-fabricated flow-sensor arrays were used 
to reconstruct the velocity field generated by a dipole 
source. Navier–Stokes equation was used to character-
ize the dipole-field which was limited to two dimen-
sions. Since the hair sensors were microfabricated on 

a substrate, no modeling on the sensing platform or 
optimal configuration of sensor units have been dis-
cussed. In another study [24], a simple configuration 
of an ALL in which the distance between six equally 
spaced sensors was optimized to maximize localiza-
tion accuracy for a predefined set of dipoles. Sensing 
directions and locations of the sensors were aligned the 
horizontal direction. The simple arrangement of sen-
sors and limited number of decision parameters (one in 
this case) limits the characterization accuracy, even for 
the optimized design. At the same time, using a fixed set 
of sample dipoles cannot represent the general case and 
may result in specialized optimal designs, the designs 
that may characterize only that specific set of dipoles 
reliably.

More recent studies [25, 33] have overcome the spe-
cialization risk by random selection of sample dipoles. 
The parameters of the ALL system, including the shape 
and the size of the streamlined body, and the number 
and locations of in-plane flow velocity sensors were 
optimized such that the average accuracy of characteri-
zation was maximized while two types of uncertainties 
were considered in the problem. The main shortcoming 
of these studies is that they assumed a 2D problem set-
ting, where the dipoles lie and vibrate only in the ALL 
plane. As we will demonstrate, the findings from 2D 
setting cannot directly be generalized to the 3D setting, 
a more realistic scenario in which dipole locations or 
vibration orientation might be out of the plane of the 
ALL body.

The present study, based on a streamlined body 
with z-axis protrusion, extends this method for dipole 
source characterization in the 3D space. The choice 
of a streamlined body is motivated by several factors, 
including the convenience in parameterizing its shape 
and size, the capacity for accommodating variation 
of sensor orientation and z-axis offset, and, to some 
extent, the resemblance to the shape of some aquatic 
robots (robotic boats or robotic fish), for which an 
ALL might be useful. We demonstrate that the design 
model employed in the previous studies results in blind 
regions: A dipole located in these regions cannot be 
correctly characterized by an ALL. Some alternatives 
are proposed to address this problem, which are tested 
subsequently.

The rest of this article is organized as follows: sec-
tion 2 reviews the dipole characterization problem and 
formulates the design optimization problem. Section 3 
identifies some shortcomings in conventional designs 
of an All. Alternatives are also proposed and tested. 
Optimized deigns are presented in section 4 and the 
tradeoff between the number of sensors and accuracy 
of characterization is investigated. Finally, conclusions 
are drawn in section 5.

2.  Problem formulation

This section  briefly reviews dipole source 
characterization and the design of the ALL system.

Figure 1.  A prototype of an artificial lateral line system 
(streamlined body  +  flow sensing sensors).

Bioinspir. Biomim. 12 (2017) 036010



3

A Ahrari et al

2.1.  Dipole source characterization
In 3D space, we consider six degrees of freedom for 
a dipole source (three for locations and three for 
vibration amplitudes along each direction). The 
vibration amplitude and frequency are constant 
which are denoted by As and ωs, respectively (see 
figure 2). The vibration amplitude As is assumed to 
be unknown. The maximum velocity of the dipole is 
thus vs  =  As  ×  ωs, the components of which along 
the coordinate axes are denoted by αxs, αys and αzs, 
respectively. The dipole source can be represented by 
θ  =  [xs, ys, zs, αxs, α.ys, αzs], which denotes the true 
parameters of the source and may be different from 
those predicted by the ALL.

The flow velocity caused by the dipole’s vibration at 
the kth sensor located at qk  =  [xk, yk, zk] is v(qk), which, 
in ideal conditions can be computed analytically [24]:
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The function F is derived using an analytical flow model 
and relates the flow field to the dipole parameters. 
Parameter ‘as’ is the diameter of the dipole, which is 
typically assumed to be known and rk is the location of 
the dipole with respect to the kth sensor. Each sensor is 
assumed to be able to measure only the magnitude of the 
local flow velocity along a particular direction nk  =  [nx, 
ny, nz]k, which is the sensing direction of the sensor. The 
analytical flow velocity component along nk is:

( ) ( )θ= ⋅ =q F n q nv f , , .k k k k� (2)

In ideal situations, this is the value measured and 
indicated by the sensor. The collective information 
from the sensors is then used to predict the actual dipole 
parameters, which is referred to as characterization. 
Dipole characterization is inherently an inverse 
problem: For a given set of sensor measurements  

(Mk, k  =  1, 2, …, Nsensor), a dipole configuration (θ) is 
sought such that the corresponding flow field matches 
the local flow velocity indicated by the sensors. In 
particular, we define the following objective function:
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By minimizing J(θ), the best candidate dipole source 
whose flow field matches the given measurements 
(Mk’s) will be found.

In the absence of any uncertainties, the global 
minimum of the inverse problem (θ*) is the actual 
dipole (θ*  =  θ), at which J(θ*)  =  0; however, two types 
of uncertainty should be considered:

	 •	Sensor uncertainty: The limited precision of the 
sensors results in an uncertainty in the measured 
local flow.

	 •	Model uncertainty: The analytical flow model is 
derived for ideal situations. The actual flow field 
can be different from the one predicted by (1).

Theoretical models are often derived using some 
simplifications of the real problem. The accuracy of a 
theoretical model can be represented as a fraction, for 
example, ±5%, which means that the model prediction 
can be 5% different from the actual value. A multiplica-
tive noise can capture this effect, which is employed in 
this work to incorporate the flow model uncertainty:

θ θ ε= × = …M f N k Nexp 0, 1 , 1 , ,k k model sensor( ) ( ) ( ( ))
�

(4)

where Mk is the simulated local velocity, εmodel  ⩾  0 
denotes the amount of model uncertainty, and N(0,1) 
is a random number sampled from standard normal 
distribution.

The sensors typically have a fixed level of precision, 
independent of the magnitude of the flow velocity. 
Therefore, similar to previous studies [18, 24], the 
measurement noise is captured by an additive white 
Gaussian noise:

( ) ( ) ( )  θ θ ε= + = …M M N k N0, 1 , 1, 2, , ,k k sensor sensor

�

(5)
where Mk is the sensor measurement and parameter 
εsensor  ⩾  0 denotes the strength of the sensor noise.

These uncertainties are considered to simulate the 
actual sensor measurements (Mk’s), which are dif-
ferent from those predicted by the analytical model. 
The analytical model, however, is the only available 
tool to interpret the given sensor measurements in 
order to solve the inverse problem. Therefore, there 
are no candidate dipole parameters whose analytical 
flow field perfectly matches the given measurements, 
which means J(θ*)  >  0. In general, the predicted dipole 
parameters obtained by solving the inverse problem are 
not the actual dipole parameters (θ θ≠∗ ). At the same 

Figure 2.  A dipole source located at [xs, ys, zs] vibrates along 
the line ds with amplitude of As. The disturbance caused by 
the dipole vibration causes a flow velocity field which can be 
measured at qk  =  [xk, yk, zk] by the sensor k. Vector rk is the 
dipole location relative to the sensor k.

Bioinspir. Biomim. 12 (2017) 036010
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time, the inverse solver cannot guarantee finding the 
global minimum (θ∗); in other words, the inverse solver 

solution (θ α α α=
∗ ∗ ∗ ∗ ∗ ∗ ∗⎡⎣ ⎤⎦��� � � � �x y z, , , , ,s s s xs ys zs ), might be dif-

ferent from θ∗. The difference between the predicted 

dipole source by the ALL (θ∗� ) and θ is the characteriza-
tion error, which is defined as follows:
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The differences were made dimensionless so that the 
norm can be computed meaningfully.

2.2.  Design problem
To find the best design for an ALL system, we should 
first specify the design parameters, which depends on 
the design concept. For example, when six aligned and 
equally spaced sensors represent the ALL, as used in 
[24], the only design parameter is the distance between 
two adjacent sensors. Accordingly, the values of the 
design parameters are determined using biological 
inspiration, engineering intuition or numerical 
optimization. The average characterization error for all 
possible dipoles can be minimized by proper selection 
of the design concept and finding the best values for the 
design parameters.

A reasonable design concept considers a stream-
lined body, on which the sensors are mounted. This 
concept has been employed in previous studies [18, 25, 
32]. The conformal mapping technique is employed to 
define the cross-section profile of the cylindrical body 
and the locations of the sensors on it. For the complex 
plan C and a point ξ∈C, ξ is mapped to z with respect to 
the transformation variable λ∈R   using the following 
transformation [34]:

ξ ξ ξ β λ λ β

π π

= + = − = −

∈ −

z b R b R, exp i , ,

, .

2/ ( )

[ )
�

(7)

This equation defines a disk of radius R, offset along 
the real axis by λ∈R. By choosing b, we can map the 
disk to a symmetric, streamlined body (see figure 3(a)). 
Therefore, R specifies the size, 0  <  λ/R  ⩽  1 specifies 
the shape and βk specifies the location of the kth 
sensor on the streamlined body. The ALL body turns 
to a circle and a line segment for λ/R  =  1 and λ/R  = 0, 
respectively. Other values between these two extremes 
result in a streamlines body (see figure 3(b)). The 3D 
ALL body is then generated by extruding this surface 
along the z-axis. The length of the extrusion determines 
the thickness of the ALL body (figure 3(c)).

Because of the symmetry in the problem, the sen-
sor locations should be symmetric with respect to the 
xz-plane. Therefore, only the locations of the sensors 
on one side of the ALL need to be determined. The 
sensors are mounted perpendicular to the local curva-
ture of the ALL body (See figure 3). Furthermore, the  

sensing directions of the sensors (nk’s) are by default 
tangent to the body [25, 33]. The set of design param
eters, X  =  [X1, X2, …, XD] consists of:

	 •	Size variable: X1min  ⩽mX1  =  R  ⩽  X1max

	 •	Shape variable: X2min miX2  =  λ/R  ⩽  X2max.
	 •	Angular position of the first sensor on the fish 

body: 0 guX3  =  β1  ⩽  βmax.
	 •	Angular position of the kth sensor relative to the 

(k  −  1)th sensor: 0 atXk  =  βk−2  −  βk−3  ⩽−βmax, 
k  =  4,5, …,(Nsensor/2)  +  2,

where Nsensor specifies the number of sensors in the 
ALL. A constraint is defined so that all the independent 
sensors lie on one size of the symmetry plane.

To evaluate the accuracy of characterization for an 
arbitrary dipole, we employ the fitness function pro-
posed in our previous studies using 2D setting [25, 
33]. The inverse problem is solved for a sample dipole 
and the characterization error is computed. A charac-
terization score is assigned based on the amount of this 
error. This process is repeated for Ndipole sample dipoles, 
which calculates Ndipole characterization scores. The fit-
ness is then calculated by averaging these scores:

∑ ζ= −
=

Xg
N

e
1

exp .
i

N

i
dipole 1

2
dipole

( ) ( )� (8)

Here 0  <  g(X)  ⩽  is the fitness of design X which 
quantifies the accuracy of characterization for an 
arbitrary dipole configuration. Parameter ζ specifies 
the score given for a characterization error. A greater 
ζ assigns a lower credit, resulting in a lower fitness 
for the corresponding design. The value of ζ  =  0.1 
is recommended following the parameter study 
in our previous study [33], which is similarly used 
in this study. Once a fixed ζ is chosen, a design with 
a greater fitness is better. The set of Ndipole sample 
dipoles is generated pseudo-randomly using the 
method proposed in [35, 36]. It improves uniformity 
of distribution of the sample dipole which provides 
a better representation of all possible dipoles in the 
dipole space. If a sample dipole falls inside or very close 
to the ALL body, a zero score is assigned for that dipole. 
More dipoles would fall inside if the ALL has a larger 
body, and thus a smaller ALL body is automatically 
favored unless a larger body can provide a contribution 
to characterization accuracy. A larger ALL body leaves 
less space for possible dipoles, which means less 
robustness. Without such penalization, the algorithm 
always converges to a solution with the greatest size, 
because:

	 •	All sample dipoles will be in a small region of 
the search space. The optimized design is then 
specialized for a more specific case in which dipoles 
are in a smaller region, resulting in a higher fitness.

	 •	A larger ALL provides more diversity in location of 
the sensors and the gathered information.

Bioinspir. Biomim. 12 (2017) 036010
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One of the challenges in finding the best design is the 
randomness of the fitness function, which originates 
from several types of randomness in the evaluation pro-
cedure such as random selection of a finite number of 
dipoles, and sensor and flow model uncertainties. Inde-
pendent evaluations of the same design would result in 
dissimilar calculated finesses, and therefore, algorithms 
capable of handling noisy fitness functions should be 
employed for design optimization.

It should be noted that the presence of the ALL 
body affects the velocity field especially for the regions 
close to the surface of the ALL body. The employed 
flow model does not take this effect into account, 
which results in some error if equation (1) is used to 
predict the flow field. To the best of our knowledge, 
there is no simple analytical solution that can capture 
these fluid-body interactions, while an analytical form 
is essential for solving the inverse problems consider-
ing the number of designs to be evaluated. The error 
introduced by ignoring the fluid-body interactions, 
to some extent, is captured by the model uncertainty 
introduced in section 2.1.

3.  Challenges in 3D characterization

The governing equations for the characterization 
in 3D space, in the vector form, are similar to the 2D 
case; however, our preliminary investigations using 
the default design concept, in which sensors and their 
sensing directions lie in the xy-plane (see figure 3(c)), 

revealed a drastic decline in characterization accuracy 
in 3D space in comparison with the 2D space. This 
indicates there are specific challenges in dipole source 
characterization in the 3D space. In particular, we 
speculated that if a dipole lies in certain regions, an ALL 
cannot provide a reliable characterization. Based on our 
preliminary analysis and simulations, these challenges 
can be summarized as follows:

	 •	Equation (1) demonstrates that the velocity 
components are roughly proportional to ||r||−3. 
The dipole can be anywhere in the dipole space and 
||r||2   =   (xs  −  xk)2  +  (ys  −  yk)2  +  (zs  −  zk)2. For 
the 2D space, zs  =  zk  =  0, therefore, the expected 
value of ||r|| is smaller. Consequently, on average, 
the local flow velocity is smaller in 3D than in 
2D space. This intensifies the effect of the sensor 
noise on the measurements, which potentially 
exacerbates the characterization error.

	 •	The number of the unknown dipole parameters 
has increased from four to six, which makes the 
inverse problem harder to solve.

	 •	We discover that the default design concept has 
blind regions, where a dipole cannot be reliably 
characterized even if there is no uncertainty. This 
will be further explored in this section.

For the simulations performed in the rest of this 
study, the following values for the problem param
eters are considered: X1min  =  0.5 cm, X1max  =  4 cm, 

Figure 3.  (a) Illustration of the conformal mapping from a disk to a streamline body. The colored lines representing the sensors are 
perpendicular to the local curvature of the streamlined body. (b) The size and the shape of the streamlined body can be determined 
by R and λ/R. (c) A typical design in 3D space, where the sensors are perpendicular to the ALL body.

Bioinspir. Biomim. 12 (2017) 036010
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X2min  =  0.1, X2max  =  1, βmax  =  4π/Nsensor. We also 
assume that the dipole has a known diameter of 1.9 cm. 
All sample dipoles are in [−10, 10] cm3. The coordi-
nate-wise components of maximum velocity (αxs, α
ys and αzs) of a sample dipole are randomly selected 
between  −10 cm s−c and 10 cm s−1 such that 3 cm s−1 
1mvs  =  ||[αxs, αys, αzs]|| |[10 cm s−1. A lower bound on 
vs is especially necessary otherwise the local flow veloc-
ity will be too small in comparison with the sensor 
noise. If the sampled dipole violates this constraint, it is 
discarded and a new dipole is sampled.

3.1.  Blind spots
To check possible blind spots for the ALL in the 3D space, 
we first generate 100 random designs (Nsensor  =  18, 
Ndipole  =  256) and evaluate them in three scenarios:

	 •	Scenario X: All dipoles are located at x  =  c0

	 •	Scenario Y: All dipoles are located at y  =  c0

	 •	Scenario Z: All dipoles are located at z  =  c0

Different values of c0  =  (−10, −8, −6, …,10) cm 
are tried one at a time. The values of the dipoles’ param
eters are selected randomly in the default range, except 
their x, y, or z location depending on the scenario), 
which is set to c0. For each scenario and each value of c0, 
we calculate the average fitness of 100 designs ( f (c0)). 
At this point, we set εmodel  =  εsensor  =  0 to suppress 
the possible effects of the uncertainties. Since there are 
many sample dipoles and the results are averaged over 
100 designs, the study can provide a good representa-
tion of the average performance for each value of c0 and 

each scenario. Figure 4 plots f (c0) in different scenarios. 

In general, the characterization accuracy is lower if the 
dipole is closer to the ALL-body; however, this trend is 
much more drastic for the dipoles close to the xy-plane. 
The average fitness when dipoles are on the plane z  =  0 
is less than one third of the average fitness when they 
on the plane z  =  10 cm (compare 0.63 with 0.18), while 

this difference is at most 33% for dipoles with different 
x-coordinate or y-coordinate. This demonstrates that 
an ALL cannot reliably characterize a dipole if it lies on 
or close to the xy-plane. This region is therefore a blind 
region for the ALL.

It should be mentioned that this blind region is spe-
cific to the problem of the 3D dipole source characteri-
zation. In the 2D case, the dipole and its vibration are 
in the xy-plane and this information is provided for the 
inverse solver. It is a completely different situation in 
3D dipole source characterization, since although the 
dipole may lie on the xy-plane, this information is not 
given to the inverse solver, and therefore it may predict 
a large z-coordinate for the dipole.

3.2.  Alternatives for the blind spot challenge
One explanation for the existence of blind regions is 
that since all sensors are in the xy plane and their sensing 
directions are in xy-plane (default design concept), the 
diversity of the information perceived by the sensors 
is too limited for a reliable characterization. This 
explanation is particularly supported by evidence 
in a previous work [27] that supports advantages of 
3D arrangement of sensors for a more robust flow 
characterization. To test this hypothesis and provide 
alternatives, we extend the default design concept as 
follows:

	 •	Offset strategy: Sensors may have offset from the xy 
plane, on which the center plane of the ALL body 
lies (figure 5(a)). The sensors may have different 
offsets (Δzk, k  =  1, 2, Nsensor/2), but all the offset 
values must be in [−cz, cz], where 2cz is equal or 
smaller than the thickness of the ALL. This strategy 
leads to the conventional design for cz  =  0.

	 •	Angle stagey: The sensors may be mounted such 
that their normal (sensing direction) lies out of 
the xy plane, but still tangent to the local curvature 
of the ALL body (figure 5(b)). This out-of-plane 

Figure 4.  Average fitness in different scenarios as a function of c0. When all dipoles are on or close to the xy-plane (scenario Z with 
c0  =  0), the average fitness is considerably lower. This demonstrates that an ALL cannot characterize a dipole accurately if it lies in 
this region.
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sensing direction can be quantified by γk, which is 
the rotation angle of the k-th sensor about its center 
line. Rotation angles of the sensors (γk, k  =  1, 2, 
Nsensor/2) are independent, but all of them must be 
in [−cγ, cγ]. This strategy leads to the conventional 
design concept for cγ  =  0.

Both strategies add another design parameter 
per sensor, and almost double the number of design 
parameters and presumably increase the prototyping 
cost. Therefore, only a considerable advantage over the 
default design concept may justify their suitability.

To investigate and compare these two strategies,  
100 random designs are generated using both strate-
gies. The average fitness for different values of cγ or cz 
is calculated while dipoles lie on the xy-plane (the blind 
regions). Figure 6(a) shows this average fitness for the 
Offset Strategy, when the maximum variation in offsets 
is limited to 2cz. Figure 6(b) shows this average fitness for 
the Angle Strategy, when the maximum variation in the 

rotation angles (γk’s) is limited to 2cγ. In both cases, pro-
viding a slight variation strongly improves the accuracy 
of characterization for any region. It can particularly 
address the challenge of blind regions effectively.

One may speculate that the use of multiple smaller 
ALLs instead of one (with identical overall number of 
sensors) can improve the dipole source characterization 
accuracy by providing more flexibility in coordination 
of the sensors. This flexibility is provided by changing 
the relative location of the ALLs (δx, δy and δz), which 
is illustrated in figure 7. For this study, we consider a 
swarm of three identical ALLs. This means the shape 
and the size of the ALL bodies are similar, as well as loca-
tions and sensing directions of the mounted sensors.

4.  Numerical simulation

Similar to our previous method for dipole 
characterization in the 2D space [33], we employ a bi-
level approach to find the optimal design for each design 

Figure 5.  Illustration of the proposed alternative designs for the ALL when (a) offset strategy or (b) angle strategies is used.

Figure 6.  Effect of the proposed design concepts on characterization accuracy when dipoles lie on the xy-plane as a function of 
the (a) maximum allowable offset (cz) for the offset strategy and (b) maximum allowable rotation angle (cγ) for the angle strategy. 
Offsets or rotation angle of individual sensors are not provided in these figures.
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concept. Considering its efficacy in handling noisy 
problems [37], covariance matrix adaption evolution 
strategy (CMA-ES) [38] is employed for the upper 
level, which optimizes the design parameters (X in (8)). 
Like all evolutionary algorithms (EAs), CMA-ES is a 
population-based method, which follows the principles 
of natural evolution such as selection, recombination 
and mutations. It is a robust method with minimal 
assumptions on the problem and can efficiently handle 
noisy test problems [37], which makes it ideal for our 
problem.

Since the problem is symmetric, the design 
parameters are determined such that the final design is 
symmetric with respect to the xz-plane. The design 
parameters depend on the selected design concept, 
which are as follows for different strategies:

	 •	Offset Strategy: Design parameters are the size 
(X1  =  R) and the shape (X2  =  λ/R) of the ALL 
body, the relative locations of the sensors on one 
side of the xz-plane (βk’s, k  =  1, 2, …, Nsensor/2), 
and offsets of these sensors from the xy-plane 
(Δzk’s, k  =  1, 2, …, Nsensor/2). The overall number 
of design parameters is thus Nsensor  +  2, in which 
Nsensor is an even number.

	 •	Angle Strategy: Design parameters are the size 
(X1  =  R) and the shape (X2  =  λ/R) of the ALL 
body, relative locations of the sensors on one side 

of the xz-plane (βk’s, k  =  1, 2, …, Nsensor/2), and 
their rotation angles (γk’s, k  =  1, 2, …, Nsensor/2). 
The overall number of design parameters is thus 
Nsensor  +  2, in which Nsensor is an even number.

	 •	Multiple ALLs: Three ALL systems are identical; 
therefore, we may design only the middle ALL and 
determine the relative configuration of these three 
ALLs. This reduces the number of independent 
sensors from Nsensor/2 to Nsensor/6. Design 
parameters are thus the size (X1  =  R) and the 
shape (X2  =  λ/R) of the middle ALL body, relative 
locations of the sensors on one side of the xz-plane 
for the middle ALL (βk’s, k  =  1, 2, …, Nsensor/6), the 
offsets of these sensors from the xy-plane (Δzk’s, 
k  =  1, 2, …, Nsensor/6) or the rotation angles of 
their sensing directions (γk’s, k  =  1, 2, …, Nsensor/6) 
and the relative configuration of these three ALLs 
with respect to each other, which is determined by 
three design parameters: δx, δy and δz (see figure 7). 
The overall number of design parameters is thus 
Nsensor/3  +  5. Nsensor must be evenly divisible by 6.

The lower level of our bi-level optimization 
method solves the inverse problem (minimize J(θ) in 
equation (3)) using the Newton-Raphson method for 
Ndipole sample dipoles independently, to calculate the 
fitness of a design according to equation (8). Starting 
from Ndipole  =  128, the method doubles Ndipole when 
one-third of the evaluation budget has been used. 
Similarly, it doubles Ndipole again when two-third of the 
evaluation budget is used. Increasing Ndipole reduces the 
uncertainty in fitness evaluation so that the population 
may converge to a small region in the search space. At 
the same time, the population size decreases from 200 
to 50 so that the computation cost per iteration (Ndip-

ole  ×  PopSize) remains unchanged. The overall compu-
tation budget is measured in terms of maxJeval, which 
is the number of times the error function (J(θ)) in the 
lower loop (equation (3)) is called. For all runs, maxJe-
val  =  109 is used. Following the performed experiments 
in [25], the sensor noise was set to εsensor  =  0.0015  
cm s−1. The value of εsensor was set to 0.01. The ideal case 
(no uncertainty) is also investigated for comparison. 
as  =  1.9 cm is known for all sample dipoles.

4.1.  Optimization results
This subsection examines the advantages of the 
proposed design concepts compared to the default 
concept. Each design concept is optimized when 
different values for cz or cγ, varying from zero to a 
reasonable upper value, are tried. This upper value is 
90° for the angle strategy and half of the thickness of 
the ALL body for the offset strategy, which is assumed 
to be 1.5 cm in here. Testing different values cz or cγ 
illuminates contribution of extra variation in the 
sensing direction or z-coordinates of the sensors to the 
characterization accuracy. For both strategies, cz  =  0 
or cγ  =  0 automatically reduces the strategy to the 
default design concept, where sensors and their sensing 

Figure 7.  Configuration of multiple ALL (three for this case) 
can be determined by three design parameters (δx, δy and δz). 
(a) Top view (view along the z-axis) and (b) front view (view 
along the y-axis). Sensors are not illustrated.

Bioinspir. Biomim. 12 (2017) 036010



9

A Ahrari et al

directions are in the xy-plane. Nsensor  =  18 is considered 
at this stage. Overall:

	 •	Eight different values for the maximum variation 
in the sensors’ offsets (cz  =  0, 0.5 cm, 1 cm and 
1.5 cm) or rotation angles (cγ  =  0°, 30°, 60° and 
90°) are investigated.

	 •	Both cases of one ALL and three ALLs are 
investigated for both the angle and the offset 
strategies (two options)

	 •	Both the ideal case and the realistic case are 
considered (two options).

Therefore, 8  ×  2  ×  2  =  32 combinations are investi-
gated. Five independent optimization runs are performed 
for every combination. The final best solutions for each 
run are reevaluated using a large Ndipole (Ndipole  =  10 240) 
to provide a substantially more accurate estimation of the 
true fitness, resulting in five best values for each combina-
tion. The median of these five values represents the fitness 
of the optimized solution for that combination. Aside 
from the fitness value, the median of the size parameter 
(X1  =  R) and the shape parameter (X2  =  λ/R) in these 
five design represent the size and the shape of the optim
ized design for the corresponding combination.

Figure 8 illustrates the median, lowest and high-
est reevaluated fitness of the five optimized designs 
for each combination. The same statistics for the size 
and shape values are plotted in figure 9. Figure 10 plots 
the rotation angles (βk’s) and positions of individual 
sensors (γk’s) for a specific combination (one ALL in 
realistic case, cγ  =  90°). The best designs for single ALL 
and multiple ALLs using the angle strategy in realistic 
case are illustrated in figure 11. These figures reveal that:

	 •	Figure 8 demonstrates that for each combination, 
fitness values of the final solutions from 
independent runs are close. This is a checkpoint 

for significance of the optimization results and the 
importance of the design concept.

	 •	For both the ideal case (figure 8(b)) and the realistic 
case (figure 8(a)) with only one ALL, the fitness 
of the optimized designs dramatically improves 
if the sensing direction or the z-coordinates of 
the sensors can be changed. Using multiple ALLs 
has a similar effect. When the uncertainties are 
considered (figure 8(a)), multiple ALLs with 
varying sensing directions results in the maximum 
accuracy, while the offset strategy does not provide 
any additional advantage. This is expected, since 
multiple ALLs already provide diversity in the 
z-coordinates of the sensors. For the case with no 
uncertainty, using multiple ALLs is a disadvantage 
(figure 8(b)).

	 •	For both the ideal case (figure 8(b)) and the realistic 
case (figure 8(a)), the angle strategy provides a 
significant contribution when cγ increases from 
0° to 30°; however, greater values do not provide 
considerable extra contributions. Extra flexibility 
in cz provides considerable contribution only in 
the case of one ALL in uncertain environment 
(figure 8(a)). For the ideal case (no uncertainty), 
diversity of measurements loses its importance and 
for the case with multiple ALL, extra diversity can 
be provided by controlling the relative locations of 
ALLs.

	 •	Figures 9(a) and (b) demonstrate that the sizes 
of the final designs depend on not only the 
uncertainty amount, but also possible variation 
in the sensing direction or z-coordinates of the 
sensors as well as the use of multiple ALLs. As 
a general trend, the optimized ALL is smaller 
when multiple ALLs are used or uncertainties 
are excluded (compare figures 9(a) with (b)). 
This observation is expected: When there is no 
uncertainty, diversity of the sensor data loses 

Figure 8.  Median (lines with markers) and the lowest and the highest (lines without markers) fitness when different number of 
ALLs (one or three) and different strategies (angle or offset) are used. The horizontal axis is the maximum allowable variation in the 
offset (cz) or the angle (cγ) strategy for (a) the realistic case (with uncertainties) and (b) ideal case (no uncertainties).
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Figure 9.  Median (lines with markers) and the lowest and the highest (lines without markers) values of the size (X1  =  R cm) and 
shape (X2  =  λ/R) of the final solutions of five independent runs with different strategies in the realistic case (left) and the ideal 
case (right). Plots are provided for different strategies (one ALL or three ALLs, Angle or Offset) with different values for maximum 
variation of the offset or rotation angle.

Figure 10.  Optimized solutions from five independent runs in realistic case (Nsensor  =  18, cγ  =  90°). Sensors are numbered 
sequentially from tail to tip. (a) Rotation angles of the sensors (γk’s) in degree and (b) positions of the sensors (βk’s) in degree.
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its importance. The algorithm reduces the size 
of the ALL to minimize the number of sample 
dipoles that are inside or too close to the body, for 
which the design receives zero scores. Multiple 
ALL systems provide diversity by controlling the 
distance between the ALLs, and therefore a large 
body is not needed anymore. Increasing cγ or cz 
also favors smaller ALLs (figures 9(a) and (b)). A 
detectable similarity among the size of the final 
solutions from independent runs is observed, 
which confirms the efficacy of the optimization 
and significance of the design model.

	 •	Unlike the size, shapes of the optimized solutions 
from independent runs are not similar (figures 9(c) 
and (d)). This implies that the shape is not so 
sensitive as size and there is a comparatively wide 
range for the near-optimal shape parameter. Since 
fitness of these solutions is close, the selection 
operator may be misguided by the noise in 
evaluation of the fitness. It can still be observed that 
increasing cγ or cz results in a more circular shape 
when one ALL is employed. Using a significantly 
higher Ndipole for optimization reduced the noise in 
design evaluation and can moderate this negative 
effect, and thus may result in a narrower range for 
the shape values. It comes at the cost of significantly 
higher computation time.

	 •	Although rotation angles in the optimized 
designs from five independent runs are not 
similar (figure 10(a)), there are certain common 
properties among these optimized designs. First, 
for all the optimized designs, the rotation angles 
are distributed over a large range in [−90°, 90°]. 
Second, for each optimized design, a sinusoidal 
distribution of rotation angles is observed. This 
implies that there is no optimal rotation angle for 
a specific sensor. The variation in rotation angle 
of the sensors in the design and dissimilarity of 
the rotation angles of two adjacent sensors are of 
prominent importance. Unlike the rotation angles, 

the positions of the sensors (figure 10(b)) in the 
optimized designs are quite similar. This similarity 
is a checkpoint for efficacy of the optimization 
results. Besides, it may confirm that unlike the 
sensor rotation angles, there is almost a unique set 
of optimal sensor positions.

	 •	Figure 11 demonstrates that when three ALLs are 
used, the individual ALLs are much smaller than 
the case when a single ALL is used. For the former 
case, δx, δy and δz are non-zero. This allows for 
another type of diversity in locations of the sensors, 
although it reduces the diversity in the sensing 
angles and x and y coordinates of the sensors.

4.2.  Bi-objective optimization
Since the simulated uncertainties are unbiased and 
uncorrelated, it is predicted that increasing the number 
of sensors improves the characterization accuracy, as it 
was demonstrated in our earlier work in the 2D space 
[33]; however, more sensors increase the fabrication 
cost. Decision on Nsensor can be guided by observing 
the trade-off between Nsensor and the characterization 
accuracy. This section investigates this trade-off by 
performing optimization for different values of Nsensor. 
cγ  =  90° and cz  =  1 cm for the angle and the offset 
strategies are considered and both single and multiple 
(three) ALL systems are tested. The median, the lowest 
and the highest fitness of the final solutions for each 
case is presented in figure 12:

	 •	Figure 12(b) demonstrates that using multiple 
ALLs is advantageous for the case with no 
uncertainties. The angle strategy is more beneficial 
than the offset strategy. In particular, one ALL with 
the angle strategy is the best choice, except for a 
very low number of sensors. Increasing the number 
of sensors improves the fitness up to Nsensor  =  18; 
however, no considerable improvement can be 
observed after that.

Figure 11.  Best solutions in the angle strategy in uncertain conditions for Nsensor  =  18. (a) One ALL and (b) three identical ALLs 
(δx  =  3.2 cm, δy  =  2.7 cm, δz  =  3.1 cm).
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	 •	Figure 12(a) demonstrates that the angle strategy 
should be preferred over the offset strategy for 
the realistic case; however, unlike the ideal case, 
using multiple ALLs can provide a considerable 
advantage. Furthermore, extra sensors can 
continually improve the fitness in the realistic case, 
at least up to Nsensor  =  30.

5.  Summary and conclusions

This study has concentrated on optimum design of the 
ALL system in the 3D space to maximize the average 
accuracy of characterization for all possible dipole 
sources with six degrees of freedom. While the earlier 
research in the 2D space was a good starting point 
for research on underwater object detection, the real 
environment is 3D. Extending the same methodology 
to the 3D-space faces some new challenge which 
reduces the characterization accuracy. We have 
demonstrated that the use of linear or even in-plane 
arrangement for the sensor locations and their sensing 
directions (the default design concept) has resulted in 
a failure in dipole characterization if the dipole source 
is in the plane of the ALL. This was unexpected because 
such dipoles, on average, are closer to the sensors, and 
thus generate a stronger flow at the sensors. We have 
proposed two distinct alternative design concepts to 
overcome the challenge of blind regions: The alternative 
design concepts has allowed the sensors to lie out of 
the ALL-body plane (offset strategy) or have different 
out-of-plane sensing directions (angle strategy). Our 
numerical simulations have demonstrated that these 
alternatives can not only overcome the challenge of 
the blind regions, but also improve characterization 
accuracy for a dipole source in any other region. The 
use of multiple but identical ALL systems with the 
same number of sensors has been also investigated 
in conjunction with both aforementioned design 
concepts. This can be regarded as a swarm of ALL 

systems and may simulate collective knowledge of a fish 
school in nature.

For each design concept, optimization has been per-
formed with a fixed number of sensors while the model 
and sensor uncertainties are simulated (realistic case) or 
disregarded (ideal case). The optimized designs of the 
proposed design concepts have appeared to be super
ior to the designs obtained from the default concept. A 
comparison of the optimized designs has revealed that 
the uncertainties can, not only reduce characterization 
accuracy, but also affect optimal selection of the design 
concept and the design parameters. To address the 
practical needs, consideration and simulation of these 
uncertainties have been found to be critically impor-
tant. For example, the angle strategy has turned out to 
be a better choice, whereas using multiple similar ALLs 
was advantageous only for the realistic case. The shape 
and the size of the optimized ALL body has also turned 
out to be dependent on the employed design strategy 
and presence of uncertainties. A trade-off between the 
number of sensors and the characterization accuracy 
has revealed that higher characterization accuracy in 
uncertain conditions can be obtained by increasing the 
number of sensors. For the ideal case, more sensors have 
shown to improve the accuracy up to 18 sensors, and 
after that no considerable contribution of extra sensors 
could be detected. Such analyses facilitate making deci-
sion on the number of sensors to maximize accuracy of 
the characterization for a fixed cost.

A design problem has many diverse solutions. It is 
difficult to hit upon an optimum by chance or by cre-
ating a solution from past experience. Optimization 
algorithms can help provide near- optimum solutions 
in a systematic manner; however, any expert knowledge 
about a problem can aid an optimization algorithm’s 
performance, if the chosen algorithm can utilize the 
supplied knowledge appropriately. In this paper, we 
have considered an ALL design problem and demon-
strated that providing information through an offset 
strategy and angle strategy may result in a significant 

Figure 12.  Trade-off between the number of sensors and the fitness for the cases with one or three ALL using angle or offset 
strategies for the case (a) with uncertainties and (b) without uncertainties. For each case, the lines with markers represent the 
median values and the lines with no markers represent the highest and the lowest values in five independent runs.
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improvement in the dipole characterization accuracy. 
The promising results of multiple ALLs motivate fur-
ther research on swarming robotic fish. Although the 
special case for three ALLs was studied here, the number 
of ALLs can be optimized as well. Finally, we highlight 
here that the findings in this study are obtained for the 
streamlined body shape only. As a future study, we plan 
to examine whether the findings of this study extend to 
other 3D shapes for more pragmatic ALL system, such 
as having ellipsoidal or cylindrical shapes.
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