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Abstract
Vanadium dioxide (VO )2 , a promising multifunctional smart material, has shown strong promise
in microactuation, memory, and optical applications. During thermally induced insulator-to-
metal phase transition of VO2, the changes of its electrical, mechanical, and optical properties
demonstrate pronounced, complex hysteresis with respect to the temperature, which presents a
challenge in the utilization of this material. In this paper, an extended generalized Prandtl–
Ishlinskii model is proposed to model the hysteresis in VO2, where a nonlinear memoryless
function is introduced to improve its modeling capability. A novel inverse compensation
algorithm for this hysteresis model is developed based on fixed-point iteration with which the
convergence conditions of the algorithm are derived. The proposed approach is shown to be
effective for modeling and compensating the asymmetric and non-monotonic hysteresis with
saturation between the curvature output and the temperature input of a VO2-coated
microactuator, as well as the asymmetric hysteresis with partial saturation between the resistance
output and the temperature input of a VO2 film.

Keywords: Prandtl–Ishlinskii model, hysteresis, vanadium dioxide, inverse compensation

(Some figures may appear in colour only in the online journal)

1. Introduction

Vanadium dioxide (VO2), a novel smart material, undergoes a
thermally induced phase transition around 68 °C [1], during
which induced mechanical stress, optical transmittance, and
resistance demonstrate significant changes with the tempera-
ture. These characteristics make VO2 a promising multi-
functional material for sensors [2], actuators [3], and memory
applications [4]. Recently, a VO2-coated microactuator
showed full reversible actuation, large bending around
2000 m−1 [3], and high energy density, showing promise in
micromanipulation applications. The full utilization of this
material, however, is hindered by its sophisticated hysteretic

behavior. For example, the hysteresis of a VO2-coated
microactuator between the curvature output and the tem-
perature input is asymmetric and non-monotonic with
saturation [3], the hysteresis between the resistance output
and the temperature input of a VO2 film is asymmetric with
partial saturation [5]. Without an accurate hysteresis model
and proper compensation schemes, practical use of VO2 will
be limited.

Hysteresis is a nonlinearity that appears in ferromagnetic
materials, various smart materials, biology, and economics.
Physics-based hysteresis models usually only work for a
particular material, since they are often derived based on
specific physical properties [6]. Phenomenological models
[7–16], on the other hand, are often constructed based on data
without referring to physical properties, thus are more widely
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adopted. Preisach model [7, 12] and Prandtl–Ishlinskii (PI)
model [11, 17, 18] are among the most popular hysteresis
models, and both have proven to be effective in hysteresis
modeling and control. The Preisach model is usually
expressed as a summation of weighted relay elements. In [19],
the authors proposed a non-monotonic Preisach model for a
VO2-coated microactuator, where a discretization level of 20
was used for the Preisach model. The realization of the model
requires tracking of hysteresis states in 210 cells with dif-
ferent weights, and thus the calculation and storage costs are
high. PI models generally have lower computing and storage
cost compared with the Preisach model [20].

The classical PI model involves the superposition of play
or stop operators, and it can only capture symmetric hysteresis
without output saturation. When the hysteresis is asymmetric,
as observed in [5], the model will yield considerable errors.
Various modifications have been proposed to cope with the
limitations of the classical PI model. For example, a modified
PI model was reported [21] by combining play operators with
deadzone operators to model asymmetric hysteresis behavior.
Futhermore, a generalized PI model uses the superposition of
generalized play or stop operators [22], and has better cap-
ability to model asymmetric hysteresis with output saturation
in smart materials-based systems [17]. Gu et al used a clas-
sical PI model in combination with a nonlinear non-hysteretic
function of the input to capture the asymmetric hysteresis of
piezoceramic actuators [20]. Finally, Aljanaideh et al pro-
posed a rate-dependent PI model involving a memoryless
function and deadband operator, and demonstrated its use in
modeling the asymmetric and rate-dependent hysteresis in
magnetostrictive actuators [23].

Inversion of hysteresis models is an important feedfor-
ward control approach to the compensation of hysteresis
effects. Inversion of a few phenomenological models has
been reported [3, 7, 9, 11, 16, 18, 21]. Unlike the Preisach
model, the inverse of which is typically derived based on
numerical iteration [7], analytical inversion of the classical
and generalized PI models can often be derived analytically
[11, 18], which facilitates the real-time control implementa-
tion. The inverse of the classical (or generalized) PI model is
found to be another classical (or generalized) PI model with
the same number of classical (or generalized) play operators
[11, 18]. Note that analytical inversion of a generalized PI
model requires all the generalized play operators to have the
same envelope functions, which limits its ability in modeling
complex hysteresis. For the model consisting of a classical PI
operator and a memoryless function, the authors proposed an
iterative scheme for its inversion [20], but the convergence of
the inverse algorithm was not considered.

In this paper a hysteresis model, called extended gen-
eralized PI model, is proposed to capture sophisticated hys-
teresis as observed in VO2. The model consists of a nonlinear
memoryless function and a generalized PI model, the play
operators of which have the same envelope functions. The
extended generalized PI model is tested in modeling asym-
metric and non-monotonic hysteresis between the curvature
output and the temperature input of a VO2-coated micro-
actuator, demonstrating 40% less modeling error than a

generalized PI model. The advantages of the proposed model
are further verified in modeling the asymmetric, partially
saturated hysteresis between the resistance output and the
temperature input of a VO2 film. A novel inversion algorithm
is then derived based on the fixed-point iteration framework.
The convergence condition of the proposed algorithm is
further derived. Finally, both simulation and experimental
results are provided to support the effectiveness of the
inversion algorithm. A preliminary version of this work was
presented at the 2014 American Control Conference [24].

The remainder of the paper is organized as follows. In
section 2, the classical and generalized PI models are briefly
reviewed, and the extended generalized PI model is introduced.
In section 3, the inversion scheme for the extended generalized
PI model is provided. In section 4, modeling comparisons are
presented to show the advantages of the proposed model over
the generalized PI model. The effectiveness of the inverse
compensation is verified both in simulation and experiment in
section 5. Finally, concluding remarks and brief discussions on
future work are presented in section 6.

2. PI models

2.1. Classical PI model

The classical PI model [25] is expressed as a weighted
superposition of basic play or stop operators. As illustrated in
figure 1(a), the play operator is characterized by its radius r.

The output w(t) of a play operator is defined as

= = −( )( )w t F v t f v t F v t( ) [ ]( ) ( ), [ ] , (1)r r r

where

=

− >

+ <

=

−

− −

− −

− −

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
( )
( )

( )

( ) ( )
( ) ( )

( ) ( )

f v t w t

v t r w t v t v t

v t r w t v t v t

w t v t v t

( ),

max ( ) , , if ( ) ,

min ( ) , , if ( ) ,

, if ( ) ,

(2)

r

v(t) is input, and ϵ= −ϵ ϵ
−

> →t tlim 0, 0 , which denotes the
immediate past time.

The output is expressed as an integral form

∫=c t p r F v t r( ) ( ) [ ]( )d , (3)
R

r
0

where p(r) is the weighting function and R represents the
maximum play radius. Both p(r) and R are non-negative.

For practical implementation, a weighted summation of a
finite number of play operators is often adopted

∑=
=

c t p r F v t( ) ( ) [ ]( ), (4)
j

N

j r

0
j

where p r( )j is the weight of the jth play operator, and rj is the
corresponding play radius. The number of play operators is

+N 1. r0 is usually chosen to be zero.
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2.2. Generalized PI model

While the classical PI model is limited to modeling symmetric
and non-saturated hysteresis, the generalized PI model
[17, 18] can capture more complicated hysteresis behavior.

The generalized PI model consists of a weighted super-
position of generalized play operators. Following a similar
treatment as in [17, 18], a generalized play operator with
radius r is defined as (shown in figure 1(b))

= =γ γ γ −( )( )w t F v t f v t F v t( ) [ ]( ) ( ), [ ] , (5)r r r

where γ −f t w t( , ( ))r is

γ
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R

L

The envelope functions for the generalized play operator,
γ (·)L and γ (·)R , are typically assumed to be strictly increasing
within the input range so that they are both invertible.
γ γ− ⩽ +v t r v t r( ( )) ( ( ))R L is needed to meet the order
preservation property of hysteresis behavior [7].

The output of a generalized PI model is also in integral
form

∫= γy t p r F v t r( ) ( ) [ ]( )d . (7)
R

r
0

The discrete-version of the generalized PI model can be
expressed as

∑= γ

=

y t p r F v t( ) ( ) [ ]( ). (8)
j

N

j r

0
j

The generalized PI model in equation (8) can capture
asymmetric hysteresis with saturation, and it has an analytical
inversion [18] as long as the envelope functions of all the
generalized play operators are the same. However, the mod-
eling capability of such a model is shown to be limited in
this work.

In this paper we propose adding a nonlinear memoryless
function D (·) to the generalized PI model:

∑= + γ

=

u t D v t p r F v t( ) ( ( )) ( ) [ ]( ). (9)
j

N

j r

0
j

This model is called the extended generalized PI model in this
paper. Figure 1(c) shows a generalized PI model and an
extended generalized PI model with identical weights of
generalized play operators. It is shown in this paper that the
extended generalized PI model can better model complex
hysteresis.

3. Inversion algorithm

The goal of inverse compensation is to cancel out the hys-
teresis nonlinearity by constructing an inverse hysteresis
model. The analytical inverse of a generalized PI model with
uniform envelope functions for play operators is first
reviewed. The latter will be used in the proposed fixed-point

Figure 1. Input–output relationships of (a) a classical play operator;
(b) a generalized play operator; (c) A generalized PI model and an
extended generalized PI model with identical weights of generalized
play operators.
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iteration-based inversion algorithm for an extended general-
ized PI model.

3.1. Review of analytical inversion of generalized PI model [18]

Denote Ψ as the generalized PI model, which can be written
as

∑Ψ= = γ

=

y v t p r F v t[ ]( ) ( ) [ ]( ), (10)d
j

N

j r

0

where yd is the desired output of the generalized PI model,

and denote Ψ −ˆ 1
as its approximate inverse. Then ideally,

Ψ Ψ= ◦ ≈−
y y t yˆ [ ]( ) , (11)d d

1

is satisfied, where y is the actual output of the generalized PI
model Ψ, and yd is the desired output of the generalized
model. Note that in inverse compensation, yd is used as the

input for the inverse model Ψ −ˆ 1
. ‘○’ denotes the composition

of functions or operators. One can write
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where Π denotes the classical PI model.
Due to the invertibility of the envelope functions γL and

γR, equation (12) can be expressed as
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The inverse of the generalized PI model is written as [18]
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where Π−1 is the inversion of the classical PI model, the
expression of which can be found in [11]. The inverse of the
classical PI model Π with form of equation (4) is another
classical PI operator with different parameters

∑Π = +−
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for = ⋯i N1, , .

3.2. Inversion of extended generalized PI model

Denote ud as the desired output of the extended generalized PI
model. Then the extended generalized PI model is expressed as

Ψ= +u D v v( ) [ ]. (19)d

where D(v) is the memoryless component and Ψ v[ ] is the hys-
teresis component. Since the inversion of Ψ v[ ] is available,
rewrite equation (19) as

Ψ= −− [ ]v u D v( ) . (20)d
1

Unlike the inversion of generalized PI model, −u D v( )d is
used as the input for the inverse extended generalized PI model.
The right part of the above equation can be solved with a known
input v; however, v is also the desired solution. To solve the
problem, we first recall some background materials.

Contraction mapping [26]: Let X d( , ) be a metric space.
A map →T X X: is called a contraction mapping on X, if
there exists q ∈[0, 1) such that : ⩽d T x T y qd x y( ( ), ( )) ( , )
for all ∈x y X, .

Proposition 1. [26]:
Let X d( , ) be a non-empty complete metric space with a

contraction mapping →T X X: . Then T admits a unique fixed

point x* in X (i.e. =T x x( *) *). Furthermore, x* can be found
as follows: start with an arbitrary element x0 in X and define

a sequence xn by = −x T x( )n n 1 , then →x x*n .

From proposition 1, if Ψ −− u D v[ ( )]d
1 is a contraction

mapping in terms of v, the inversion can be obtained by iterating
Ψ= −−

−v u D v[ ( )]k d k
1

1 , = ⋯ ⋯k n1, 2, , , until − −v v| |n n 1

σ< , σ > 0. The following proposition provides a sufficient
condition for the convergence of the inversion algorithm.

Proposition 2. Denote Ψ − u[ ]d
1 as the inversion of the

generalized PI model, where ud is the desired output. Then
the operator Ψ −− u D v[ ( )]d

1 is a contraction mapping on
v v[ , ]min max , if

γ γ
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Thus, Ψ −− u D v[ ( )]d
1 is a contraction mapping when

the following inequality is satisfied:

γ γ
>

⎧⎨⎩
⎫⎬⎭v v

p r
D

v
min

d

d
,

d

d
· ( )

d

d
. (26)

v

R L
0

■

For classical PI model, since γ γ= =v vd d d d 1R L , so the
convergence condition degenerates to

>p r
D

v
( )

d

d
. (27)0

For either classical PI model or generalized PI model,
since =D vd d 0, no iteration is needed.

Note that, from proposition 2, the convergence of the
proposed algorithm depends on the parameters of the hys-
teresis model.

4. Modeling performance

In this section, the modeling performance of the extended
generalized PI model involving the curvature and temperature
hysteresis relationship of a VO2 coated cantilever, and the
resistance and temperature hysteresis relationship of a VO2

film are shown.

4.1. Curvature-temperature hysteresis of a VO2-coated
microcantilever

A VO2-coated silicon micro-cantilever is subject to two
actuation effects when its temperature is varied [3]. First, the
stress due to thermally induced phase transition of VO2 makes
the beam bend towards the VO2 layer, a process that is
inherently hysteretic. Second, the differential thermal expan-
sion effect generates stress in the opposite direction. As a
result, the hysteresis between the bending curvature and the
temperature is non-monotonic [3].

Following similar treatment [3], a 172 nm thick VO2

layer was deposited on a silicon cantilever with length of
μ300 m. The microcantilever was glued to a glass substrate

that was directly in contact with a Peltier heater. A position
sensitive detector (PSD) and a laser were used to measure the
deflection of the microcantilever. The curvature was then
obtained based on the PSD measurement.

In order to capture the hysteresis, the envelope functions
for the extended generalized play operator are chosen to be
hyperbolic-tangent functions in the form of

γ = +( )v t a v t b( ( )) tanh ( ) , (28)R R R

γ = +( )v t a v t b( ( )) tanh ( ) . (29)L L L

The non-hysteretic component is expressed as

ω= +D v t p v t c( ( )) sin ( · ( )) . (30)0

The number of the generalized play operators is chosen
to be N = 15, and the play radii are is chosen as

= = … −r i N i N, 0, 1, , 1. The parameters identified for
the generalized PI model and the extended generalized PI
model are shown in table 1. The weights of the generalized PI
model and the extended generalized PI model are different
due to the effect of the nonlinear memoryless function. The
identified weights = … −p r i N( ), 0, 1, , 1i of both models
are not included in the paper in the interest of brevity.

Note that given the envelope functions form, the identi-
fied extended PI model may not optimally model the hys-
teresis. The non-hysteretic component is identified as follows:
first a generalized PI model is adopted to model the hyster-
esis, then the non-hysteretic component is chosen based on
the remaining modeling error of the generalized PI model.
The generalized PI model is modeled by the summation of
weighted generalized play operators and an offset c.

In order to to cover the whole phase transition range, the
temperature range was chosen to be from 20 °C to 80 °C. In
particular, we varied the temperature in repeated heating-
cooling cycles with the temperature range decreased for each
cycle. Figures 2(a) and (b) show the modeling performance of
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generalized PI model and that of the extended generalized PI
model, respectively. Compared with the generalized PI
model, the proposed model can capture the asymmetric and
non-monotonic hysteresis more accurately. The root-mean-
square error (RMSE) and the absolute maximum of the error
are selected to quantify the modeling performance. The
RSME of the generalized PI model is −38.5 m 1, and the
RSME of the extended generalized PI model is −26.4 m 1. The
largest error of the generalized PI model is −148.9 m 1, while
that of the extended generalized PI model is −89.6 m 1.
Therefore, the extended generalized PI model can capture the
asymmetric and non-monotonic hysteresis behavior more
accurately, with 31% and 40% smaller error in terms of
RSME and the largest modeling error, respectively.

4.2. Resistance–temperature hysteresis of a VO2 film

A VO2 layer was deposited by pulsed laser deposition. The
film was heated with a Peltier heater. The experimental setup
in this work was similar to the one used in [19]. The resis-
tance of the film was measured through two aluminium
contacts patterned on the VO2 film.

Similarly, the temperature profile in time followed a
pattern of damped oscillations. It is shown in figure 3 that the
measured resistance Z( ) changes by approximately two orders
of magnitude. Furthermore, in order to have non-negative
weights for the hysteresis models, − Zlog10 is taken as the
output. The hysteresis behavior shown in figure 3 is asym-
metric and also partially saturated.

Table 1. Parameters of the generalized PI model and the extended generalized PI model for hysteresis of a VO2-coated microactuator.

aL bL aR bR p0 ω c

Generalized 0.11 −5.19 0.13 −6.94 0 0 914.20
Extended 0.18 −9.61 0.14 −7.19 40.1 0.17 923.91

Figure 2. The performance of modeling curvature-temperature
hysteresis of a VO2-coated microcantilever based on: (a) generalized
PI model. (b) Extended generalized PI model.

Figure 3. The performance of modeling the resistance–temperature
hysteresis of a VO2 film based on: (a) generalized PI model. (b)
Extended generalized PI model.
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Following [17, 18], the envelope functions are selected to
be hyperbolic-tangent functions. The memoryless function is
selected as the sum of a hyperbolic-tangent function and an
offset based on the approach provided in section 5.1:

= + +( )D v t p a v t b c( ( )) · tanh ( ) . (31)D D0

The number of play operator is chosen to be N = 30, and
the radii are chosen to be = = ⋯r i N i N, 1, , . The gen-
eralized PI model is modeled by the summation of the same
number of weighted generalized play operators and an offset
c. The identified parameters of the generalized PI model and
the extended generalized PI model are shown in table 2. The
weights of the generalized PI model and the extended gen-
eralized PI model are different due to the effect of the

nonlinear memoryless function. The identified weights of
both models are not included due to space limitation.

Figures 3(a) and (b) show the modeling performance
based on the generalized PI model and the proposed model,
respectively. The RSME and the maximum absolute error of
the generalized PI model are 0.031 and 0.082 Ωlog10 ,
respectively, while the corresponding values for the extended
generalized PI model are 0.012 and 0.041 Ωlog10 , respectively.
The generalized PI model has 158% and 100% larger RSME
error and maximum absolute error, respectively.

Figures 4(a) and (b) show a random temperature
sequence and its corresponding resistance output. The model
estimation errors based on the generalized PI model and the
extended generalized PI model, respectively, are shown in
figure 5. The RSME and the average absolute error of the
generalized PI model are 0.034 and 0.027 Ωlog10 , respec-
tively, while the corresponding values for the extended gen-
eralized PI model are 0.012 and 0.009 Ωlog10 respectively.
The effectiveness of the extended generalized PI model in
capturing the asymmetric and partial saturated hysteresis is
thus further demonstrated.

5. Inverse compensation performance

Examples are shown to illustrate the effectiveness of the
inverse algorithm both in simulation and experiments.

5.1. Simulation

Consider an extended generalized PI operator expressed as a
memoryless function and a classical PI model, i.e.,

γ =v t v t( ( )) ( ), (32)R

Figure 5. Modeling comparison between the generalized PI model
and extended generalized PI model.

Table 2. Parameters of the generalized PI model and the extended generalized PI model for hysteresis of a VO2 film.

aL bL aR bR p0 aD bD c

Generalized 0.14 −8.5 0.16 −9.5 0 0 0 −3.23
Extended 0.16 −10.3 0.20 −11.6 0.4 0.03 −1.6 −3.26

Figure 4.Model verification of the resistance–temperature hysteresis
in a VO2 film: (a) a random temperature sequence. (b) Corre-
sponding resistance output.
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γ =v t v t( ( )) ( ). (33)L

The memoryless component is chosen as

=D v t p v t( ( )) cos ( ( )). (34)0

Note the envelope function and memoryless component
are chosen in the above form as an illustrative example. The
radii and their corresponding weights of the play operators are
shown in table 3. D v t( ( )) is chosen to be v t5 cos ( ( )). The
convergence condition for the given model is satisfied since

γ γ
= > ⩾

⎧⎨⎩
⎫⎬⎭v v

p r
D

v
min

d

d
,

d

d
· ( ) 6 5

d

d
. (35)R L

0

Figure 6(a) shows a randomly chosen input sequence, and
figure 6(b) shows the input and model output relationship.
Figure 7(a) shows the inversion of the model based on the
proposed algorithm, and figure 7(b) shows the resulting rela-
tionship between desired output and calculated output. The good
linearity demonstrates the effectiveness of the inverse algorithm.

The average number of iterations is 8.38 when the con-
vergence criterion σ is chosen to be 0.0001, which shows the
efficiency of the algorithm. It is found in simulation that if σ is
enlarged to be 0.01, the average number of iteration decreases
to 5.31. It is also verified that when the value of p0 is reduced,
the inversion algorithm may not converge; on the other hand,
if p r( )0 remains sufficiently large, the extended generalized PI
algorithm will always converge.

5.2. Experimental verification

The proposed inversion algorithm is also tested in experiments
to compensate the resistance–temperature hysteresis in the

Table 3. Parameter of the extended generalized PI model.

i 1 2 3 4 5 6

ri 0 0.2 0.4 0.6 0.8 2
p r( )i 6 2 1 2 4 4

Figure 6. Simulation verification of the inverse algorithm. Hysteresis
relationship: (a) input sequence. (b) Input–output of the extended
generalized PI model.

Figure 7. Compensation of hysteresis in simulation: (a) input–output
of the inverse extended generalized PI model. (b) The relationship of
the desired output and the actual output after hysteresis
compensation.
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VO2 film. It is verified that when the number of generalized
play operators is more than 5, the modeling performance will
not improve significantly while incurring higher computational
cost. Therefore, a simpler and more efficient model with five
generalized play operators and a nonlinear term is utilized. The
parameters can be found in table 2 and [5].

It is found that when ∈v [43.2, 74.2] °C, the con-
vergence requirement will be satisfied. Note that this covers
the typical operating range for VO2. Outside the region [43.2,
74.2] °C, the convergence requirement may fail, since when

γ→ ∞ →v v, d d 0 faster than D vd d , and γ ≪v D vd d d d ,
thus making equation (26) difficult to meet.

Figure 8 shows the inverse compensation performance
and the inversion error. The absolute maximum inversion
error is around 0.135 Ωlog10 , which still demonstrates the
effectiveness of the proposed compensation approach.

6. Conclusion and future work

It was shown in this work that including a memoryless
function, the modeling capability of the generalized PI model
is enhanced. An inversion approach utilizing fixed-point

theory was proposed for the extended generalized PI model,
along with the convergence condition. The modeling advan-
tages of the proposed model were shown for hysteresis of a
VO2-coated microactuator and a VO2 film, and the inversion
algorithm was shown to be efficient in both simulation and
experiments involving a VO2 film.

For future work, feedback control of VO2-coated
microactuators incorporating the proposed hysteresis com-
pensation scheme will be conducted. The inversion of the
proposed model where envelope functions are different for
different play operators will also be explored.
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