
I
n an 1881 study of ferromagnetism [37],
James A. Ewing coined the term hysteresis,
which means “to lag behind” in Greek. In
Figure 1, which is reproduced from [1], the
horizontal axis is the magnitude of the aver-

age magnetic field H in a soft-iron ring, while the
vertical axis is the magnitude of the average mag-
netic flux density B. The plot was obtained by
varying the magnetic field in a quasi-static manner
and recording the average magnetic flux density.
The following observations can be made from this
example:

1) Causality: The output B depends on past and cur-
rent values of the input H only.

2) Monotonicity: The output B increases and decreases with a
corresponding change in the input H.

3) Presence of a major loop: The set of points in the (H, B) plane
that can be reached lie between two curves that together
form the major loop. The increasing part of this loop is obtained by first decreasing the magnetic field H to a
large negative value −Hmax for which the magnetic flux density saturates at −Bmax, and then increasing it to
Hmax.

4) Minor loop closure: Suppose that the input H and output B at some instant are such that (H, B) is on the major
loop. If the input is changed to a value H̃ and then changed back to H, then the output changes its value to B̃
and back to B. In other words, (H, B) → (H̃, B̃) → (H, B).

5) Energy Dissipation: It can be shown that the energy needed from a power source to complete a loop, say
between (H1, B1) and (H2, B2), is proportional to the area enclosed by the closed loop.

6) Order Preservation: The paths for increasing inputs in the (H, B) plane are nonintersecting, as are the paths for
decreasing inputs.

Control of Hysteretic 
Systems Through Inverse

Compensation
RAM V. IYER and XIAOBO TAN

Digital Object Identifier 10.1109/MCS.2008.930924

ALGORITHMS, ADAPTATION,
AND EMBEDDED IMPLEMENTATION

DENNIS S. BERNSTEIN

1066-033X/09/$25.00©2009IEEE FEBRUARY 2009 « IEEE CONTROL SYSTEMS MAGAZINE 83

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 21:27 from IEEE Xplore.  Restrictions apply.



84 IEEE CONTROL SYSTEMS MAGAZINE » FEBRUARY 2009

Although these observa-
tions form the phenomenol-
ogy of ferromagnetic
hysteresis, they do not
define hysteresis. Our next
objective is to provide a pre-
cise mathematical definition
of the hysteresis phenome-
non as an operator mapping
a function of time to another
function of time. The physi-
cal causes of hysteresis are
the presence of multiple
metastable states of a ther-
modynamic free energy
functional and energy dissi-
pation. In the micromagnet-
ic theory of ferromagnetism,
crystalline symmetry results
in multiple minima for the
thermodynamic free energy
giving rise to multiple
metastable states. When an
external magnetic field is
applied to a ferromagnet,
each individual magnetic
moment precesses about the
direction of the effective
magnetic field and settles
asymptotically in that direc-
tion [2], [3]. The asymptotic
convergence of the magnet-
ic moments is due to energy
dissipation, without which
a time-varying total mag-
netic moment would be pre-
sent even for zero external
magnetic field. Therefore,
the existence of multiple
metastable states is a neces-
sary condition for hystere-
sis, but it is not sufficient.

The nature of the quasi-
static changes in the input
must be clarified to pre-
cisely define hysteresis.
This clarification is done
through the concept of a

FIGURE 1  Experimental curves for a soft-iron ring [1]. The magnetic field is varied in a quasi-static man-
ner, and the average magnetic flux density in the ring is recorded. A major loop in the (H, B )-plane is
obtained when H is changed from a large negative value −Hmax to a large positive value Hmax and vice
versa. Suppose that the input is decreased from Hmax to H1 and then increased to a value H2 that is
less than Hmax. When the input is decreased again to H1, then the corresponding value of the flux densi-
ty is B1. In other words, the minor-loop inside the major loop closes on itself. From (H1, B1), when the
input is reduced to H3, increased to H4 < Hmax, and then reduced to H3 again, the same phenomenon
is observed.
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This article concerns control of systems with hysteresis composed of

a hysteresis operator in a series connection with a linear system. 
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rate-independent operator. Consider the thermostat relay,
or relay, illustrated in Figure 2. Let α, β ∈ R with β ≤ α.
Suppose that v(t) is continuous on the interval [0, T], and
let u(0) = ζ , where ζ ∈ {−1,+1}. For t ∈ (0, T], define

At = {τ ∈ (0, t) : v(τ) = α or β},

and let

u(t) =
⎧⎨
⎩

−1 if v(t) ≤ β,

1 if v(t) ≥ α,

u(t∗) if β < v(t) < α,

(1)

where

t∗ =
{

sup{τ : τ ∈ At} if At �= ∅,

0 otherwise.
(2)

The responses of this relay to sinusoidal inputs with fre-
quencies 0.25 Hz and 25 Hz are shown in Figure 3(a). Note
that plots of the output u versus the input v for the relay
are identical for the two signals.

Next, consider the linear gear mechanism shown in
Figure 4(a). This example illustrates the backlash phe-
nomenon found in a typical gear mechanism. Although
inertial effects are present in the operation of a gear
mechanism, we ignore them here and focus on the kine-
matic relations to illustrate the hysteresis phenomenon.
Equivalently, we capture the behavior of a gear mecha-
nism operated in a quasi-static manner. We consider the
lower gear to be the driven gear. Let r = (r0 − a)/2 and
u(0) = ζ , where ζ ∈ R. For an input v that is monotone on
the time interval [0, T], the output is given by

u(t) = max{min{v(t) + r, ζ }, v(t) − r}. (3)

The gear mechanism in Figure 4(a) is commonly described
as the play operator [4], and (b) illustrates the behavior of
the play operator. The response of the play operator to
sinusoidal inputs of frequencies 0.25 and 25 Hz are shown
in Figure 3(b). The plots of the output u versus the input v
for the play operator are identical for the two signals. The
responses of the relay and the play operator can be con-
trasted with the responses of a single-input, single-output
system with poles at −0.5, −1.5 and no zeros, and with
zero initial conditions, for the sinusoidal signals shown in
Figure 3(c). Note that the response of all three systems
depends on the choice of an initial state.

We denote a system with memory by the operator equation

y = F[v; x0], (4)

where y and v are continuous functions of time and x0
denotes the initial state. The operator F is rate independent
if it satisfies the following property. A continuous increas-
ing function θ : [0, T] → [0, T] satisfying θ(0) = 0 and

θ(T) = T is an admissible time transformation. For a given
piecewise-monotone input function v, suppose that
y(t) = F[v; x0](t). Then, F is rate independent if 

y(θ(t)) = F[v; x0](θ(t)) = F[v ◦ θ; x0](t), (5)

for all admissible time transformations θ . This definition of
rate independence captures the idea that the output
depends only on the values of the input and not on the rate
at which the input achieves those values. The relay and the
play operator satisfy this property as seen in Figure 3(a)
and (b). In Figure 1, the input is changed in a quasi-static
manner precisely so that the system has reached steady
state when the measurements of H and B are recorded.
Then the dependence of B on the history of H is only
through the values achieved by H. This notion is mathe-
matically captured by the concept of rate independence.

A hysteresis operator is a causal system with memory of
the form (4) that is also rate independent [5]. A nonlinear
dynamical system is a causal system with memory but is
not generally rate independent. Both the relay and play
operators satisfy the definition of a hysteresis operator. In
addition, constitutive models for smart materials, such as
the Prandtl-Ishlinskii (PI) and Preisach operators, are
causal and rate independent, and thus are hysteresis oper-
ators. Note that the definition of a hysteresis operator
implies that nonlinear dynamical systems and hysteresis
operators are mutually exclusive. A different classification
scheme can be found in [6], which separates a class of non-
linear systems called generalized Duhem models into
those that are hysteretic and those that are not.

The definition of a hysteresis operator is general
enough to encompass a variety of models. The input space
for the operator is usually the space Cpm[0, T] of continu-
ous, piecewise-monotone functions. Extension to the space
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FIGURE 2  A thermostat relay characterized by a pair of thresholds
(β, α). The output of the relay is +1 when the input is greater than
α, −1 when the input is smaller than β , and remains unchanged
while the input stays within [β, α].
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of continuous functions C[0, T] is typically obtained
through the continuity of the operator on Cpm[0, T]. Specif-
ic forms of hysteresis operators are obtained by specifying
the state space �0 , the state evolution equation
ψ(t) = 	(v1[0,t], ψ0) , where 	 : Cpm[0, T] × �0 →�0 , and

the output functional Q : �0 →R. Here ψ0 ∈ �0, and 1[0,t]
is the function that is 1 on [0, t] and 0 elsewhere. Thus a
specific hysteresis operator takes the form 

F[v, ψ0](t) = Q(ψ(t)). (6)

The dependence of ψ(t) on
v1[0,t] ensures that the cur-
rent state depends only on
past and current values of
the input. Continuity
properties of the operator
F then depend on the con-
tinuity properties of 	 and
Q on their respective
domains. Mathematical
properties of 	 and Q also
determine whether F
enjoys various properties
such as the existence of
major loops, minor-loop
closure, energy dissipa-
tion, and monotonicity. All
of these properties arise in
the context of ferromagnet-
ic hysteresis.

In engineering applica-
tions, hysteresis operators
appear in conjunction with
a system of differential
equations. For example,
consider a dc motor con-
nected to a load through a
gearbox. We define a system
with hysteresis to be a series,
parallel, or feedback con-
nection of a hysteresis
operator and a dynamical
system. This article primar-
ily concerns control of sys-
tems with hysteresis
composed of a hysteresis
operator in a series connec-
tion with a linear system as
shown in Figure 5. Such
systems are found in mod-
eling actuators based on
smart materials [7], such as
piezoelectrics [8], [9], mag-
netostrictives [10], [11],
shape memory alloys [12],
[13], and electroactive poly-
mers [14]. Magnetic sus-
pension actuators can be
modeled with a similar

FIGURE 3  Two sinusoidal inputs of frequencies 0.25 Hz and 25 Hz are applied to (a) a relay, (b) a play
operator, and (c) an asymptotically stable, second-order linear system. For each pair of plots in (a), (b),
and (c), the upper plot shows the response to the 0.25-Hz input, while the lower plot shows the
response to the 25-Hz input. Solid lines represent the input, and dashed lines represent the output. The
units of the input and output are irrelevant. Note that the input and output signals for the relay and play
operators are identical after time scaling as seen in (a) and (b). The input versus output graph for the lin-
ear system shown in (c) depends on the frequency of the input.
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series connection, where the hysteresis operator has two
inputs and a single output [15].

The particular ordering of the hysteresis operator and
linear system in Figure 5 is motivated by the electro-
mechanical mechanisms of smart materials. For example,
when a voltage is applied to a piezoelectric actuator, the
applied electric field induces polarization, which in turn
induces stress in the piezoelectric material through electro-
mechanical coupling. The resulting stress then serves as
the input to the mechanical system of the actuator, which
can typically be represented as linear dynamics, to pro-
duce the force or displacement output. In this example, the
field-polarization relationship is hysteretic [7], and the
electrodynamics involved is much faster than the mechani-
cal dynamics, making the field-polarization map appear
rate independent. With the hysteresis operator preceding
linear dynamics, inverse hysteresis compensation is imple-
mentable. We note that there are systems that can be repre-
sented as a dynamical system preceding a hysteresis
operator; one example is a plant followed by a smart-mate-
rial sensor. However, the discussion of these systems is
beyond the scope of this article.

THE PREISACH HYSTERESIS OPERATOR
Using the relay and play operator as building blocks, we
can build complex hysteresis operators that exhibit more
subtle properties than the elementary operators. For exam-
ple, although the minor loop closure property is not dis-
played by either the relay or the play operator for all
continuous, piecewise-monotone inputs, a parallel combina-
tion of either play or relay operators may display this prop-
erty. Several possibilities exist for this construction, leading
to operators with different mathematical properties. Of
these constructions, we discuss the Preisach hysteresis opera-
tor, which is widely used in the fields of magnetics and
smart materials [16], [17]. Although the Preisach operator is
used to model magnetic materials, it does not yield informa-
tion about the internal structure of the materials themselves.
In this sense, the Preisach operator is a phenomenological or
black-box model. In this section, we study the relation of the
Preisach operator to the relay and play operators.

Definition of the Preisach Operator
Consider the relay described by (1) and depicted in Figure 2.
The relay is denoted by Rβ,α , where α and β are scalars. The
output uβ,α(t) of Rβ,α depends on the input v(t) and the ini-
tial output vβ,α(0) as given by uβ,α(t) = Rβ,α[v, uβ,α(0)](t).
Consider a continuous, piecewise-monotone input function
v(t), t ∈ [0, T] , where uβ,α(0) ∈ {+1,−1} . The Preisach
operator is constructed as a weighted superposition of
relays, also called Preisach hysterons. For an input function
v(·), the output of the Preisach operator is given by [17]

u(t) =
∫∫

α ≥β

μ(β, α)Rβ,α[v, uβ,α(0)](t) dβdα, (7)

where μ : S→R is a nonnegative, integrable function on
the half plane S = {(β, α) : α ≥ β}. The set S is the Preisach
plane (although it is a half plane), while μ is the Preisach
density function. For every point (β, α) of S there exists a
unique relay Rβ,α and vice versa. We denote the action of
the Preisach operator by the equation

u(t) = 
[v, φ0](t), t ∈ [0, T], (8)

FIGURE 4  The backlash phenomenon in a gear mechanism. (a)
Illustration of the gear mechanism. The upper gear drives the lower
gear. The center v of the tooth in the upper gear represents the
input, while the center u of the slot corresponding to the upper tooth
represents the output. (b) The play operator. The play operator cap-
tures the kinematic input-output behavior of the gear mechanism,
where the characterizing parameter r represents the difference
between the slot width r0 and the tooth width a.
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FIGURE 5  A system with hysteresis that captures the behavior of
smart material-actuated systems. This system consists of the series
connection of a hysteresis operator and a linear system G, with the
hysteresis appearing at the input of the linear system. When the
hysteresis operator precedes the linear dynamics (as shown),
inverse hysteresis compensation is implementable.
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where φ0 represents the initial state of the operator, with
φ0(β, α) = uβ,α(0). Thus the initial state for the Preisach
operator is the set of initial conditions for each relay in S.

The time evolution of the state for the Preisach operator
is best understood using the Preisach plane. For simplicity,
let P ⊂ S be a compact set, and suppose that μ vanishes
outside P. At each time t, the domain P consists of the sets,
P+(t) and P−(t), where P±(t)� {(β, α) ∈ P : uβ,α(t) = ±1}.

Suppose that the input at time 0 is such that all of the hys-
terons in the domain P have output −1. Next, suppose that the
input is increased monotonically to a value v1 at time t. Then
all of the relays Rβ,α with α < v1 have output +1, while those
with α ≥ v1 have output −1, as illustrated in Figure 6(a). If the
input is then monotonically decreased from v1 to v2, all of the
relays Rβ,α with β > v2 along with those with α > v1 have
output −1, as shown in Figure 6(b). Note that the status of the
relays at the boundary of the two regions P− and P+ in Figure
6 does not influence the output due to the assumption on the
density function μ in (7). For a piecewise-monotone input, the
same procedure can be followed, and staircase-like curves that
separate the region P− from the region P+ can be obtained, as
illustrated in Figure 6(c). Thus the state of the Preisach operator
at each instant is governed by a single curve in the (β, α) plane.
This curve is a Preisach memory curve. The state space is the col-
lection of Preisach memory curves, and, unlike the case of a lin-
ear system, it is not a vector space. The analysis of the memory
curve reveals a connection between the Preisach operator and
the play operator. For more details, see “Memory Structure of
the Preisach Operator.” Figure 6 shows that the intersection of
the Preisach memory curve and the line α = β at each time t
yields the current input value v(t).

Characterization of the Preisach Operator
The output of the Preisach operator at time t can be rewrit-
ten as

u(t) =
∫∫
P+

μ(β, α) dβdα −
∫∫
P−

μ(β, α) dβdα, (9)

which is used to prove three fundamental properties of
the Preisach operator, rate independence, minor loop

FIGURE 6  Memory curve structure for the Preisach operator. P+
and P− represent the regions on the Preisach plane where the cor-
responding hysteron outputs are positive and negative, respective-
ly. (a) When the input monotonically increases, hysterons whose
α−thresholds are less than the current input are switched to +1,
creating an upward-moving horizontal line as part of the boundary
separating P+ and P−. (b) When the input monotonically decreas-
es, hysterons whose β−thresholds are greater than the current
input are switched to −1, creating a vertical segment moving to the
left as part of the boundary between P+ and P−. (c) An arbitrary,
piecewise-monotone input creates a memory curve that has a stair-
case structure. The corners of the memory curve remember the
dominant maximal and minimal values of the input in the past,
while the intersection of the memory curve with the line α = β gives
the current input value.
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T he state of the Preisach operator at each instant of time

is given by a curve in the Preisach plane. Each curve

encodes the set of past local maxima and minima of the

input ,  wi th  ear l ier  smal ler  loca l  maxima (or  min ima)

replaced by later larger ones [4], [17]. This peculiar depen-

dence of the current output on the past input is called non-

local memory in [17]. Further insight into the memory

structure can be gained by making a coordinate change. By

denoting r = (α − β)/2 and s = (α + β)/2, the memory curve

can be described as a function s = φ(r ). A staircase memory

curve in (β, α) coordinates translates to a curve with seg-

ments of slope ±1 in (r, s) coordinates. Therefore, the set

M0 of Preisach memory curves is defined as follows [4]. Let

Rsupp(φ) denote the largest value of r such that φ(r ) �= 0, and

define the set 

M0
�= {φ | φ : R+ → R,|φ(r ) − φ(r̄ )| ≤ |r − r̄ |,

for all r, r̄ ≥ 0, Rsupp(φ) < +∞}.

It can be shown that, for a piecewise-monotone function

v(t), t ∈ [0, T ], and an initial memory curve in M0, the memory

curve φv(t) at each time t ∈ [0, T ] also belongs in M0 [4]. The

proof of this fact uses an interesting relation between the play

operator and Preisach operator. If we denote the memory curve

by s = φ(r, t), which indicates the dependence of s on both r and

the time t , then it turns out that, for each r , the dependence of s

on t is given by the play operator.
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closure, and congruence [17]. Equation (9) is also used to
prove the characterization theorem for Preisach opera-
tors, which states that for every hysteresis operator with
these properties, there exists a Preisach operator with the
same input-output map as that of the hysteresis operator
[4], [17]. In other words, these properties are necessary
and sufficient for a hysteresis operator to be represented
by a Preisach operator.

Rate Independence
Equation (9) shows that the output at each instant
depends on the regions P+ and P− . These regions are
completely determined by the Preisach memory curve
that separates them. It can be seen from Figure 6 and
shown analytically [4] that the memory curve is uniquely
defined by the sequence of local maxima and minima of
the input signal on the interval [0, t] and the initial mem-
ory curve φ0 . Since the output depends
only on the levels of the past input, the
Preisach operator possesses the rate inde-
pendence property.

Minor Loop Closure
If the input is increased from a value v1 to
v2 > v1 over a time interval [t1, t2] and then
subsequently decreased back to v1 over the
time interval [t2, t3] , the output satisfies
u(t3) = u(t1) because the memory curves at t1
and t3 are identical.

Congruence
Suppose that two different memory curves
ψ1 and ψ2 intersect the line α = β at a com-
mon point, corresponding to the current
input v1, as illustrated in Figure 7(a). For
either ψ1 or ψ2 , first increase the input v
monotonically from v1 to v2, then decrease v
monotonically back to v1 , and finally
increase it monotonically to v2 again. For
both cases, the region in the Preisach plane
that is affected when v is decreased from v2
to v1 is the same triangle shown in the shad-
ed area in Figure 7(b). Consequently, the
corresponding change in the output is iden-
tical in both cases. A similar argument
shows that, when the input v is increased
back from v1 to v2, the change in output is
again identical in both cases. Figure 7(c)
illustrates these properties in the input-out-
put graph, where i-a, i-b, i-c represent the
input-output graph corresponding to the
three phases of monotonic input change,
starting with the memory curve i, where
i = 1, 2. The segments 1-b and 1-c can be
viewed as vertical translations of 2-b and 2-c,

respectively, which is the congruence property. Figure 7(c)
also illustrates the minor-loop closure property, where seg-
ments 1-b and 1-c, or 2-b and 2-c, form a closed loop.

Preisach-Like Operators
By hysteron, we mean a basic building element for a hys-
teresis operator. The relay is also known as the Preisach
hysteron. Taking variants of the Preisach hysteron as build-
ing blocks, we can obtain Preisach-like operators using
weighted superposition of these new hysterons. For exam-
ple, using the play operator, shown in Figure 4(b), or the
stop operator, shown in Figure 8(a), as hysterons, we
obtain the PI operators of play or stop type, respectively.
Note that both play and stop operators are parameterized
by a single variable r. Another example is the Preisach-
Krasnosel’skii-Pokrovskii (PKP) operator, which is built on
PKP hysterons. As illustrated in Figure 8(b), a PKP hysteron

FIGURE 7  Illustration of the congruence property of the Preisach operator. In (a), two
memory curves ψ1 and ψ2 intersect the diagonal line α = β at a common point, corre-
sponding to the input value v1. In (b), new memory curves are created after the input is
increased from v1 to v2 and then decreased from v2 to v1. The changes in the operator
output, corresponding to ψ1 and ψ2, respectively, are identical when v is decreased
from v2 to v1 since the region affected by the input change is the same shaded, triangu-
lar area in (b). In (c), congruency is viewed in the input-output graph. Segments 1-a, 1-
b, and 1-c represent the input-output responses during the three phases of input
change, starting with the memory curve ψ1, while, similarly, 2-a, 2-b, and 2-c represent
the input-output responses starting with the memory curve ψ2. Segments 1-b and 1-c
can be viewed as vertical translations of 2-b and 2-c, respectively, explaining the term
congruence. The minor loop closure property is also illustrated in (c).
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can be thought of as a continuous version of the Preisach
hysteron and is parameterized by (β, α). The parameter a,
which is usually fixed for all hysterons in a PKP operator,
modulates the slope of the ridges of the hysteron. The
characteristic of a PKP hysteron is the same as that of a
play operator, when it is unsaturated, namely, when its
output is within the interval (−1, 1).

Interestingly, the memory structure of the PKP operator
when studied using the method in [17] turns out to be sim-
ilar to that of the Preisach operator, and, in particular, the
PKP operator satisfies rate independence, minor loop clo-
sure, and congruence. The latter fact implies that there is
an equivalent Preisach operator with the same input-
output characteristic as the PKP operator. The use of such
an operator to model shape memory alloy actuators can be
found in [12].

INVERSION OF PREISACH OPERATORS
Models of the type depicted in Figure 5 are useful for mod-
eling the input-output characteristic of smart material actu-
ators such as piezoelectrics, magnetostrictives, and shape
memory alloys. The hysteresis operator shown in Figure 5
could be a Preisach operator [8], [11], [13], [14], or not [18],
[19]. In this article, we consider the case in which the hys-
teresis operator is a Preisach operator 
. Experiments show
that feedback control without explicitly accommodating
hysteresis performs poorly in tracking applications [11].
Hence, inclusion of hysteresis in the model is needed while
designing controllers for systems with hysteresis.

A generic approach to controlling hysteretic systems is
to combine inverse compensation with feedback [19], as
illustrated in Figure 9. First, an approximate right inverse
for the known hysteresis nonlinearity is constructed to
cancel the hysteresis effect, and then a feedback controller
C(s) is designed to handle the linear system G(s) and the
inversion error.

Inversion is studied for various hysteresis operators in
[11] and [19]–[21]. We focus on the problem of construct-
ing the right inverse for the Preisach operator. Given a
desired output function ud(t), t ∈ [0, T], and an initial
memory curve ψ0 for a Preisach operator 
, the inverse
operator 
̂−1, shown in Figure 10, generates v(t) as the
input to 
 , such that u(t) = 
[v, ψ0](t) ≈ ud(t) . In the

FIGURE 8  Variants of Preisach hysterons for the construction of
Preisach-like operators. The stop operator in (a) is the dual of the
play operator shown in Figure 4(b). Like the play operator, the stop
operator is parameterized by a single variable r . Weighted superpo-
sition of play or stop operators leads to the Prandtl-Ishlinskii (PI)
operators of play or stop type, respectively. (b) The Preisach-Kras-
nosel’skii-Pokrovskii (PKP) hysteron. A PKP hysteron, which is
parameterized by a pair of variables (β, α), represents a continuous
version of the relay. The weighted superposition of PKP hysterons
leads to the PKP operator.
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FIGURE 9  A generic approach to controlling a system with hysteresis.
First, an inverse operator is constructed to approximately cancel the
hysteresis nonlinearity. The feedback controller C(s) is then
designed to handle the linear dynamics G(s) and the inversion error.
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FIGURE 10  Illustration of hysteresis inversion. Here ud represents
the desired output for the Preisach operator 
. The (approximate)
inverse operator 
̂−1 takes ud as its input and outputs a signal v,
such that the output of 
 under the input signal v is close to ud. The
evaluation of v depends on knowledge of the initial state (the mem-
ory curve at t = 0) of 
. In practice, the memory curve at t = 0 is
initialized as follows. Suppose that [vmin, vmax] is the preselected
range of values for the input. Before the start of the algorithm, either
the input vmin or the input vmax is applied, which then sets the mem-
ory curve to be either β = vmin or α = vmax, respectively.
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controller scheme, the signal ud(t) is generated by the con-
troller C(s) as illustrated in Figure 9.

Existence and continuity of the inverse of a Preisach
operator are studied in [4], [5] and [20]. From an engineer-
ing perspective, continuity of the inverse operator is desir-
able since a small change in the function ud leads to a small
change in the function v. The notion of small change is
quantified by describing norms on the sets in which ud and
v belong. It is shown in [4] and [5] that, if the Preisach densi-
ty function is greater than zero on a thin strip along the line
α = β , then the Preisach operator 
 : CI[0, T] → CJ[0, T] is
invertible with a continuous inverse. Here, I and J are inter-
vals where the input and the output of 
 take values,
respectively. The sets CI[0, T] and CJ[0, T] denote the spaces
of continuous functions taking values in intervals I and J,
respectively. The amplitudes of the input and the output are
restricted based on practical considerations in smart materi-
al actuators and other physical systems that demonstrate
hysteresis. The condition on the Preisach density function
for the inverse to exist implies that parameter-free identifi-
cation methods are preferred over methods that assume a
particular form for the Preisach density. For details on iden-
tification methodologies, see “Identification of the Preisach
Density Function.’’

For a Preisach operator with nonzero density on an arbi-
trarily thin strip along the line α = β , it can be shown that

the operator is a one-to-one mapping from the space of
Hölder continuous functions C0,λ[0, T] into C0,η[0, T], where
λ < η (see [20, thm 2.1, 2.2] and [22, p. 54]). Since C0,η[0, T] is
a proper subset of C0,λ[0, T] and consists of functions that
are more regular than C0,λ[0, T], the inverse Preisach opera-
tor cannot possess the same smoothing property. Hence, the
inverse of a Preisach operator is not itself a Preisach opera-
tor, and we have to solve (8) numerically to compute the
input signal v when given the desired output signal u.

One approach to computing the inverse is a table-lookup
procedure [17]. A computation procedure based on lin-
earization is given in [8], while algorithms exploiting the
piecewise monotonicity of Preisach operators, that is, increas-
ing input leading to increasing output and vice versa, are
reported in [12] and [23]–[25]. These algorithms can be clas-
sified into two groups, namely, fixed-point iteration meth-
ods [23], [26], and bisection type methods [12], [25]. A
fixed-point iterative inversion algorithm is discussed below.

Fixed-Point Iterative Inversion Algorithm
This algorithm for solving (8) consists of two steps. First,
the given continuous function ud ∈ CJ[0, T] is approximat-
ed by a piecewise-monotone function u′

d with a standard
partition 0 = T0 < T1 < · · · < TN = T for some N , such
that u′

d is monotone on each subinterval [Ti, Ti+1] ,
i = 0, . . . , N − 1. Second, the equation

In the inversion-based controller design paradigm for systems

with hysteresis, two sources of error exist. The first source is

the theoretical fact that the inverse Preisach operator does not

have an analytical form in general, but algorithms for approximate

inversion can be developed using the knowledge of the Preisach

density function [20]. The implication is that, generically, ud(t) is

not equal to u(t) in Figure 10, even if the Preisach density func-

tion is accurately known. The second source of error is uncertain-

ty in the Preisach density function.

Identification of the Preisach density function can be accom-

plished using methods that are either nonparametric or paramet-

ric. In nonparametric methods, the Preisach plane is discretized,

and the Preisach density function is approximated by a piece-

wise-constant function on the grid. In parametric methods, a form

for the density function, such as factorized Lorentzian, Gauss-

Gauss, or lognormal-Gauss, is assumed, and the unknown para-

meters in the density function are estimated. It is shown in [20]

that a nonzero value for the density on an arbitrarily thin strip

along the line α = β in the Preisach plane implies the existence of

a continuous inverse operator. The density functions assumed in

parametric methods are nonzero along the line α = β , and thus

the question of existence of a continuous inverse is preemptively

decided in favor of existence. In addition, although parametric

methods typically involve fewer parameters than nonparametric

methods, they seem to produce worse matches with experimental

data than nonparametric ones [36].

Two nonparametric methods are available for estimating the

Preisach density, namely, first-order reversals [17] and constrained

linear least squares [27]. The accuracy of the identified model in

reproducing the input-output graph of a given system with hystere-

sis can be improved by choosing a finer grid on the Preisach

plane. The number of unknown parameters is N(N + 1)/2, where

N is the number of levels for the input signal [27]. The method of

first-order reversals requires at least N(N + 1)/2 data points using

a carefully chosen input signal to estimate the density function [17].

Because of this requirement, the method becomes computationally

expensive, and careful experimentation is required for large values

of N. The constrained linear least squares method identifies a den-

sity function that minimizes

J =1
2

∫ T

0

⎛
⎜⎝u(t) −

∫∫
α≥β

μ(β, α)Rβ,α [v , φ0(β, α)](t)

⎞
⎟⎠

2

dβdα,

(S1.1)

subject to the condition μ(β, α) ≥ 0 with the output signal u(t), input

signal v(t), and initial memory φ0 given. Subspace identification

methods [27] can be used to produce estimates of the density func-

tion with fewer data points than the number of unknown parameters.

Identification of the Preisach Density Function
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u′
d(t) = 
[v, φ0](t), t ∈ [0, T], (10)

is solved for v, where φ0 is a known memory curve. In prac-
tice, the memory curve at t = 0 is initialized as follows. Sup-
pose that [vmin, vmax] is the preselected range of values for
the input. Before the start of the inversion algorithm, either
input vmin or vmax is applied, which then sets the memory
curve to be either β = vmin or α = vmax, respectively. Note
that, for systems represented in Figure 5, the initialization
step is feasible since the hysteresis operator precedes the
dynamics and its input is directly accessible. For other config-
urations, such as a hysteresis operator following the dynam-
ics, the initialization step as described earlier may not work.

The inversion problem reduces to inverting monotone
functions when we restrict attention to each subinterval
[Ti, Ti+1]. We assume for simplicity that ud ∈ CJ[0, T] is
monotone in the following discussion. The proof of con-
vergence for the algorithm relies on the piecewise monoto-
nicity and Lipschitz continuity properties defined below.

Definition 1
A Preisach operator 
 is  piecewise monotone if, for all
monotone functions v ∈ C([0, T]), where T > 0, and for all
initial memory curves ψ0

(
[v, ψ0](T) − 
[v, ψ0](0))(v(T) − v(0)) ≥ 0. (11)

Definition 2
A Preisach operator 
 is Lipschitz continuous if, for all
v1, v2 ∈ C([0, T]), where T > 0, and for all initial memory
curves ψ0, there exists CL > 0 such that

‖
[v1(·), ψ0] − 
[v2(·), ψ0]‖∞ ≤ CL|v1 − v2‖∞, (12)

where ‖v‖∞ = max
t∈[0,T]

v(t) for v ∈ C[0, T].

It is shown in [4] that if μ is nonnegative then 
 is
piecewise monotone, and if, in addition, μ is bounded on
bounded subsets of the Preisach plane, then 
 is Lipschitz
continuous as a mapping from CI[0, T] to CJ[0, T]. For a
monotone function ud ∈ CJ[0, T] and an initial memory
curve ψ0, an approximate inverse function v ∈ CI[0, T] can
be found by the iteration

v[0] ≡ v0, (13)

v[k+1] = v[k] + ud − 
[v[k], ψ0]
CL

, k ∈ N, (14)

where the input value v0 corresponds to the intersection of
ψ0 with the diagonal line on the Preisach plane. An induc-
tion argument shows that, for every k, v[k] is continuous
and monotone [20]. Furthermore, it can be proved that

[v[k], ψ0] → ud uniformly on [0, T] as k → ∞ [20]. In other
words, for every tolerance ε > 0, there exists a constant
Nε > 0 such that, for all k ≥ Nε ,

∥∥∥
[v[k], ψ0] − ud

∥∥∥∞
≤ ε.

If the Preisach operator maps CI[0, T] to CJ[0, T] with
I = [vmin, vmax], then Nε can be taken to be the smallest
integer greater than CL(vmax − vmin)/ε as shown in [20].

Closest Match Algorithm for Preisach
Operator  with Piecewise Constant Density
For a piecewise-constant density function μ on the Preisach
plane, the closest match algorithm, which uses the piece-
wise monotonicity property of the Preisach operator, is
described in [24]. The name denotes the fact that the inver-
sion of the Preisach operator depends on the estimated
density function, which is a piecewise-constant approxima-
tion of the actual density function [27]. The closest match
algorithm presented below is a modified version of the
algorithm in [20] and [24]. We discretize the Preisach plane
into a grid of square and triangular cells, with the triangu-
lar cells located along the diagonal; see Figure 11. The inter-
val I on which the input takes its values is divided
uniformly into L segments, where L is called the discretiza-
tion level. Although the segments define a partition of the
interval I, the input is not restricted to taking values only
on the nodes of the partition. The density μ is assumed to
be constant within each cell but can vary from cell to cell.
The time interval [0, T] is also discretized by a partition of
the form 0 = T0 < T1 < · · · < TN = T. The inversion prob-
lem is then reformulated as follows. Given the memory
curve ψ(n) at time Tn, find v(n + 1) such that the hysteresis
output is equal (or close) to the desired value ud(n + 1) for
the next time instant, that is, ud(n + 1) = 
[v, ψ(n)](n + 1).

We assume that the Preisach operator is piecewise
monotone. Let the input and the output of the Preisach
operator corresponding to ψ(n) be v(n) and u(n), respec-
tively, and suppose that ud(n + 1) > u(n) . The case
ud(n + 1) < u(n) can be treated analogously. The basic idea

FIGURE 11  Illustration of the discretization grid on the Preisach plane
and the parameters d (k)

1 and d (k)

2 involved in the inversion algorithm.
The discretization level chosen here is L = 8. The distance d1 repre-
sents the gap between the next input level on the discretization grid
and the input value at the current iteration k, while d2 represents the
change of input required to erase the next corner of the memory
curve. For an input change less than d1 and d2, the change in out-
put is related to the change in input by a quadratic function.

d1
(k)

d2
(k)
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behind the algorithm is that, when the change �v of the
input is sufficiently small, the change �u of the output is
related to �v through the quadratic function

�u = a2�
2
v + a1�v, (15)

where the coefficients a1 and a2 depend on the current mem-
ory curve. In this algorithm, the input is changed iteratively
with each change being the smallest among three possibilities
d0, d1, d2. Here d1 is the difference between the input value
in the current iteration and the next node with a greater value
in the input partition, d2 is the smallest value of �v that elimi-
nates a corner of the memory curve, and d0 is the solution �v

to (15) with �u given by the difference between ud(n + 1)

and the output value in the current iteration. The closest
match algorithm from [11], [28] is described next.

» Step 1) v(0) = v0, u(0) = u0, ψ(0) = ψ(n), k = 0;
» Step 2)

d(k) = min
{

d(k)
0 , d(k)

1 , d(k)
2

}
, (16)

v(k+1) = v(k) + d(k), (17)

u(k+1) = 
[v(k+1), ψ(k)], (18)

where ψ(k) is the memory curve after {v(i)}k
i=1 is

applied, and d(k)
0 , d(k)

1 , d(k)
2 are determined in the fol-

lowing way (see Figure 11 for illustration):
• Let d(k)

1 > 0 be such that v(k) + d(k)
1 equals the next

discrete input level.
• Let d(k)

2 > 0 be the minimum value such that apply-
ing v(k) + d(k)

2 eliminates the next corner of ψ(k).
• Compute a(k)

1 , a(k)
2 ≥ 0 satisfying, for 0 < d <

min{d(k)
1 , d(k)

2 },


[v(k) + d, ψ(k)] − 
[v(k), ψ(k)] = a(k)
2 d2 + a(k)

1 d,

and let d(k)
0 > 0 be the solution to

ud(n + 1) − 
[v(k), ψ(k)] = a(k)
2

(
d(k)

0

)2 + a(k)
1 d(k)

0 .

If d(k) = d(k)
0 , go to Step 3; otherwise let k := k + 1 and

go to Step 2.
» Step 3) v(n + 1) = v(k+1) and stop.

Although the closest match algorithm is limited to piece-
wise-constant density functions, it is not as restrictive as it
might seem at first glance. In particular, we can approximate
an arbitrary square-integrable density function μ with a piece-
wise-constant density function in the L2 norm as shown in [27].

ADAPTIVE INVERSE CONTROL
Open-loop inverse control requires precise knowledge of
the hysteretic operator. When such knowledge is not avail-
able, feedback from the hysteresis output can be used to
estimate the hysteresis parameters and ultimately reduce
the inversion error. This adaptive inverse control approach is
illustrated in Figure 12.

To explain the approach in more detail, we consider a
Preisach operator 
 with a density function μ that is piece-
wise constant on a discretization lattice of level L. Figure 13
illustrates such a lattice for L = 4. Each cell in the lattice is
numbered with the index going from 1 to K = L(L + 1)/2.
Denote by θH,i the density value of the cell i. Given a
memory curve ψ(n) at time instant n, each lattice cell i is
separated into a region C+(n), where the corresponding
hysterons have output +1, and a region C−(n), where the
corresponding hysterons have output −1. Define the signed
area of cell i at time n by wH,i , which is defined by

wH,i(n) = area of C+(n) − area of C−(n).

Suppose that the side of each cell has length of 1 in Figure
13. Given a memory curve as shown in Figure 13, the
signed area of a shaded square cell is 1, that of a shaded
triangular cell on the diagonal is 0.5, that of a clear square
cell is −1, and that of a square cell with both shaded and

FIGURE 12  Schematic of adaptive inverse control. The inversion
error e0 = ud − u is used to update the hysteresis parameters
online. It is assumed here that the output u of the hysteresis opera-
tor is available.
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FIGURE 13  Illustration of the signed area of each lattice cell for a
given memory curve. The signed area of a cell equals the area
occupied by hysterons with output +1 minus the area occupied by
hysterons with output −1. The signed areas of all cells are the com-
ponents of the regressor vector for adapting hysteresis parameters.
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clear regions takes value in (−1, 1). The output u(n) can be
expressed as a linear combination of the unknown density
values given by

u(n) =
K∑

i=1

θH,i wH,i(n) = θ T
H

wH(n), (19)

where θH = (θH,1 , . . . , θH,K )T and wH = (wH,1 , . . . , wH,K )T .
If the true values of θH are unknown, the inversion

process has to be performed based on a parameter estimate
θ̂H . Equivalently, an operator 
̂ with parameter θ̂H is
inverted, with its output

û(n + 1) = 
̂[v, ψ(n)](n + 1) = θ̂ T
H

wH(n + 1).

For the closest match inversion algorithm presented earli-
er, û(n + 1) = ud(n + 1) if |ud(n + 1)| ≤ ûsat(n). Here ûsat(n)

represents the saturation output value of 
̂ with parameter
θ̂H(n). Since 
 and 
̂ have the common input v(·), they
share wH(·), and hence the prediction error is

e(n + 1) = û(n + 1) − u(n + 1) = θ̃ T
H
(n)wH(n + 1), (20)

where θ̃H � θ̂H − θH .
The parameter θ̂ is updated using the gradient algorithm

θ̂H(n + 1) = θ̂H(n) − γ
e(n + 1)wH(n + 1)

wT
H(n + 1)wH(n + 1)

, (21)

where the adaptation constant γ ∈ (0, 2). If the true para-
meter θH is known to lie in a bounded set, a projection step
can be used to ensure that the parameter estimate θ̂H also
lies within this set.

The adaptive inverse control algorithm illustrated in
Figure 12 is given by the following steps:

» Step 1) If ud(n + 1) > ûsat(n) , v(n + 1) = vmax ; if
ud(n + 1) < −ûsat(n), v(n + 1) = vmin.

» Step 2) If −ûsat(n) ≤ ud(n + 1) ≤ ûsat(n) , perform
the closest match inversion algorithm to find
v(n + 1) = 
̂−1[ud(n + 1), ψ(n)].

» Step 3) Update the hysteresis parameter to θ̂H(n + 1)

using (21).
» Step 4) Let n := n + 1, and go back to Step 1.

It can be shown that the parameter estimate converges
to some constant vector and the tracking error converges
to zero for the adaptive inverse control algorithm [11].
Denoting δ(n) = θ̃ T

H
(n)θ̃H(n), we obtain from (20) and (21)

that

δ(n + 1) = δ(n) −
(

1 − (γ − 1)2
) e2(n + 1)

wT
H(n + 1)wH(n + 1)

≤ δ(n), (22)

since (γ − 1)2 < 1 for 0 < γ < 2. Since δ(n) ≥ 0, (22)
implies that δ(n) → δ∞ as n → ∞, for some constant δ∞.

Consequently, θ̂H(n) → θ̂∞ , for some constant vector θ̂∞ .
Furthermore, summing (22) over n leads to

∞∑
n=0

e2(n + 1)

wT
H(n + 1)wH(n + 1)

= 1
1 − (γ − 1)2 (δ(0) − δ∞)

< ∞. (23)

Since 0 < wT
H
(n + 1)wH(n + 1) < C for some constant C > 0,

(23) implies e(n) → 0 as n → ∞.
The tracking error e0(n + 1) = ud(n + 1) − u(n + 1) is dif-

ferent from the prediction error e(n + 1) = û(n + 1)− u(n + 1).
From the adaptation algorithm, the inversion at time n + 1 is
exact with û(n + 1) = ud(n + 1) if |ud(n + 1)| < ûsat(n). If the
latter condition fails, we can show |e0(n + 1)| ≤ |e(n + 1)| .
Indeed, suppose usat ≥ ud(n + 1) > ûsat(n) . The inversion
algorithm produces v(n + 1) = vmax, resulting in un+1 = usat

and ûn+1 = ûsat(n). Therefore, from e(n) → 0, it follows that
the tracking error e0(n) → 0 as n → ∞.

Persistent Excitation Conditions
The conditions under which the limiting parameter esti-
mate θ̂∞ equals the true parameter θH , in the adaptive
inverse control of a Preisach operator, is of interest. The
parameter convergence requires persistent excitation con-
ditions on the regressor vector wH(·), which can be further
translated into conditions on the reference trajectory [29].
In contrast to persistent excitation conditions in the identi-
fication of linear systems, which are centered around the
number of frequency components of the input signal [30],
the conditions here involve the reversal behavior of the
input [29].

Adaptive Inverse Control When Hysteresis 
Output Is Not Available
The adaptive inverse control algorithm in Figure 12
assumes the availability of the hysteresis output for feed-
back. In applications, the hysteresis module is coupled
with other dynamics of a system, and its output cannot be
measured. The scenario depicted in Figure 9 is typical,
where the feedback signal is the output of the dynamics
module. The algorithm discussed above can be extended to
accommodate the latter requirement. Adaptive inverse
control of a linear system preceded by a hysteresis opera-
tor, described by piecewise-linear characteristics, is stud-
ied in [19], where unknown parameters are present in both
linear dynamics and hysteresis. Overparameterization is
used to handle the bilinearly coupled parameters in hys-
teresis and dynamics in [19]. For systems involving
Preisach operators, however, overparameterization is pro-
hibitive because the number of parameters that are needed
to characterize a Preisach operator is large, typically at the
order of 102 . To address the latter issue, an approach
involving slow adaptation is explored in [31], where time-
scale separation is exploited for adaptation of hysteresis
parameters and that of dynamics parameters.
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RESULTS FROM EXPERIMENTS ON
A MAGNETOSTRICTIVE ACTUATOR
The adaptive inverse control algorithm is tested on a mag-
netostrictive (Terfenol-D) actuator. Magnetostriction is the
phenomenon of strong coupling between magnetic and
mechanical properties in some ferromagnetic materials. An
internal strain is developed in response to an applied mag-
netic field, and, conversely, an external mechanical force
produces a change in magnetization distribution within
the material. This phenomenon is used in both actuation
and sensing applications. Figure 14(a) shows a schematic
of a Terfenol-D actuator manufactured by Etrema Prod-
ucts, Inc., while Figure 14(b) shows the actuator used in
the experiments. The magnetic field generated by the coil
current controls the strain in the Terfenol-D rod, which
translates into a displacement output of the actuator.

Figure 15 shows the actuation behavior of the actuator
under various operating frequencies. The ferromagnetic
hysteresis, coupled with the mechanical dynamics of the
actuator and the dynamics of eddy current losses, results
in rate-dependent loops between the displacement output
and the current input [11], [18]. When operated in a low-
frequency range (typically below 5 Hz), the displacement y
can be related to the bulk magnetization M by a square law
y = a1M2 for some constant a1 > 0, and the current input I
can be related to the magnetic field H along the rod direc-
tion by H = c0I, where c0 is the coil factor. Then the mag-
netostrictive hysteresis between y and I is fully captured
by the ferromagnetic hysteresis between M and H, which
is modeled by the Preisach operator.

Figure 16 shows the results of tracking experiments for
a 1-Hz sinusoidal reference signal using the adaptive
inverse control method with γ = 0.5 and 0.2, respectively.
In the experiments, a discretization level L = 10 is adopted
for the Preisach density function. The current input
applied to the magnetostrictive actuator is also displayed
in addition to the reference trajectory, the achieved trajec-
tory, and the tracking error. It can be seen that when γ is
0.2, the trajectory converges to the steady state slower but
with smaller tracking error due to lower sensitivity to the
noise. Figure 17(a) shows the current input at steady state
versus the desired trajectory, which is the graph of the
inverse hysteresis operator 
̂−1. Figure 17(b) shows the
achieved trajectory versus the current input at steady state.
Figure 17(c) shows the net effect of combining inverse
compensation with the system with hysteresis, by plotting
the achieved displacement versus the desired one at steady
state (after 10 s). The largest error, which is in the region
[55, 60] μm, is about ±0.5 μm.

FIGURE 14  Terfenol-D actuator manufactured by Etrema Products,
Inc. (a) Sectional view of the actuator design. The magnetic field
generated by the coil current controls the strain in the Terfenol-D
rod, which translates into a displacement output of the actuator. (b)
Photo of the Terfenol-D actuator used in experiments. The tip dis-
placement of the actuator is measured by a linear variable differen-
tial transformer (LVDT) sensor.
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FIGURE 15  Behavior of a Terfenol-D actuator under various operat-
ing frequencies. Ferromagnetic hysteresis coupled with the
mechanical dynamics of the actuator and the dynamics of eddy cur-
rent losses results in frequency-dependent loops when the displace-
ment output is plotted against the current input.
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A PARALLEL PARADIGM FOR
INVERTING PREISACH OPERATORS
Despite the capability of Preisach operators in modeling
sophisticated hysteretic behaviors in physical systems,
the complexity of their inverses presents a bottleneck in
high-speed applications, such as control of piezoelectric
actuator-based ultrafast nanopositioning for atomic force
microscopy imaging. In particular, the efficient computa-
tion of the inverse of a Preisach operator using a general-

purpose digital signal processor (DSP), which has to
process a large number of hysterons sequentially, is chal-
lenging. To address this challenge, a parallel paradigm
for the inversion of Preisach-like operators is presented in
[32], which exploits the massive parallelism offered by
field-programmable gate arrays (FPGAs).

An FPGA is a silicon device containing high-density pro-
grammable logic components and interconnects, which can
be reconfigured by the end user (hence the term “field

FIGURE 17  (a) Current input versus desired displacement at the steady state, (b) achieved displacement versus current input, and (c)
achieved displacement versus desired displacement over the full operational range of the actuator after 10 s of adaptation (Reproduced
from [29]). This figure illustrates the characteristics of the inverse compensator, shown in (a), those of the hysteretic plant, shown in (b), and
the net effect of combining the inverse compensator and the hysteretic plant, shown in (c). The 45◦ line in (c) indicates that the hysteretic
effect is cancelled.
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FIGURE 16  Experimental results for tracking a sinusoidal reference trajectory using adaptive inverse compensation. (a) Adaptation con-
stant γ = 0.5 and (b) adaptation constant γ = 0.2. In both cases, the tracking error decreases after a few seconds of adaptation. With
γ = 0.2, the convergence is slower than with γ = 0.5, but the steady-state error is also smaller. (Reproduced from [29].)
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programmable’’) to perform fast
application-specific processing
[33]. The speed and processing
power of FPGAs are comparable to
those of application-specific inte-
grated circuit (ASIC) chips, but
they offer several advantages over
ASICs, for example, instant manu-
facturing turnaround, low startup
costs, and ease of design changes.
The parallel paradigm of FPGAs is
especially suitable for computing
the inverses of Preisach-like opera-
tors. We know that the inversion
process typically involves evaluat-
ing the output of a Preisach-like
operator, and the operator is paral-
lel in nature since all hysterons
receive the same input. In addition,
the characteristics of a hysteron can
often be best described using logic elements, leading to con-
venient implementation of hysterons on FPGAs.

A Unified Inversion Framework 
for Preisach-Like Operators
Suppose that a Preisach-like operator is piecewise monoto-
ne and Lipschitz continuous with Lipschitz constant CL ,
where piecewise monotonicity and Lipschitz continuity
are defined analogously as in definitions 1 and 2. We
adopt a fixed-point iteration-type algorithm of the form
(13) and (14), that is,

v[0](n + 1) = v(n), (24)

v[k+1](n + 1) = v[k](n + 1)

+ ud(n + 1) − 
[v[k](n + 1), ζ(n)]
CL

, (25)

where ζ(n) denotes the configurations of hysterons at time
n. It is shown in [32] that, if |ud(n + 1)| ≤ usat , then
v[k](n + 1) produced by the algorithm (24) and (25) satisfies
limk→∞ v[k](n + 1) = v∗(n + 1) , with 
[v∗(n + 1), ζ(n)] =
ud(n + 1). Furthermore, given any ε > 0, we can find an
integer Nε , such that |
[v[k](n + 1), ζ(n)] − ud(n + 1)| ≤ ε ,
for k ≥ Nε .

Note that the piecewise-monotonicity and Lipschitz-con-
tinuity conditions are satisfied under mild requirements on
the weighting function for various Preisach-like operators,
but a classical Preisach operator with a finite number of hys-
terons is not continuous and thus not Lipschitz continuous.

FPGA Implementation of the Inversion Algorithm
Figure 18 shows the implementation of the hysteresis inver-
sion algorithm (25) on an FPGA for the PKP operator. Note
that although the evaluations of all hysterons can be per-
formed in parallel, the summation on weighted hysteron

outputs is a bottleneck. To minimize the computation time,
an adder tree is implemented for the summation. For exam-
ple, suppose that the number of hysterons m = 8. The first
level of the adder tree has four adders, each adding the con-
tributions from a pair of hysterons. The second level has
two adders, each adding the results of a pair of adders from
the previous level. The third and last level has just one
adder, adding the results of the adders from the second
level. Therefore, three clock cycles are needed to complete
the summation operation. In general, the adder tree for m
hysterons takes log2 m clock cycles. Since the summation is
the speed-limiting factor in the FPGA-based hysteresis
inversion, the computational time scales as O(log2 m) with
respect to the number of hysterons m. This complexity is in
contrast to the O(m) time-complexity required by a general-
purpose DSP. The inversion process in FPGA can be further
sped up by pipelining the summation process.

As an example, the inversion algorithm (25) is imple-
mented on a Xilinx Virtex-II Pro FPGA. The implementation
uses only logic resources and deliberately avoids using the
two on-chip PowerPC cores and RAM resources, which
might not be available for low-end FPGAs. The implemen-
tation for inverting a PKP operator with 21 hysterons takes
about 30% of the logic resources on the Virtex-II Pro. The
device usage can be further reduced through optimization
of resource allocation. Each iteration (25) in the inversion
takes 11 clock cycles to complete, which implies close to
5 × 106 iterations per second when a 50-MHz clock is used.

Experiments are conducted to verify the FPGA-based
inversion algorithm. A collection of weights is assigned to
the 21 PKP hysterons. The values of the weights are shown
in Figure 19. An example of the hysteresis loop for this
PKP operator is shown in Figure 20. The range of the input
and the output of the FPGA is set to be [−10, 10] V through
A/D and D/A interfaces.

FIGURE 18  Schematic for implementing the iterative hysteresis inversion algorithm using a field-
programmable gate array. Here n is the index of time instants, and k is the index of iteration for
each time instant. Taking ud(n + 1) as the input and v(n + 1) as the output, the system within the
shaded region realizes the inverse compensator. When the inversion error is smaller than the
given tolerance ε, the value v[k+1](n + 1) is taken as the inversion output.
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A reference trajectory ud(·), generated from a dSpace
DS1104 controller board, is sent to the FPGA hysteresis com-
pensator. The inversion output v(·) is then converted to an ana-
log signal and acquired by the dSpace board. The achieved
output u(·) of the PKP operator is evaluated in Matlab based on
the input v(·) and compared to the reference ud(·). Figure 21(a)
compares ud and u when ud is a sinusoidal signal with frequen-
cy 1000 Hz, while Figure 21(b) shows the result when ud is a
combination of 300 and 50-Hz signals. In both experiments, the
tracking performance is satisfactory, where the tracking error is
consistent with the set tolerance ε = 0.1 in the inversion.

These results show that the inversion of a Preisach oper-
ator can be implemented to track reference signals in the

kilohertz range, which makes the inversion-based hystere-
sis control feasible for highly dynamic applications. Parallel
adaptation of hysteresis parameters can be further imple-
mented to realize embedded adaptive inverse control.

CONCLUSIONS
Inverse compensation is a fundamental technique in the
control of systems with hysteresis. In this expository article,
we present algorithms for constructing the inverse of the
Preisach operator, a hysteresis model with application to
magnetics, smart materials, terrestrial hydrology [34], and
economics [35]. Adaptive inverse control is discussed for
cases where hysteresis parameters are not known precisely.
To meet the demand of highly dynamic applications, an
embedded inversion approach is presented that exploits
the parallelism offered by FPGAs.

FIGURE 21  Embedded inversion-based tracking performance. (a) Results for a 1-kHz reference signal and (b) results for a reference signal
consisting of 300- and 50-Hz components. In these experiments the inverse compensator is realized in a field-programmable gate array
(FPGA), while the forward hysteresis operator is simulated by dSpace. In both (a) and (b), the tracking error is smaller than the set tolerance
0.1 V, which shows the potential of the FPGA-based inverse compensator in highly dynamic applications.

7.178 7.1785 7.179 7.1795 7.18

−5

0

5

10

T
ra

je
ct

or
y 

(V
)

7.178 7.1785 7.179 7.1795 7.18
−0.5

0

0.5

Time (s)

E
rr

or
 (

V
)

Achieved
Reference

(a)

13.35 13.36 13.37 13.38 13.39 13.4

−5

0

5

10

T
ra

je
ct

or
y 

(V
)

13.35 13.36 13.37 13.38 13.39 13.4
−0.5

0

0.5

Time (s)

E
rr

or
 (

V
)

Achieved
Reference

(b)

FIGURE 20  The output-input graph of the Preisach-Krasnosel’skii-
Pokrovskii (PKP) operator with weights shown in Figure 19. This
figure illustrates the hysteretic behavior of the PKP operator. The
shape of the hysteresis loop is determined by the weights of
individual PKP hysterons.
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