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Dynamic Modeling of Robotic
Fish With a Base-Actuated
Flexible Tail
In this paper, we develop a new dynamic model for a robotic fish propelled by a flexible
tail actuated at the base. The tail is modeled by multiple rigid segments connected in
series through rotational springs and dampers, and the hydrodynamic force on each seg-
ment is evaluated using Lighthill’s large-amplitude elongated-body theory. For compari-
son, we also construct a model using linear beam theory to capture the beam dynamics.
To assess the accuracy of the models, we conducted experiments with a free-swimming
robotic fish. The results show that the two models have almost identical predictions when
the tail undergoes small deformation, but only the proposed multisegment model matches
the experimental measurement closely for all tail motions, demonstrating its promise in
the optimization and control of tail-actuated robotic fish. [DOI: 10.1115/1.4028056]

1 Introduction

Biomimetic systems have been receiving increasing attention
from the robotics community, since natural organisms can provide
important insights into the theory and design of engineer systems.
For example, in the area of aquatic robots, the maneuverability
and efficiency of live fish [1,2] have motivated significant scien-
tific interest over the past two decades in developing, modeling,
and controlling robotic fish [3–17]. In addition to providing plat-
forms for underwater applications such as environmental monitor-
ing [18–20], these robots offer a means to study the behavior of
live fish [21].

Numerous designs of actuation mechanisms have been pro-
posed for robotic fish [3,9,10,17,21–33]. A typical approach is to
use multiple links actuated separately or jointly to deform the
body itself [3,6,14,17,34,35], which requires multiple actuators
and/or complex transmission mechanisms. Another class of
designs involves an oscillating caudal fin (e.g., [4,9,10,30,36]),
sometimes in conjunction with pectoral fins [9]. Among various
designs, tail actuation is especially attractive since it is easy to
realize, enables both forward swimming and turning maneuvers,
and leaves the majority of the body free of moving parts. The
latter is important when the robot is used in applications such as
mobile sensing, where the body space can be maximally used to
house sensors and electronics [20]. Many tail-actuation designs
involve rigid, oscillating plates [9,12,13,37]. This design lends
itself to simple construction and tractable analysis. However, it
has been recognized that the flexibility of body and fin structures
has a pronounced impact on the swimming performance of biolog-
ical and robotic fish [16,38,39]. Flexible caudal fins can be
realized by motor-driven compliant beams or plates [17,36,40],
or directly through soft actuation materials such as ionic
polymer–metal composites (IPMCs) [4,7,10,30]. While these
active materials possess intriguing properties, the thrust they can
produce is still relatively weak and the long-term repeatability of
their actuation behavior is yet to be established. Therefore, base-
actuated soft, passive structures remain a competitive option for
flexible tails.

To design and control robotic fish actuated with a flexible tail,
it is essential to have a faithful and efficient dynamic model. Mod-
eling of a flexible beam attached to a moving base in the air has
been studied by a number of researchers [,40–43]. However, in
this work, a major challenge in the modeling lies in properly cap-
turing the fluid–structure interactions and the resulting force and
moment on the robot. Most existing work on modeling has dealt
with rigid fins [9,12,13,37,44,45], although modeling of flexible
fins has been conducted recently by several groups [10,17,30,46].
In Ref. [17], Alvarado and Youcef Toumi focused on designing
compliant bodies to achieve biomimetic locomotion efficiency
and maneuverability. To demonstrate the results, they also com-
pared the experimental results with the linear beam model.
Researchers have also developed models that capture the actuation
physics of an anchored IPMC beam and the complex hydrody-
namic interactions between IPMC and fluid [10,30]. In Ref. [46],
Kopman and Porfiri described a modular biomimetic robotic fish
developed for educational activities, along with a modeling frame-
work for predicting the robot’s static thrust production. In all these
studies, a linear Euler–Bernoulli beam model was adopted to
describe the beam dynamics. A disadvantage of this approach is
that, under large oscillations, these models do not accurately
capture the beam dynamics [47–49] and consequently the
hydrodynamics.

In this work, we take a significant departure from the beam
model approach by approximating a flexible tail with multiple
rigid segments connected in series through torsional springs and
dampers. A similar multisegment approach has been used to
model a beam under large deformation in air [49,50] and model a
flexible beam in flow sensing [51]. However, the multisegment
beam model has not been explored in the modeling of a base-
actuated flexible beam subject to complex hydrodynamic interac-
tions. For comparison, we also present a model based on linear
beam theory, as widely adopted in other studies [10,17,30,46].
Note that, for ease of presentation, a tail with uniform height is
considered in this work. Despite its simple appearance, this case
captures the key essential challenges (nonlinear beam dynamics
under large deformation, coupled with hydrodynamic interactions)
that would be present for cases with more general tail shapes. We
evaluate the hydrodynamic force on the actuating tail using Light-
hill’s large-amplitude elongated-body theory [52], because it has a
sound balance between fidelity and simplicity and its effectiveness
in robotic fish modeling has been demonstrated in our prior work
[13,30]. A weakness of Lighthill’s theory is that it neglects the
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effect of vortex wake on the pressure distribution on the body and
thus neglects the effect of vortex shedding on the thrust produc-
tion [53]. Incorporating such vortex-shedding effects (for exam-
ple, using the vortex ring panel method [54]), however, typically
requires computational fluid dynamics (CFD) simulation and is
not amenable to the development of a model that is suitable for
robot optimization and control, which is the goal of this paper.

To compare and validate the models, we conduct extensive
experiments with a robotic fish prototype. We find that both mod-
els have similar predictions that are close to the experimental
measurements when the flexible beam is under small deforma-
tions. However, the discrepancy between the predictions becomes
greater as the beam experiences larger deformations. In particular,
we show that the multisegment model is able to predict precisely
the transient trajectory and steady-state speed of the free-
swimming robot, as well as the dynamic shape of the tail, under a
wide range of actuation inputs. In comparison, the linear beam
model-based approach is only able to capture the robot speed and
tail shape when the tail undergoes relatively small deformations.
A preliminary version of this paper was presented at the 2012
ASME Dynamic Systems and Control Conference [55].

The remainder of the paper is organized as follows. The overall
dynamic model for a tail-actuated robotic fish is first reviewed in
Sec. 2, where the hydrodynamic forces generated by the tail are
evaluated by Lighthill’s theory. The use of Lighthill’s theory
requires knowing the tail shape as a function of time, which is the
main focus of this paper. The Euler–Bernoulli beam-based model
and the multisegment model for the based-actuated flexible tail
are developed in Secs. 3 and 4, respectively. Experimental valida-
tion and comparison of the models are presented in Sec. 5. Finally,
concluding remarks are provided in Sec. 6.

2 The Overall Dynamic Model for Tail-Actuated

Robotic Fish

The robot is assumed to comprise two parts, a rigid body and
a flexible tail. The motion of the robot body is governed by
rigid-body dynamics with the added-mass effect incorporated.
Lighthill’s large-amplitude elongated-body theory is adopted to
evaluate the hydrodynamic forces generated by the flexible tail’s
motion. We assume that the height of the tail does not vary
abruptly along its length, thus meeting the “elongated body”
requirement [52].

2.1 Rigid-Body Dynamics. Figure 1 shows a schemata of the
robotic fish, with [X,Y,Z] denoting the inertial coordinates, and
[x,y,z] denoting the body-fixed coordinates with unit vectors
½x̂; ŷ; ẑ�. We denote by m̂ and n̂ the unit vectors parallel and per-
pendicular to the tail, respectively. We assume that both the body

and the tail are neutrally buoyant, and that the center of gravity of
the body coincides with the center of geometry at point C. The ve-
locity at C expressed in the body-fixed coordinates
VC ¼ ½VCx;VCy;VCz�T comprises surge (VCx), sway (VCy), and
heave (VCz) components. In addition, the angular velocity
x ¼ ½xx;xy;xz�T comprises roll (xx), pitch (xy), and yaw (xz)
expressed in the body-fixed coordinates. We use a to denote the
tail deflection angle (the tangential direction of the flexible tail at
the base) with respect to the negative x–axis, and b to denote the
angle of attack, formed by the direction of VC with respect to the
x–axis. Finally, w denotes the heading angle, formed by the x–axis
relative to the X–axis.

The linear momentum P and angular momentum H of the body
in the body-fixed coordinates are expressed as

P ¼M � VC þ DT � x (1)

H ¼ D � VC þ J � x (2)

where M and J are the mass and inertia matrices, respectively,
and D is the Coriolis and centripetal matrix. For a rigid body in an
inviscid fluid, Kirchhoff’s equations of motion in the body-fixed
frame are [56,57]

_P ¼ P� xþ F (3)

_H ¼ H� xþ P� VC þM (4)

where F ¼ ½Fx;Fy;Fz�T;M ¼ ½Mx;My;Mz�T denote the external
forces and moments about the body center C, respectively, and
“�” denotes the vector product. The assumption of neutral buoy-
ancy implies that these forces and moments will only come from
the hydrodynamic interactions between the robot (including both
the body and the tail) and the fluid. As to be explained in more
detail, these interactions include hydrodynamic forces/moments
due to the tail motion, which are evaluated with Lighthill’s theory
(Sec. 2.2), and the lift and drag on the robot body itself (Sec. 2.3).

We further assume that the body is symmetric with respect to
the xz–plane and the tail moves in the xy–plane. Consequently, the
heave velocity VCz, the roll rate xz, and the pitch rate xy are all
equal to zero, in which case the system has three degrees of free-
dom, namely, surge (VCx), sway (VCy), and yaw (xz). We further
assume that the inertial coupling between the surge, sway, and
yaw motions is negligible [10], implying D¼ 0. Under these
assumptions and following Ref. [56], Eqs. (3) and (4) can be sim-
plified as

ðmb � X _VCx
Þ _VCx ¼ ðmb � Y _VCy

ÞVCyxz þ Fx (5)

ðmb � Y _VCy
Þ _VCy ¼ �ðmb � X _VCx

ÞVCxxz þ Fy (6)

ðJbz � N _xz
Þ _xz ¼ ðY _VCy

� X _VCx
ÞVCxVCy þMz (7)

where mb is the mass of the body and Jbz is the inertia of the body
about the z–axis. X _VCx

; Y _VCy
, and N _xz

are the hydrodynamic deriva-

tives that represent the effect of added mass on the body. Finally,
the kinematic equations for the robot are

_X ¼ VCx cos w� VCy sin w (8)

_Y ¼ VCy cos wþ VCx sin w (9)

_w ¼ xz (10)

2.2 Lighthill’s Large-Amplitude Elongated-Body Theory.
Lighthill’s theory was originally developed to describe the hydro-
dynamic force experienced by a fish swimming in a horizontal
plane. In this paper, we apply this theory to the base-actuated
flexible tail of a robotic fish. As illustrated in Fig. 2, the tail is
assumed to be inextensible and is parameterized by s, with s¼ 0

Fig. 1 Schematic representation of the robotic fish in planar
motion
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denoting the anterior end and s¼ L denoting the posterior end.
The coordinates (X(s,t), Y (s,t)), 0� s� L, denote the trajectory
of each point s on the tail at time t, which could be due to tail
dynamics or the resulting translational/rotational motion of the
whole fish. A frame of reference is chosen such that the water far
from the robotic fish is at rest.

Following Ref. [52], given (X(s,t), Y (s,t)), the hydrodynamic
reactive force density due to the added-mass effect at each point
s< L is

fðsÞ ¼
fXðsÞ
fYðsÞ

� �
¼ �mw

d

dt
ðv?n̂Þ (11)

and at s¼ L, there is a concentrated force

FC ¼
FCX

FCY

� �
¼ � 1

2
mwv2

?m̂þ mwv?vkn̂

� �
s¼L

(12)

In Eqs. (11) and (12), mw denotes the virtual mass per unit length
and it can be approximated by 1

4
pqwd2, where qw is the density of

water and d is the depth of tail cross section (in Z direction) at s
(and thus can vary with s). The two terms in Eq. (12) account for
the pressure force acting on P and the force due to convection of
momentum out of V across P, respectively, where P is the plane
at s¼L that is perpendicular to m̂, and V is the half-space
bounded by P that includes the tail but excludes the wake [52].
As illustrated in Fig. 2, m̂ ¼ ð@X=@s; @Y=@sÞT and n̂ ¼ ð�@Y=@s;
@X=@sÞT represent the unit vectors tangential and perpendicular to
the spinal column, respectively, and vk and v? represent the com-
ponents of the velocity v ¼ ð@X=@t; @Y=@tÞT at s in m̂ and n̂ direc-
tions, respectively,

vk ¼ hv; m̂i ¼
@X

@t

@X

@s
þ @Y

@t

@Y

@s
(13)

v? ¼ hv; n̂i ¼ �
@X

@t

@Y

@s
þ @Y

@t

@X

@s
(14)

where h �,� i denotes the inner product of vectors. We note that the
actual mass of the tail is negligible (relative to the virtual mass)
when the width of the tail is much thinner than the height [52],
which is typically true for the tail of a robotic fish. For example,
in the model validation part of this work, we use a flexible tail
with a height of 2.5 cm and a thickness of 0.3 mm, which indicates
that mw is 490.9 g/m. In contrast, the physical tail, which has a
length of 8 cm, weighs 0.54 g, resulting in a mass of 6.75 g/m,
which is 1.38% of the virtual mass. Hydrodynamic moments
experienced by the robot body that are due to the tail can be eval-
uated accordingly based on fðsÞ and FC.

2.3 Drag and Lift on the Body. As shown in Fig. 1, besides
the hydrodynamic force and moment transmitted from the tail, the

robot body also experiences drag force FD, lift force FL, and drag
moment MD [9,10,37], which can be represented as

FD ¼
1

2
qjVCj2SCD (15)

FL ¼
1

2
qjVCj2SCLb (16)

MD ¼ �CMx2
z sgnðxzÞ (17)

where S is a suitably defined reference surface area for the robot
body, and CD, CL, and CM are the drag force coefficient, lift coef-
ficient, and drag moment coefficient, respectively.

Finally, by adding the hydrodynamic forces and moments from
the tail and those directly on the body, we obtain Fx, Fy, and Mz in
Eqs. (5)–(7) as

Fx ¼ Fhx � FD cos bþ FL sin b (18)

Fy ¼ Fhy � FD sin b� FL cos b (19)

Mz ¼ Mhz þMD (20)

where Fhx, Fhy, and Mhz are the projections of hydrodynamic
forces caused by tail motion, and the resulting moment relative to
the center C of the robot body.

3 Dynamic Modeling of a Tail Using Euler–Bernoulli

Beam Theory

The application of Lighthill’s theory requires knowing the
shape trajectory of the base-actuated flexible tail. We propose a
multisegment approach to the modeling of the tail that undergoes
large deformations in Sec. 4. But in this section we first develop a
comparative approach based on linear beam theory, which has
been widely used in the relevant literature. We focus on beam
modeling with the robot anchored, as typically adopted in the lit-
erature [17,46]. Figure 3 illustrates this approach; the dashed line
represents a rotating frame, which coincides with the line tangen-
tial to the tail at the base, and the blue solid curve represents the
shape of the flexible caudal fin. The transverse displacement of
points on the flexible tail relative to the rotating base, due to the
beam’s vibration, is given by w(s,t). We note that the tail is
assumed to be under small deformation in accordance with the
Euler–Bernoulli theory. In other words, the motion direction of
each point along the flexible tail is perpendicular to the dashed
line.

Fig. 2 Illustration of the coordinate system for flexible tail (top
view)

Fig. 3 Passive flexible tail modeled by Euler–Bernoulli linear
beam approach
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The tail is excited by the oscillating support at the point A, with

@w1ðs; tÞ
@s

� �
s¼0

¼ @w2ðs; tÞ
@s

� �
s¼0

¼ aðtÞ (21)

Here w1(s,t) denotes the beam displacement in the inertial frame
and w2(s,t) accounts for the rigid-body (rotating base) motion

w1ðs; tÞ ¼ w2ðs; tÞ þ wðs; tÞ
w2ðs; tÞ ¼ s � aðtÞ

(22)

The forced underwater vibration of the flexible beam is
described by the following equation [46,58]:

@2

@s2
EIðsÞ @

2w1ðs; tÞ
@s2

� �
þ mðsÞ @

2w1ðs; tÞ
@t2

¼ pðs; tÞ (23)

where E denotes the Young’s modulus of the flexible tail, I
denotes the area moment of inertia, m(s) denotes the mass of the
tail per unit length, and p(s,t) denotes the transverse loading on
the tail which is caused by the interactions between the tail and
the surrounding aquatic environment that can be evaluated by
Lighthill’s theory. Unlike Refs. [17] and [46], in this work we
also consider distributed viscous damping introduced by the inter-
nal resistance opposing the strain velocity [58], which leads to

@2

@s2
EIðsÞ @2w1ðs; tÞ

@s2
þ j

@3w1ðs; tÞ
@s2@t

� �� �
þ mðsÞ@

2w1ðs; tÞ
@t2

¼ pðs; tÞ

(24)

where j is the stiffness proportionality factor for Rayleigh
damping.

Similar to Refs. [12] and [13], we assume that the tail itself has
negligible mass compared to the added mass effects. Then follow-
ing Lighthill’s theory, we obtain

EI
@4wðs; tÞ
@s4

þ j
@5wðs; tÞ
@s4@t

� �
þ mw

@2wðs; tÞ
@t2

¼ Peffðs; tÞ (25)

in which

Peffðs; tÞ ¼ �EI
@4w2ðs; tÞ
@s4

þ j
@5w2ðs; tÞ
@s4@t

� �
� mw

@2w2ðs; tÞ
@t2

represents the effective distributed dynamic loading caused by the
prescribed support excitations, and mw is virtual mass per unit
length defined previously, accounting for the added mass effect.
Since the first two terms of Peffðs; tÞ are equal to zero as
w2ðs; tÞ ¼ s � aðtÞ, the tail beam can be modeled as

EI
@4wðs; tÞ
@s4

þ j
@5wðs; tÞ
@s4@t

� �
þ mw

@2wðs; tÞ
@t2

¼ �mws � €aðtÞ (26)

Using the modal analysis method, we can express the solution of
Eq. (26) as the sum of an infinite number of modes

wðs; tÞ ¼
X1
i¼1

/iðsÞgiðtÞ (27)

where /iðsÞ is the beam shape for the ith mode and gi(t) is the cor-
responding generalized coordinate. There is no concentrated force
in the n̂ direction with the anchored body assumption, which
implies that the boundary conditions for w(s,t) is the same as those
for a cantilever beam

wð0; tÞ ¼ 0;
@w

@s
ð0; tÞ ¼ 0

EI
@2w

@s2
ðL; tÞ ¼ 0; EI

@3w

@s3
ðL; tÞ ¼ 0

(28)

The mode shape /iðsÞ takes the form

/iðsÞ ¼ ðcos bis� cosh bisÞ � diðsin bis� sinh bisÞ (29)

where bi can be obtained by solving

1þ cos biL cosh biL ¼ 0

and

di ¼
cos biLþ cosh biL

sin biLþ sinh biL

With the damping ratio for the ith mode

ni ¼
jxi

2

where xi is the natural frequency for the ith mode,

xi ¼ b2
i

ffiffiffiffiffiffiffi
EI

mw

r
(30)

gi(t) can be solved from

d2giðtÞ
dt2

þ 2nixi
dgiðtÞ

dt
þ x2

i giðtÞ ¼
QiðtÞ
Mi

; i ¼ 1; 2… (31)

where

QiðtÞ ¼
ðL

0

/iðsÞPeffðs; tÞds (32)

and

Mi ¼
ðL

0

/iðsÞ2mwds (33)

When the tail shaft oscillates sinusoidally, we can obtain a closed-
form solution for gi(t). Consider in particular the following form
for the base angle:

aðtÞ ¼ a0 þ aA sinðxatþ /aÞ (34)

where a0, aA, xa, and /a denote the bias, amplitude, frequency,
and initial phase of the tail beat, respectively. Then, we have

giðtÞ ¼
mwaAx2

a

ðL

0

s/iðsÞds

MiZixa
sinðxatþ /a þ /iÞ (35)

where

Zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2xiniÞ2 þ

1

x2
a
ðx2

a � x2
i Þ

2

s

is the magnitude of the impedance function and

/i ¼ arctan
2xaxini

x2
a � x2

i

� �
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is the phase lag of the oscillation relative to a(t). Using Eqs. (11)
and (12), the total hydrodynamic force acting on the tail is then

F ¼
ðL

0

fðsÞds� 1

2
mwv2

?m̂

� �
s¼L

(36)

where fðsÞ ¼ �mw½ðs€aþ ð@2w=@t2ÞÞn̂� _aðs _aþ ð@w=@tÞÞm̂�. The
corresponding moment relative to the center C of the robot body
is

M ¼
ðL

0

rCs � fðsÞdsþ rCL � � 1

2
mwv2

?m̂

� �
s¼L

� �
(37)

where rCs and rCL denote the vectors from the body center C to
the point s and L on the tail, respectively.

4 Dynamic Modeling of a Tail Using

Multisegment Approximation

A fundamental underlying assumption in establishing the model
described in Sec. 1 is that the flexible tail is under small deforma-
tion. However, based upon observation of the dynamic shape of
the tail, this assumption does not always hold, especially when the
tail undergoes large angular displacement and/or high-frequency
oscillations. In this section, we propose a novel model by repre-
senting the tail as multiple rigid elements connected in series
through torsional springs and dampers, to capture the large defor-
mation of the beam. N rigid segments, with equal length of l, are
used to represent the tail, as illustrated in Fig. 4. Each segment is
linked with its neighboring segments through joints modeled by a
torsional spring KS and a viscous damper KD.

Following Ref. [49], we can evaluate the stiffness of each tor-
sional spring as:

KS ¼
Edh3

12l
(38)

with h denoting the thickness of tail. KD can be evaluated as
KD¼ jKS, where j is the proportional constant as defined in
the Sec. 1. Following Lighthill’s large-amplitude elongated-body
theory, we need to compute the motion of every point along the
tail over time, in order to evaluate the tail actuation-induced
hydrodynamic force. Consequently, we need to know the joint
angles ai, made by the ith link with respect to the negative x-axis
(as illustrated in Fig. 4), so that Eqs. (11) and (12) can be applied
to evaluate the hydrodynamic forces on the tail section. The dis-
placement rsi

of every point si on the ith segment in the inertial
frame can be described as

rsi
¼ l �

Xi�1

k¼1

m̂k

" #
þ sim̂i (39)

then the velocity perpendicular to the ith segment is

vsi? ¼ l �
Xi�1

k¼1

_ak cosðak � aiÞ
" #

þ si _ai (40)

Therefore, the force density acting on the ith segment can be
evaluated as

fsi
¼�mw

d

dt
ðvsi?n̂iÞ

¼�mw l
Xi�1

k¼1

€ak cosðai�akÞ½ � _ak sinðai�akÞð _ai� _akÞ�þsi€ai

( )
n̂i

þmw _ai l
Xi�1

k¼1

_ak cosðai�akÞ½ �þ _aisi

( )
m̂i (41)

The total reactive force Fi on the ith segment, and the moment
Mi relative to point Ai�1 can be evaluated using

Fi ¼
ðl

fsi
ds; Mi ¼

ðl

sim̂i � fsi
ds (42)

Defining FAi and MAi to be the force and the moment exerted by
the (iþ 1)th segment on the ith segment, respectively, we can
express the interactions between adjacent segments as

FAi
¼ Fiþ1 þ FAiþ1

(43)

MAi
¼Miþ1 þMAiþ1

þ lm̂i � FAiþ1
(44)

For the last segment of the tail, as illustrated in Fig. 4, the reactive
force and moment are

FAN
¼ � 1

2
mw l

XN

k¼1

_ak cosðaN � akÞ
" #2

m̂N

þ mw l
XN

k¼1

_ak cosðaN � akÞ
" #

l
XN

k¼1

_ak sinðaN � akÞ
" #

n̂N

(45)

MAN
¼ 0 (46)

Defining MðSþDÞi the moment produced by the spring and damper
at joint Ai, then the moment balance equation implies, for
i¼ 1, 2, …, N� 1,

MAi
¼MðSþDÞi (47)

where

MðSþDÞi ¼ ½KSðaiþ1 � aiÞ þ KDð _aiþ1 � _aiÞ�ẑ (48)

Equation (47) has (N� 1) scalar equations involving (N� 1)
unknown variables a2,� � �,aN, which is solvable.

FA0
is the force that the flexible tail exerts on the robotic fish

body, which can be written as FA0
¼ Fhx � x̂þ Fhy � ŷ, where Fhx

and Fhy are the components of FA along x̂ and ŷ, respectively. The
moment to the center of the body caused by the oscillation of the
tail can be evaluated as

MC ¼MA0
� cx̂� FA0

(49)

It is clear that MC is along the z direction, which we denote as
Mhz.Fig. 4 Passive flexible tail modeled by multiple rigid segments
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5 Experimental Model Validation

To evaluate the dynamic models described in Secs. 3 and 4, we
have conducted experiments with the free-swimming robotic fish
prototype shown in Fig. 5. The robot has a simple mechanism
for actuation, and it satisfies most of the assumptions used in the
modeling work, which facilitates model validation. In particular,
the height of the tail does not change abruptly along the length
direction, thus meeting the “elongated body” requirement. The
thickness of the tail is much less than its height, so that the actual
mass of the tail is much less than the virtual mass, as assumed in
Sec. 2.2. Through a chain transmission mechanism, a servomotor
(HS-5085MG from Hitec) is able to control the angular position
of the tail shaft and thus the tail deflection angle a, i.e., sinusoidal
motion, accurately. On the other hand, in the modeling work, we
assume that the robot is anchored, as typically adopted in the
literature. This assumption, of course, does not hold fully during
free-swimming experiments, which might explain the slight dis-
crepancies between the model predictions and experimental mea-
surement in those experiments. The tail was a rectangular plastic
slice, which was 8 cm long, 2.5 cm wide (high), and 0.3 mm thick.

5.1 Parameter Identification. The same experimental proto-
type (with a different tail) was used in Ref. [12] to validate a
dynamic model for a robotic fish with a rigid tail. The following
parameters for the robot were identified in Ref. [12]: c¼ 0.07 m,

mb¼ 0.311 kg, q¼ 1000 kg/m3, S¼ 0.0108 m2, Jbz¼mb(2c)2/12.
The added masses and inertias are calculated by approximating
the robot body as a prolate spheroid [10,57]: �X _VCx

¼ 0:0621 kg;
�Y _VCy

¼ 0:2299 kg, and �N _xz
¼ 1:0413� 10�4 kg �m2.

The drag and lift coefficients, CD, CL, and CM, are also identi-
fied empirically for the robotic fish with a rigid tail and then used
in validating the flexible tail models. In particular, we have tuned

Fig. 5 A free-swimming robotic fish prototype used for model
validation

Fig. 6 Experimental setup for measuring the Young’s modulus
of the flexible tail

Fig. 7 Experimental results for measuring the Young’s modu-
lus of the flexible tail

Fig. 8 Displacement of the tail tip generated by the model
using different number of rigid segments

Fig. 9 Computation time needed to simulate the model using
different numbers of rigid segments
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these parameters to match the turning radius, turning period, and
the average of jbj obtained in simulation, with the experimental
measurements recorded for a particular tail beat pattern. We set
amplitude aA¼ 13.6 deg, frequency xa¼ 1.8p rad/s (0.9 Hz) and
evaluate the suitable drag and lift coefficients for the tail-beat
bias a0 equal to 20 deg, 30 deg, and 40 deg as Ref. [13]. Using
least-square-error fitting, we obtain CD¼ 0.276, CL¼ 4.5, and
CM¼ 7.4� 10�4 kg �m2, when a0¼ 0.

For measuring the Young’s modulus, we setup the experiment
shown in Fig. 6, and evaluate E using

E ¼ L3
bPL

3IbwL

(50)

where Lb and Ib are the length and the area of moment inertia of
the testing beam, respectively. PL is the load at the tip end, and wL

is the end’s displacement. A plastic beam (the same material as
the flexible tail) is clamped at the upper surface of a rectangular
block, which is fixed on a piston that can move up and down along
the stand. A custom LabVIEW (2011 SP1) virtual instrument
graphical user interface (GUI) is developed to perform the data
acquisition through a dSPACE system (RTI 1104, dSPACE). The
force exerted on the beam is captured by a load cell (GS-10,
Transducer Techniques) with a custom-made amplifier circuit.
The displacement of the beam tip is measured with a laser sensor
(OADM 20I6441/S14F, Baumer Electric). Prior to experiment,
the system is calibrated with a weight applied to the load cell.
Three sets of data are collected to calculate the Young’s modulus,
and in each set, a least square error method is adopted to approxi-
mate the slope between the force and displacement. Figure 7
shows results for three tests, indicating that E � [1.41, 1.51] GPa.
In this work, we take the average E¼ 1.48 GPa.

When modeling a tail using the multisegment approximation,
the number of rigid segments affects both modeling accuracy and
computational complexity [51]. Specifically, a higher number of
elements results in a more accurate model, but is also more
computation-intensive. Figure 8 shows the simulated responses of
the beam tip displacement (relative to the x axis along the body)
to a sinusoidal base excitation, when different numbers of seg-
ments are used to model the flexible beam. The properties of the
beam used in the simulation are same as those of the beam identi-
fied from the experiments. It can be observed that, the beam tip
displacements gradually converge to each other when the number
of segments increases. Figure 9 shows the running time needed
for the simulation illustrated in Fig. 8, which was conducted with
MATLAB/SIMULINK on a desktop PC (Dell Vostro 460 with 3.1 GHz
Intel i5-2400 central processing unit (CPU) and 4 GB memory).
In particular, for all cases, the fundamental sampling time in
SIMULINK is fixed at 0.000167 s, the simulation time is set to be 10 s
in total, and the elapsed CPU time is obtained using the MATLAB

macro cputime. We can see that the computation time increases
rapidly with the number of rigid segments used in the simulation.
A five-segment approximation achieves a sound tradeoff between
the modeling accuracy and computational efficiency, and there-
fore is adopted in this study.

According to Eq. (39), we have KS¼ 5.2� 10�3 N�m that is
used in the model using multisegment approximation. The values
of j are identified empirically by fitting the data of forward speed
versus beating frequency for both models. In particular, we choose
the value of j such that the simulated steady-state speed of the

Fig. 10 Comparison between model predictions and experi-
mental measurement of the speed versus tail-beat frequency.
The amplitude is fixed at 13.6 deg

Fig. 11 Comparison between model predictions and experi-
mental measurement of the speed versus tail-beat frequency,
with the new tail. The amplitude is fixed at 13.6 deg

Fig. 12 Comparison between multisegment model predictions and experimental measurement for forward swimming (includ-
ing transients): (a) time trajectory of X-coordinate of the robot; (b) time trajectory of the Y-coordinate of the robot; (c) path of
the robot in the XY-plane. For both the experiment and simulations, the amplitude and frequency of the tail beat are fixed at
13.6 deg and 0.9 Hz, respectively.
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robot, when a0¼ 0 deg, matches the experimental results when the
tail beats at 0.45 Hz, 0.9 Hz, and 1.35 Hz, respectively (for which
cases the flexible tail undergoes relatively small deformations).
This results in j¼ 0.0846 s for the Euler–Bernoulli beam model
and j¼ 0.0731 s for the multisegment approximation model. We
take the average j¼ 0.079 s, which leads to KD¼ 4.1� 10�3

N�m�s, using KD¼jKS. These parameters are then applied in the
simulation of all other cases.

5.2 Model Verification. Figure 10 compares the two models
and experimental measurements in terms of the steady-state speed
of the robotic fish with respect to the actuation frequency. The

trends are similar for the two model predictions. In particular, the
robot’s speed increases with the frequency up to a threshold value
(1.35 Hz in the simulated case) and then starts to drop. While the
predictions from both models match the experiments relatively
well (due to the tuning process for parameter j as described in the
previous subsection 5.1), the discrepancy between the predictions
becomes larger as the actuation frequency increases. The flexible
tail is subjected to the added mass effect as explained in Eq. (11).
Under a high-frequency excitation, the lateral hydrodynamic load-
ing on the tail increases and causes larger deformation of the tail.
By using linear Euler–Bernoulli beam theory, we assume that the
tail is under small deformation, and thus the motion direction of
each point along the flexible tail is perpendicular to the dashed
line in Fig. 3. The latter assumption no longer holds when the
excitation frequency gets high due to the large deformation, which
explains the poor prediction performance of the linear beam
model at relatively high frequencies. On the other hand, the model
using the multisegment approximation matches the experimental
measurement closely throughout the actuation frequency range
used in the experiments.

To further compare the two models under different conditions,
a second experiment has been conducted with another tail of
different dimensions, which is 2.34 cm high and 9.8 cm long.
Following Eq. (39) and the linear relationship KD¼ jKS, the val-
ues of KS and KD are updated from the original KS¼ 5.2� 10�3

N�m and KD¼ 4.1� 10�3 N�m�s to KS¼ 4.0� 10�3 N�m and
KD¼ 3.13 � 10�3 N�m�s, respectively. Figure 11 shows the com-
parison between the two models and the experimental measure-
ments for the robot with the new tail. Consistent with the results
in Fig. 10, one can see that the model using the multisegment
approximation matches the experimental measurement closely for
all actuation frequencies, while the linear beam model performs
well only for low-frequency actuation.

Fig. 13 Experimental setup to capture the dynamic shape of a
flexible tail actuated at the base (top view).

Fig. 14 Comparison between experimental measurement of the time-dependent tail shape with model predictions. The tail
beats at 0.4 Hz with 0 deg bias and 14 deg amplitude. The black solid line, blue dashed line with circles and the red dashed-
dotted line imply the experimental measurement, predictions from multisegment model and Euler–Bernoulli beam model,
respectively.
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To further assess the proposed multisegment model, we con-
duct an experiment involving transients in forward motion,
where the robot started from at rest. Figures 12(a) and 12(b)
compare the model predictions of the X/Y-coordinate time-
trajectories of the robot with the experimental measurements,
and Fig. 12(c) compares the predicted and actual robot paths in
the XY-plane. It can be seen that the proposed model is able to
capture well both the transient and steady-state behaviors of the
robot.

We have conducted additional experiments to compare the
time-dependent shape of the flexible tail with those predicted by
the models. As can be seen in Fig. 13, the free swimming robot
shown in Fig. 5 is fixed by a bracket and set to oscillate the tail. A
Casio Exilim EX-FH25 high-speed camera with a frame rate of
120 frames/s is used to record the tail’s motion from above.

Figures 14 and 15 compare the measured time-dependent tail
shape and those predicted by the two models for 0.4 Hz and
0.9 Hz, respectively. To save space, we show every ninth frame
for half a period of the tail oscillation. It can be seen that when
the tail beats at the relative low-frequency, 0.4 Hz, both models
produce very close approximations of the tail shape. However,
at 0.9 Hz, when the beam deformation is bigger, the multiseg-
ment modeling approach produces much more precise predic-
tions of the beam shape than the linear beam theory-based
approach.

6 Conclusion

In this study, we have developed a model for robotic fish
with a base-actuated flexible tail. The tail is modeled as multi-
ple rigid segments connected by springs and dampers, and
Lighthill’s elongated-body theory is used to evaluate the tail-
generated hydrodynamic forces. For comparison, we have also

constructed a model using linear beam theory. We compare pre-
dictions of both models to experimental results with a robotic
fish, in terms of steady-state cruising speeds and dynamic tail
shapes under different actuation frequencies. From these results,
we conclude that when the tail is excited under a relatively
low-frequency, and consequently experiences small deformation,
both models produce similar predictions that are close to experi-
mental measurements. However, when the actuation frequency
increases, the two models differ, and the model using multiseg-
ment approximation is able to predict much better the robot
speed and the tail shape. Additional experimental results also
indicate that the proposed model is capable of capturing the
transient dynamics of the robot.

In summary, the work presented in this paper provides a com-
putationally efficient and accurate model for capturing large tail
deformation and the resulting hydrodynamic force for a tail-
actuated robotic fish. The model will facilitate effective tail design
optimization and controller development for such robots. While
one could also use nonlinear beam models and CFD to achieve
faithful modeling of the tail, the latter approach would be much
more computationally expensive, and would be difficult to inte-
grate with the robot dynamics for controller design.

This work can be extended in several directions. First,
although this paper has focused on the case of a rectangular tail
for ease of presentation, the mathematical derivation itself is
general and the approach can be extended to tails of other
shapes (e.g., trapezoidal) following a similar treatment, where
the properties of each segment (mass, inertia) and each joint
(spring and damper constants) will depend on the local shape.
Second, we are particularly interested in using the proposed
model to understand the effect of tail shape and stiffness prop-
erties on the robot’s locomotion performance, and exploit such
understanding for design optimization. Finally, we will utilize

Fig. 15 Comparison between experimental measurement of the time-dependent tail shape with model predictions. The tail
beats at 0.9 Hz with 0 deg bias and 13.6 deg amplitude. The black solid line, blue dashed line with circles, and the red dashed-
dotted line imply the experimental measurement, predictions from multisegment model and Euler–Bernoulli beam model,
respectively.
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the proposed model to design controllers for flexible tail-
actuated robotic fish.
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