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dynamics of base-excited ionic
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Abstract
Motivated by their structural monitoring and energy harvesting applications, in this article, we study the modeling and
inverse compensation of cantilevered ionic polymer–metal composite sensors that are excited at base. The proposed
dynamic model is physics based, combines the vibration dynamics of a flexible beam under base excitation and the ion
transport dynamics within an ionic polymer–metal composite, and incorporates the effect of a tip mass. Excellent agree-
ment is demonstrated between the model prediction and experimental measurement in both the magnitude and the
phase of the frequency response, for the frequency range of 10–150 Hz. For the purpose of real-time signal processing,
we further reduce the model to finite dimension by combining techniques of Padé approximation and Taylor series
expansion. For the reconstruction of the base excitation signal given the sensor output, we present an inverse compen-
sation scheme for the reduced sensor model, where stable but noncausal inversion and leaky integration are introduced
to deal with zeros that are unstable and on the imaginary axis, respectively. The effectiveness of the scheme as well as
the underlying model is validated experimentally in the reconstruction of structural vibration signals, when the structure
to which the ionic polymer–metal composite is attached is subjected both to periodic vibrations and to an impact.
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Introduction

Electroactive polymers (EAPs) have received tremen-
dous interest for their potential applications in a large
variety of engineering areas (Bar-Cohen, 2001). Ionic
polymer–metal composites (IPMCs) are an important
class of EAPs with built-in actuation and sensing cap-
abilities. They hold strong promise for versatile appli-
cations because they require low-actuation voltages
(several volts) for producing large bending deforma-
tion, work in air and in aqueous environments without
stringent packaging requirements, and have minimal
structural complexity in implementation as actuators
and sensors (Shahinpoor and Kim, 2001, 2004). They
are also biocompatible and amenable to microfabrica-
tion (Chen and Tan, 2010; Lei et al., 2012a).

An IPMC sample typically consists of a thin ion-
exchange membrane (e.g. Nafion), chemically plated with
a noble metal as electrodes on both surfaces. The tradi-
tional method for the fabrication of IPMCs is based on
the impregnation–reduction–ion-exchange process (Kim
and Shahinpoor, 2003). Inside the polymer, anions cova-
lently fixed to polymer chains are balanced by mobile

cations. An applied voltage across the IPMC leads to the
redistribution of cations and accompanying solvent
molecules, resulting in both differential swelling and elec-
trostatic forces, which cause the material to bend and
hence the actuation effect (Nemat-Nasser and Li, 2000;
Shahinpoor and Kim, 2001; Wallmersperger et al., 2007).
IPMC actuators have been proposed for various applica-
tions in biomedical devices (Chen et al., 2007a), grippers
and manipulation systems (Tadokoro et al., 1999), and
biomimetic robotics (Aureli et al., 2010a; Chen et al.,
2010). However, IPMCs have inherent sensing
properties—an applied force or deformation on an
IPMC beam yields a detectable electrical signal (typically
open-circuit voltage or short-circuit current) across the
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electrodes. Recent applications of IPMC sensing capabil-
ity span measurement of force, pressure, displacement
and shear loading; structural health monitoring; and
energy harvesting (Abdulsadda and Tan, 2011, 2012;
Abdulsadda et al., 2011; Aureli et al., 2010;
Bahramzadeh and Shahinpoor, 2011; Bonomo et al.,
2008; Brufau-Penella et al., 2008; Farinholt et al., 2009;
Lim et al., 2012; Paola et al., 2008; Peterson and Porfiri,
2012; Zangrilli and Weiland, 2011).

There has been extensive effort in modeling and
understanding IPMC sensors in recent years. Newbury
and Leo proposed a gray-box model for the IPMC
actuators and sensors by drawing analogy to piezoelec-
tric transducers (Newbury, 2002; Newbury and Leo,
2002). The latter model was further elaborated and ver-
ified by Bonomo et al. (2006), and Takagi et al. (2008)
examined the modeling of IPMC sensors using the cur-
rent and voltage as the output based on Onsager’s
equation. Buechler and Leo (2007) presented a varia-
tional formulation to model IPMCs and evaluated the
model computationally with the Galerkin method.
Various physics-based models have also been studied
for IPMCs. For example, De Gennes et al. (2000) used
linear irreversible thermodynamics to study IPMC
transduction, where a static model was proposed to
capture both actuation and sensing mechanisms.
Through a micromechanics approach, Nemat-Nasser
and Li (2000) presented a partial differential equation
(PDE) governing the charge dynamics in IPMC materi-
als. This model was used by Farinholt and Leo (2004)
to derive the charge sensing response for a cantilevered
IPMC beam subject to tip displacement. With the same
governing PDE from Nemat-Nasser and Li (2000),
Chen et al. (2007b) developed a geometrically scalable,
infinite-dimensional transfer function model for canti-
levered IPMC sensors subjected to tip stimulus, where
the effect of distributed surface resistance of IPMC
electrodes is captured. Porfiri (2009) developed a com-
prehensive framework for modeling IPMC actuation
and sensing based on mixture theory (Bufalo et al.,
2008), which was specialized to the analysis of linear
static deformation of a thin and flat IPMC. Aureli and
Porfiri (2013) further extended the modeling frame-
work for IPMC sensing to account for convection and
large deformations.

Various configurations of IPMC sensors have been
considered in the literature. The most common config-
uration is an IPMC cantilever beam, where the stimu-
lus is applied at the free end of the beam. Integrating
multiple IPMC sensors in an array results in an artifi-
cial lateral line system for flow sensing, as reported by
Abdulsadda and Tan (2011, 2012) and Abdulsadda et
al. (2011). An IPMC undergoing longitudinal vibra-
tions has been proposed for energy harvesting
(Farinholt et al., 2009). A dynamic curvature sensor
has been created by bonding an IPMC to the surface of
a structure (Bahramzadeh and Shahinpoor, 2011).

Another important configuration for IPMC sensors
is a cantilevered IPMC subjected to base excitation,
which finds potential applications in energy harvesting
and structural monitoring (Aureli et al., 2010b; Brufau-
Penella et al., 2008; Paola et al., 2008). Paola et al.
(2008) examined vibration sensing of an IPMC beam
with a tip mass, where the IPMC was subjected to
excitation at the fixed end (base). They modeled the
mechanoelectric response of an IPMC with a linear
black-box model, where the input is the relative displa-
cement of the tip, calculated by subtracting the absolute
base displacement from the absolute tip displacement.
In Brufau-Penella et al.’s (2008) study, an IPMC strip
under base excitation in air is studied for energy har-
vesting. The vibration dynamics of the strip is modeled
as an Euler–Bernoulli beam. The mechanical strain of
the fundamental vibration mode is converted into a
short-circuit current or an open-circuit voltage through
a gray-box model of the IPMC. The transfer function
relating the short-circuit current to the base excitation
is derived, but not in a closed form. Experimental
results are compared with the model prediction, indi-
cating good agreement for the magnitude response
between 5 Hz and the first resonant frequency, which is
around 25 Hz, but no comparison is given on the phase
response. In Aureli et al. (2010b), energy harvesting of
an IPMC immersed in a fluid environment and sub-
jected to underwater base excitation is studied. Euler–
Bernoulli beam theory is used to model the mechanical
multimodal vibration of the IPMC strip. A linearized
solution of the Navier–Stokes equation is used to
describe the effect of the encompassing fluid on the
IPMC vibration. A physics-based model is presented to
describe the dynamic chemo-electric response of the
IPMC, based on the Poisson–Nernst–Planck model.
The overall sensing model has a good agreement with
the measured magnitude response from 2 to 50 Hz. The
same data on IPMC base excitation in Aureli et al.
(2010b) are further analyzed based on an approach that
extends Sader’s (1998) theory of beam vibration in vis-
cous fluids for small amplitudes of oscillations to large
amplitudes by incorporating the effect of vibration
amplitude and frequency on the hydrodynamic func-
tion (Aureli et al., 2012; Aureli and Porfiri, 2010).

The main contributions of this article are twofold.
The first contribution is a dynamic, physics-based
model for a base-excited IPMC sensor loaded with a tip
mass, which has a closed-form expression. The model
combines the vibration dynamics of a flexible beam
with a tip mass under base excitation and the ion trans-
port dynamics within the IPMC. The mechanical vibra-
tion of the IPMC is modeled with Euler–Bernoulli
cantilever beam theory, incorporating damping and
accommodating suitable boundary conditions (BCs).
The ion transport dynamics is based on the governing
PDE in Nemat-Nasser and Li (2000) that accounts for
electrostatic interactions, ionic diffusion, and ionic
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migration along the thickness direction. To relate the
mechanical deformation to charge dynamics within the
IPMC, an assumption analogous to that by Farinholt
and Leo (2004) is made as follows: at the boundary, the
charge distribution is proportional to the externally
applied stress. The derived model for IPMC sensor
relates the short-circuit sensing current to the mechani-
cal base excitation and takes the form of an infinite-
dimensional transfer function involving hyperbolic and
square-root terms. Expressed in terms of fundamental
physical parameters and sensor dimensions, this transfer
function model is geometrically scalable. Experimental
results indicate that the proposed model captures well
both the magnitude and phase responses of the sensor
from 10 to 150 Hz. While the aforementioned frequency
range is primarily determined by limitations of the
experimental setup, it already covers the range of inter-
est for many applications. In addition, the model pre-
dicts that a tip mass can be used to effectively tune the
resonant frequencies of the vibration and sensing
dynamics, which is confirmed by experimental results.

The second contribution of this work is an inverse
compensation scheme for the proposed model, for the
reconstruction of base excitation signals given the sen-
sor output. For the purpose of real-time signal process-
ing, we reduce the original infinite-dimensional model
to finite-dimension by combining techniques of Padé
approximation and Taylor series expansion. The model
is of nonminimum phase (having zeros in the right half
plane) and is nonhyperbolic (with a zero at the origin)
and thus presents challenges in the inversion. These
challenges are addressed with stable but noncausal
inversion and leaky integration. The effectiveness of the
proposed compensation scheme as well as the underly-
ing model is validated experimentally in the reconstruc-
tion of structural vibration signals, when the structure
to which the IPMC is attached is subjected both to peri-
odic vibrations and to an impact.

The remainder of this article is organized as follows.
In section ‘‘Model derivation,’’ the dynamic model for
the base-excited IPMC sensor with a tip mass is
derived. Experimental results on model validation are
presented in section ‘‘Experimental model validation.’’
Model reduction is discussed in section ‘‘Model reduc-
tion.’’ The inversion algorithm is presented and vali-
dated with simulation and structural vibration
monitoring experiments in section ‘‘Inverse compensa-
tion scheme.’’ Finally, concluding remarks are provided
in section ‘‘Conclusion.’’

Model derivation

Mechanical dynamics of a base-excited
cantilever beam

Consider Figure 1, where the beam is clamped at one
end (z= 0) and is subjected to a base excitation u(t),

producing the bending displacement w(z, t) and a
short-circuit sensing current i(t). The neutral axis of
the beam is denoted by x= 0, and the upper and lower
surfaces are denoted by x= h and x=�h, respectively.
The y� z plane is parallel to the beam plane when the
beam is not deformed. We consider that a mass of ML

is located at the beam tip z= L. We assume that the
beam mass and the tip mass are considerably small
and their gravity effects are ignored, which implies the
skew symmetry of the axial stress. We further assume
that the IPMC undergoes small deformation when
vibrating, the deformation is restricted to the x� z

plane, and the IPMC beam has a considerably smaller
thickness 2h than its length L and width b. Therefore,
the displacement w(z, t) of the beam can be described
by the following Euler–Bernoulli beam equation with
viscous air damping and strain-rate (or Kelvin–Voigt)
damping (Clough and Penzien, 1975; Erturk and
Inman, 2011)

YI
∂4w(z, t)

∂z4
+CsI

∂5w(z, t)

∂z4∂t
+Ca

∂w(z, t)

∂t
+m

∂2w(z, t)

∂t2
=0

ð1Þ

where Y is Young’s modulus, I = 2=3(bh3) is the
moment of inertia of the beam cross section, Ca is the
viscous air damping coefficient, Cs is the strain-rate
damping coefficient, and m is the mass per unit length
of the beam. It is a simple approach to use viscous air
damping to model the force of air particles that acts on
the beam during the vibration. The composite structure
of the IPMC is assumed to demonstrate linear-
viscoelastic material behavior; hence, the strain-rate
damping is included in equation (1), accounting for the
structural damping due to the internal energy dissipa-
tion of the beam. These two mechanisms of damping
meet the proportional damping criterion, and for the
later model analysis, they are also mathematically con-
venient (Erturk and Inman, 2011).

Performing the Laplace transform on the time vari-
able t, we convert equation (1) into the Laplace domain

(YI +CsIs)
∂4W (z, s)

∂z4
+(Cas+ms2)W (z, s)= 0 ð2Þ

Figure 1. Geometric definition of an IPMC beam subjected to
base excitation.
IPMC: ionic polymer–metal composite.
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where s is the Laplace variable. Equation (2) can be
rewritten as

∂4W (z, s)

∂z4
+ 4k(s)4s2W (z, s)= 0 ð3Þ

where k(s)4 =Ca +ms=4Is(Y +Css). The general solu-
tion for equation (3) is given as follows

W (z, s)=A1(z, s) cos(pz) cosh(pz)

+A2(z, s) cos(pz) sinh(pz)

+A3(z, s) sin(pz) cosh(pz)

+A4(z, s) sin(pz) sinh(pz) ð4Þ

where p= k
ffiffi
s
p

. We consider the following BCs

w(0, t)= u(t) ð5Þ

∂w(0, t)

∂z
= 0 ð6Þ

IL

∂3w(L, t)

∂t2∂z
+

∂2w(L, t)

∂z2
= 0 ð7Þ

YI
∂3w(L, t)

∂z3
�ML

∂3w(L, t)

∂t3
= 0 ð8Þ

or equivalently

W (0, s)=U (s) ð9Þ

∂W (0, s)

∂z
= 0 ð10Þ

s2IL

∂W (L, s)

∂z
+

∂2W (L, s)

∂z2
= 0 ð11Þ

∂3W (L, s)

∂z3
� g(s)W (L, s)= 0 ð12Þ

where g(s)= s3ML=YI and IL is the moment of inertia
of the tip mass about z= L. For the geometric BCs at
z= 0 (clamped base), the first BC (5) means that the
base displacement is prescribed by the excitation u(t)
(U (s)), and the second BC (6) indicates the fixed slope
of zero. For the natural BCs at z= L (free end), the
third BC (7) indicates the zero bending moment, and
equation (8) means that the internal shear force is in
equilibrium with the force applied by the mass at the
tip (Erturk and Inman, 2011). The moment of inertia
of the tip mass attachment IL is ignored in equation (7)
based on the assumption that the attachment is a point
mass right on the tip.

By substituting the BCs into equation (4), we get the
following equation for the transformed displacement

W (z, s)=U (s)
N1(z, s)

D1(s)
ð13Þ

where

N1(z, s)=D1(s)½cos(pz) cosh (pz)� sin (pz) sinh (pz)G1(s)�
+ ½C1(s)+C2(s)G1(s)�½cosh (pz) sin (pz)

� cos(pz) sinh (pz)� ð14Þ

C1(s)= sin(pL) sinh(pL) ð15Þ
C2(s)= cos(pL) cosh(pL) ð16Þ

G1(s)=

g(s)( sin (2pL)+ sinh (2pL))+ 2p3( cosh (2pL)� cos(2pL))

g(s)( sinh (2pL)� sin (2pL))+ 2p3( cos(2pL)+ cosh (2pL)+ 2)

ð17Þ
D1(s)= cos(pL) sinh (pL)+ cosh (pL) sin (pL) ð18Þ

Following Clough and Penzien (1975), we can
decompose W (z, s) as

W (z, s)=W s(z, s)+W d(z, s) ð19Þ

where W s(z, s) is the quasi-static displacement due to
the base motion, W s(z, s)=U (s), and W d(z, s) is the
dynamic displacement due to dynamic inertial and vis-
cous force effects. The axial strain in the IPMC beam is
only produced by W d(z, s)

W d(z, s)=U (s)
N1(z, s)

D1(s)
� U (s) ð20Þ

Charge dynamics in the IPMC

The governing PDE for charge distribution within
IPMC was first proposed by Nemat-Nasser and Li
(2000). Since the thickness of the IPMC beam is much
smaller than its length or width, it can be assumed that
the electric field E inside the polymer is restricted to the
thickness direction (x-direction) (Chen et al., 2007b).
Following the derivation by Chen et al. (2007b), we
obtain the linearized PDE for the charge density distri-
bution r(x, z, t)

r(x,z, t)

∂t
�d

∂2r(x,z, t)

∂x2
+

F2dC�

keRT
(1�C�DV )r(x,z, t)=0

ð21Þ

where d is the ionic diffusivity, F is Faraday’s constant,
C� is the anion concentration (mol m23), ke is the
effective dielectric constant of the polymer, R is the gas
constant, T is the absolute temperature, and DV is the
volumetric change, which represents how much the
polymer volume swells after taking water. Since the
anions are permanently attached to the backbone struc-
ture, C� is assumed to be spatially homogeneous.
Furthermore, in the absence of large changes in the
hydration level (as in the context considered in our
work), it is reasonable to assume that C� is a constant.
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Equation (21) can be converted into the Laplace
domain

∂2r(x, z, s)

∂x2
� b(s)2r(x, z, s)= 0 ð22Þ

where b(s)2 =(s+K)=d and K ¼D (F2dC�=keRT)
(1� C�DV ). The general solution of equation (22)
takes the form

r(x, z, s)= a1(z, s) e�b(s)x + a2(z, s) eb(s)x ð23Þ

where a1(z, s) and a2(z, s) depend on the BCs.

The sensing model

Following Farinholt and Leo (2004) and Chen et al.
(2007b), we assume that the charge density r(x, z, s) is
proportional to the mechanically induced stress
s(x, z, s) at the boundary x=6h

s(6h, z, s)=aor(6h, z, s) ð24Þ

where ao is the charge–stress coupling constant. From
the fact that s(h, z, s)+s(� h, z, s)= 0, one gets
r(h,z,s)+r(�h,z,s)=0, which implies that a1(z,s)=
�a2(z,s). Consequently, equation (23) becomes

r(x, z, s)= 2a2(z, s) sinh (b(s)x) ð25Þ

We can further relate the stress s to the external sti-
mulus U (s)

s(x, z, s)=
M(z, s)x

I
ð26Þ

where M(z, s) denotes the bending moment at z, which
can be written as

M(z, s)= YI
∂2W d(z, s)

∂z2

= YI
U (s)

D1(s)

∂2N1(z, s)

∂z2
ð27Þ

Define

N2(z, s) ¼D ∂2N1(z, s)

∂z2
ð28Þ

We can then write

s(x, z, s)=
YxU(s)N2(z, s)

D1(s)
ð29Þ

Using equations (25) and (29) at x= h, we can solve
for a2(z, s)

a2(z, s)=
YhU(s)N2(z, s)

2aoD1(s) sinh (b(s)h)
ð30Þ

Finally, let E and f denote the electric field and elec-
tric potential, respectively. The following equations
hold

E(x, z, s)= � ∂f(x, z, s)

∂x

ke

∂E(x, z, s)

∂x
= r(x, z, s)

With these equations and equation (25), we can
solve for E(x,z,s) using the short-circuit BC f(h,z,s)
�f(�h,z,s)=0. Note that here we assume perfectly
conducting electrodes for the IPMC. In later experi-
ments, the latter assumption is satisfied by further
depositing gold on the electrodes to greatly reduce the
surface resistance. The resulting electric field is evalu-
ated as

E(x, z, s)=
2a2(z, s) cosh (b(s)x)

keb(s)
� 2a2(z, s)

sinh (b(s)h)

kehb2(s)

ð31Þ

The total induced charge can be obtained by inte-
grating the electric displacement D= keE over the
beam area at the boundary x= h

Q(s)=
bY (b(s)h coth (b(s)h)� 1)U (s)

aoD1(s)b
2(s)

N3(s) ð32Þ

where

N3(s)=

ðL

0

N2(z, s)dz

= 2p(s)½C1(s)+C2(s)G1(s)� sin (p(s)L) sinh (p(s)L)
� D1(s)p(s)½cosh (p(s)L) sin (p(s)L)(G1(s)+ 1)

+ cos(p(s)L) sinh (p(s)L)(G1(s)� 1)�

Finally, the transfer function for the sensor, taking
the base stimulus U (s) as input and the short-circuit
current I(s) as output, is

H(s)=
I(s)

U (s)
=

sQ(s)

U (s)

=
bYs(b(s)h coth (b(s)h)� 1)

aob2(s)

N3(s)

D1(s)

ð33Þ

For the special case of zero tip mass, ML = 0,
g(s)= 0, G1(s) becomes

G1(s)=
cosh (2p(s)L)� cos(2p(s)L)

cos(2p(s)L)+ cosh (2p(s)L)+ 2

and H(s) is evaluated as

H(s)=
bYs(b(s)h coth (b(s)h)� 1)

aob2(s)

N 93(s)

D91(s)
ð34Þ
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where

N 93(s)= 2p(s)½cos(p(s)L) sinh (p(s)L)
� cosh (p(s)L) sin (p(s)L)� ð35Þ

D91(s)= cos (p(s)L)2 + cosh (p(s)L)2 ð36Þ

Experimental model validation

Experimental setup

Figure 2(a) and (b) shows the schematic and the photo-
graph of the experimental setup, which can provide
base excitation for a cantilevered IPMC beam and
allow the measurement of base displacement, tip displa-
cement, and the IPMC sensing current. An IPMC beam
with a tip mass is clamped at the base by two rigid bars,
and the bars are fixed on a mini-shaker (Type 4810;
Brüel & Kjær), which generates vibration stimulus (up
and down) with some controlled frequency. A narrow
strip of the tape, used as the tip mass, is wrapped
around the free end of the IPMC beam. The weight of
the tip mass is controlled by the length of the tape strip.
In order to verify the beam dynamics and identify some
mechanical parameters, two laser displacement sensors
(OADM 20I6441/S14F; Baumer Electric) are mounted
above the IPMC beam, one measuring the tip displace-
ment, while the other measuring the base displacement.
The mounting frame for the laser sensors is isolated
from the table where the mini-shaker is mounted. A

two-tier amplification circuit is used to measure the
short-circuit current generated by the IPMC. Control
signal generation, sensing data acquisition, and process-
ing are performed through a dSPACE system (RTI
1104; dSPACE). The IPMC sample used in this article
was obtained from Environmental Robots Inc. and
then deposited with a layer of gold (0.2 mm thick) on
each side in the electron beam physical vapor deposi-
tion system (Kurt Lesker AXXIS� PVD system),
which significantly reduced the surface resistance. The
dimensions of the sample are given in Table 1. Its sur-
face resistance was reduced from 65 to about 2 O after
gold deposition, which justifies the assumption of per-
fectly conducting electrodes used in the modeling part.

Parameter identification and model validation

Table 1 lists the physical constants and the parameters
obtained through direct measurement. The temperature
is read directly from the thermometer in the room. The
geometric dimensions, including length, width, and
thickness, are measured with a vernier caliper. For both
width and thickness, multiple measurements are con-
ducted at different points along the IPMC sample, and
the average values are adopted. The mass per unit
length of the beam is calculated by dividing the weight
of the sample, which is obtained with a precision elec-
tronic balance, by the sample length. The parameters
that remain to be determined include Young’s modulus
Y , viscous air damping coefficient Ca, strain-rate

(a) (b)

Figure 2. The (a) schematic and (b) photograph of the experimental setup for model validation.
IPMC: ionic polymer–metal composite; ADC: analog-to-digital converter; DAC: digital-to-analog converter; PC: personal computer.

Table 1. Physical constants and directly measured parameters

F (C mol�1) R (J mol�1 K�1) T (K) L (mm) b (mm) h (mm) m (kg m�1)

96,487 8.3143 300 29.45 6.05 160 3:797310�3
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damping coefficient Cs, diffusion coefficient d, anion
concentration C�, dielectric constant ke, and charge–
stress coupling constant ao.

Considering that there are as many as seven para-
meters to be identified, it is better to separate Young’s
modulus Y , viscous air damping coefficient Ca, and
strain-rate damping coefficient Cs from other para-
meters, and identify these three first, since they can be
determined using only the base-excited beam dynamics
as shown in equation (13). To be specific, we fix an exci-
tation frequency f and acquire the base vibration u(t)
and tip mechanical deformation w(L, t). Both u(t) and
w(L, t) are measured by the laser sensors. The ampli-
tudes and phases of these two signals are extracted
through fast Fourier transform and then used to com-
pute the magnitude gain and phase shift of the beam
dynamics at that particular frequency. Repeating this
process for other actuation frequencies results in the
empirical frequency response for the beam dynamics.
Our experimental setup allows reliable control and sig-
nal acquisition for the excitation frequency range of 10–
150 Hz. The lower frequency bound is determined by
the mini-shaker characteristics, while the upper bound
is determined by the response time of the laser sensors
(close to 1 ms). Despite the limitation, this frequency
range covers the relevant frequency spectrum of many
applications that are of interest. The three parameters

Y , Cs, and Ca are tuned by curve-fitting the frequency
response of the mechanical dynamics using the
MATLAB function fminsearch. Once Y and Cs are iden-
tified, they are plugged into H(s) for estimating the four
remaining parameters using a similar curve-fitting strat-
egy for the sensing model.

Figure 3 shows the result of curve-fitting for the
mechanical model, W (L, s)=U (s), and Figure 4 shows
the result of curve-fitting for the sensing model, H(s).
For each figure, there are four groups of experimental
results, one of which corresponds to the IPMC sample
without tip mass, while the other three correspond to
the same sample with different tip masses (10, 20, and
30 mg). Only the experimental data without tip mass
were used for parameter identification. Then, the iden-
tified parameters are applied to predict the frequency
response of the mechanical and sensing dynamics of
the IPMC sensor with different tip masses. All the iden-
tified parameters are listed in Table 2. Generally, they
have good agreement with the values reported in the lit-
erature (Chen et al., 2007b; Farinholt and Leo, 2004;
Nemat-Nasser and Li, 2000), while the moderate para-
meter discrepancies can be explained by the fact that
the IPMC sample used in this article is different and is
tested in different ambient environments (humidity,
temperature) from those reported in the literature. The
identified in-air damping coefficient Ca is very small
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Figure 3. Comparison of the measured frequency responses with model predictions for different tip masses (0, 10, 20, and 30 mg):
mechanical dynamics (input: base excitation; output: tip displacement).
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and can be neglected without affecting the model pre-
diction too much, which is assumed to be so in some
literature (Brufau-Penella et al., 2008).

As shown in Figures 3 and 4, although the para-
meters are fitted based on one group of experimental
data in the case of zero tip mass, the model predictions
match well the experimental data for all the four cases
with different tip masses, over the considered frequency
range, for both the magnitude and phase responses,
which provides strong support for the physical nature
of the proposed modeling approach. The discrepancies
between the model prediction and the experimental
data are attributed to idealistic assumptions in the mod-
eling that are not fully satisfied by the experimental
setup, uncertainties in ambient environmental condi-
tions including the temperature and the humidity, and
bandwidth limitations of the laser sensors. Both the
temperature (Ganley et al., 2011) and the humidity
(Brunetto et al., 2011) influence the dynamic behavior
of an IPMC. There are several approaches that can be
adopted to mitigate the impact of environmental

variations and improve the model accuracy. For exam-
ple, one can follow a similar approach proposed by
Ganley et al. (2011) to characterize the temperature/
humidity dependence of the physical parameters, to
approximate such dependencies with simple functions
such as polynomials, and then to use auxiliary measure-
ments of temperature and/or humidity to obtain the
corresponding parameters. The influence of humidity
can also be greatly reduced by encapsulating the IPMC
with materials such as parylene to set up barriers
against water permeation (Lei et al., 2012b).

Given Young’s modulus and the beam dimensions,
the natural frequencies for a base-excited cantilever
beam with zero tip mass can be calculated by the fol-
lowing formula

f =
R2

ch

2p

ffiffiffiffiffiffiffiffi
YI

mL4

r
ð37Þ

where Rch is the root of the characteristic equation, with
the value of 1.8751 and 4.6941 for the first mode and

Table 2. Identified parameters by curve-fitting

Y (Pa) Ca (kg m�1 s�1) Cs (Pa s) d (m2 s�1) C� (mol m�3) ke (F m�1) ao (J C�1)

5:1163108 0:024 1:913105 1:973310�15 1085 1:07310�3 94.64
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Figure 4. Comparison of the measured frequency responses with model predictions for different tip masses (0, 10, 20, and 30 mg):
sensing dynamics (input: base excitation; output: IPMC short-circuit current).
IPMC: ionic polymer–metal composite.
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second mode, respectively (Ghosh, 1986). By plugging
the sample dimensions given in Table 1 and Young’s
modulus in Table 2 into (37), we get the natural fre-
quency of 30 Hz for the first-mode vibration of the pro-
posed IPMC sample with zero tip mass and 189 Hz for
the second mode. Limited by the response time of the
laser displacement sensors, which determines the upper
bound of the excitation frequency for reliable motion
measurement, the considered frequency range is up to
150 Hz, in which the second mode has also been acti-
vated, as can be observed from the magnitude and
phase responses beyond 100 Hz in Figure 3. We suspect
that the relatively large phase discrepancies between the
model and the experimental measurement in the higher
frequency range close to 150 Hz are due to the less pre-
cise laser measurement.

From Figures 3 and 4, we can clearly see how the tip
mass influences the mechanical and sensing dynamics
of the IPMC sensor by changing its gain and resonant
frequency. In particular, with larger tip mass, the reso-
nant frequency is lower. This observation will be useful
for real applications, where one can tune the tip mass to
make the resonant frequency close to the dominant fre-
quencies in the excitation stimuli, to maximize the sen-
sor response.

Model reduction

The sensing model H(s), shown in equation (33), is
infinite-dimensional since it involves nonrational func-
tions such as sinh ( � ), cosh ( � ), and ffiffi�p . For practical
use of the model, it is of interest to reduce the model to
a finite order. Without losing generality, we will focus
on the case of zero tip mass for ease of presentation. We
first decompose H(s) as H(s)=HE(s) � HM (s), where

HE(s)=
sbY ½b(s)h coth (b(s)h)� 1�

aob2(s)
, HM (s)=

N 93(s)

D91(s)

ð38Þ

Note that HM and HE are related to the mechanical
and electrical dynamics, respectively. First, consider
HE. Since C�DVj j � 1 (Nemat-Nasser and Li, 2000),
we take 1� C�DV’1. Based on the physical para-
meters (see Tables 1 and 2 in section ‘‘Experimental
model validation’’), for s= jv, one has jb(s)j
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs+KÞ=d

p�� ��.106, when the angular frequency v

is relatively low. Furthermore, we have coth (b(s)h)’ 1.
HE(s) can then be simplified as

HE(s)’
sbY (b(s)h� 1)

aob2(s)
=

sbY
ffiffiffi
d
p

(
ffiffiffiffiffiffiffiffiffiffiffiffi
s+K
p

h�
ffiffiffi
d
p

)

ao(s+K)

ð39Þ

We need to further approximate
ffiffiffiffiffiffiffiffiffiffiffiffi
s+K
p

with a
rational function of s. After comparing with the
approximation result using Taylor series expansion, we

have found that Padé approximation (Baker and
Graves-Morris, 1996) provides better performance.
Given a function of f (s) and two integers m � 0 and
n � 1, the Padé approximation of order (m=n) around
a point s0 is the rational function Pm, n(s� s0)

f (s)’Pm, n(s� s0)=

Pm
l = 0

ql(s� s0)
l

1+
Pn

k = 1

dk(s� s0)
k

ð40Þ

It is found that the Padé approximation of the order
(3/2) can provide adequate approximation with mini-
mal complexity for

ffiffiffiffiffiffiffiffiffiffiffiffi
s+K
p

around some point s0,
where s0 = jjv0j and v0 is close to the midpoint of the
angular frequency range one is interested in. In this
article, we take s0 = 500 because the frequency range
considered in our experiments is from 10 to 150 Hz.

The resulting finite-dimensional approximation to
HE(s) is

Ĥ
E
(s)=

sbY
ffiffiffi
d
p

ao

u3s3 + u2s2 + u1s+ u0

r3s3 + r2s2 + r1s+ r0

ð41Þ

where u0, . . . , u3 and r0, . . . , r3 are coefficients depen-
dent on K and s0. The detailed forms of these coeffi-
cients are shown in Appendix 1.

Now consider the model reduction for
HM (s)=N 93(s)=D91(s). When there is no tip mass,
N 93(s) and D91(s) are denoted by equations (35) and
(36), respectively. First, recall that

N 93(s)= 2p(s)½cos(p(s)L) sinh (p(s)L)� cosh (p(s)L) sin (p(s)L)�
= 2

ffiffiffiffi
rs

4
p ½cos( ffiffiffiffi

rs
4
p

L) sinh (
ffiffiffiffi
rs

4
p

L)� cosh (
ffiffiffiffi
rs

4
p

L) sin (
ffiffiffiffi
rs

4
p

L)�
ð42Þ

where

rs =
(Ca +ms)s2

4Is(Y +Css)
=

s(Ca +ms)

4I(Y +Css)
ð43Þ

Similarly, one can rewrite D91(s) as

D91(s)= cosh2 (
ffiffiffiffi
rs

4
p

L)+ cos2 (
ffiffiffiffi
rs

4
p

L) ð44Þ

It is found that good approximation of HM (s) can be
achieved by using Taylor series expansion for N 93(s)
and D91(s) separately. Considering up to the second-
order Taylor series, which provides satisfactory approx-
imation with minimal complexity, we can get the fol-
lowing approximation to HM (s) around rs = r0

ĤM (s)’
b2(rs � r0)

2 + b1(rs � r0)+ b0

d2(rs � r0)
2 + d1(rs � r0)+ d0

ð45Þ

for some coefficients b0, b1, b2 and d0, d1, d2. The
detailed expressions for these coefficients are given in
Appendix 2. Based on the experimental results of
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parameter identification (see section ‘‘Parameter identi-
fication and model validation’’), jrsj is of the order
from 105 to 107, so the value of r0 can be chosen with
large flexibility. Simulation results indicate that any
real number of r0 from 0:01 to 106 will give almost the
same good approximation results. Without the loss of
generality, we take r0 = 1000 in this article.

According to the parameter identification result,
Ca � mjsj, when the frequency is 10 Hz or above, which
enables one to make the approximation

rs’
ms2

4I(Y +Css)
ð46Þ

Substituting equation (46) into equation (45), we
have

ĤM (s)=
b2(

ms2

4I(Y +Css)
� r0)

2
+ b1(

ms2

4I(Y +Css)
� r0)+ b0

d2(
ms2

4I(Y +Css)
� r0)

2
+ d1(

ms2

4I(Y +Css)
� r0)+ d0

=
b94s4 + b93s3 + b92s2 + b91s+ b90

d94s4 + d93s3 + d92s2 + d91s+ d90

ð47Þ

for some coefficients b90, . . . , b94 and d90, . . . , d94. The
detailed expressions for these coefficients are given in
Appendix 2.

Combining equations (41) and (47) leads to a
reduced model for a base-excited IPMC sensors

Ĥ(s)= ĤE(s)ĤM (s)=
sbY

ffiffiffi
d
p

ao

u3s3 + u2s2 + u1s+ u0

r3s3 + r2s2 + r1s+ r0

� b94s4 + b93s3 + b92s2 + b91s+ b90

d94s4 + d93s3 + d92s2 + d91s+ d90

ð48Þ

Note that this reduced model of equation (48) is
still a physics-based model and geometrically scalable
since it is expressed in terms of fundamental physical
parameters and sample dimensions. Such a characteris-
tic distinguishes this model from other low-order,
black-box or gray-box models. Figure 5 shows the
comparison of simulation results between the original,
infinite-dimensional model H(s) and the reduced model
Ĥ(s), for the IPMC sensor with zero tip mass. From
Figure 5, it can been seen that although there are some
noticeable discrepancies at the high end of the fre-
quency range, overall the reduction from equation (33)
to equation (48) does not produce significant approxi-
mation error, indicating the feasibility of the proposed
model reduction strategy.

In order to further validate the proposed model and
the reduction approach, we have excited the IPMC
base with a multitone oscillatory signal, which has not
been used in the parameter identification process.
In particular, the used excitation signal is
u(t)= 0:1742 sin (2p � 60t+ 0:5)+ 0:1944 sin (2p � 80t)
+ 0:0621 sin (2p � 100t+ 1) mm. The measured base
excitation is fed to the reduced model, to predict the
sensing signal in the time domain. Figure 6 shows the

comparison between the measured and predicted sen-
sing currents, where one can see that excellent agree-
ment in both magnitude and phase is achieved. The
reduced model will be used for reconstructing the base
excitation stimulus through inverse compensation.

Inverse compensation scheme

The inversion algorithm

An important motivation for deriving a transfer
function-type sensing model H(s) for base-excited
IPMC sensors is its potential use in structural vibration
monitoring. In such applications, we need to infer the
underlying mechanical stimulus given the current out-
put of an IPMC sensor. In particular, we are interested
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in reconstructing the original mechanical signal u(t)
based on the sensor output i(t), either online or off-line.
Intuitively, the reconstruction can be achieved by
inverting the sensing model

U (s)=Hinv(s)I(s)

where Hinv(s) represents the inverse dynamics

Hinv(s)=
1

Ĥ(s)

However, the reduced model Ĥ(s) obtained is of
nonminimum phase (having zeros with positive real
parts), and thus, the resulting Hinv(s) would be unstable
and not implementable. For example, based on the
parameters in section ‘‘Parameter identification and
model validation,’’ the resulting transfer function Ĥ(s)
has three stable zeros (�35:98, �500:2, �6965) and one
zero at the origin for the mechanoelectric portion of
ĤE(s), and two stable zeros (�1176, �9:38) and two
unstable zeros (+2096, + 9:413) for the beam
dynamics portion of ĤM (s). Note that those zeros that
are on the origin or close to the origin are also proble-
matic for inverse implementation.

In this article, we explore the use of techniques for
stable inversion of nonminimum-phase systems
(Devasia et al., 1996; Ganley et al., 2011) to reconstruct
the base excitation on the IPMC sensor using the sen-
sing current output. It is first assumed that Ĥ(s) is
hyperbolic, meaning that it has no zeros on the imagin-
ary axis. Therefore, the zeros at the origin and close to
the origin will be treated separately. The inversion
problem is formulated as follows: given the sensor out-
put function i(t), 0<t\‘, find the function u(t),
0<t\‘, such that

i(t)= Ĥ(s)½u�(t) ð49Þ

where the mixed frequency–time domain notation
Ĥ(s)½u�(t) represents the signal obtained by passing u( � )
through the system Ĥ(s). If Ĥ(s) is a minimum-phase
system, the solution u(t) can be computed easily using

u(t)=Hinv(s)½i�(t) ð50Þ

For a nonminimum phase Ĥ(s), as in the case of an
IPMC sensor, Hinv(s) contains unstable poles, and thus,
the algorithm above is not implementable. To solve
the inversion problem, we decompose Hinv(s)=
Hs(s)+Hu(s), where all poles of Hs(s) have negative
real parts, while all poles of Hu(s) have positive real
parts. Note that by the hyperbolic assumption on Ĥ(s),
Hinv(s) has no poles on the imaginary axis. The solution
u(t) to the inversion problem will correspondingly have
two parts: u(t)= us(t)+ uu(t), where us(t)=Hs(s)½i�(t)
and uu(t) is computed as follows (see Figure 7 for
illustration).

We first mirror the signal i(t) with respect to t = 0

and obtain~i(t)= i(� t). Then, we pass the time-reversed
signal ~i through a stable system ~Hu(s) ¼D Hu(� s) and
get ~uu = ~Hu(s)½~i�(t). We then obtain uu from ~uu by rever-
sing the time again, uu(t)= ~uu(� t). Note that evaluat-
ing uu(t

�) for some t�, requires knowing i(t), for all t.t�.
Therefore, the essence of stable inversion of a
nonminimum-phase system lies in converting an origi-
nally unstable but causal system to a stable but noncau-
sal system. The stable inversion algorithm can be easily
adapted so that it requires a finite amount of ‘‘preview
time’’ (as opposed to all time into the future) (Devasia et
al., 1996; Ganley et al., 2011) with arbitrarily small
approximation errors.

Finally, we need to deal with the zero of Ĥ(s) at the ori-
gin, we approximate it by �e.0. In our implementation, e
is chosen to be �0:1. This is reasonable since s+ 0:1’s

within the considered frequency range of 10–150 Hz.

Simulation results

The inversion scheme for the reduced model is first illu-
strated through reconstructing the mechanical excitation
from sensing current in simulation. A multitone oscilla-
tory base excitation signal is generated, where
u(t)=0:2 sin (35 � 2pt+p=3)+0:1 sin (20 � 2pt+p=4)+
0:05 sin (15 � 2pt) mm. The resulting sensing current, eval-
uated using the reduced model, is then used to infer the
base displacement using the proposed inverse compensa-
tion scheme. Figure 8 shows that good agreement has
been achieved between the predicted and original base
excitation signals, indicating that the inverse compensa-
tion scheme is effective. The slight mismatch is likely due
to the approximation of s by s+0:1, and investigation is
underway to understand how to minimize the mismatch.

Structural vibration monitoring

The proposed model and inverse compensation scheme
are further validated in structural vibration monitoring
experiments. In these experiments, we use the current
output of an IPMC sensor to reconstruct the time
domain vibration signal on a mechanical structure.
Figure 9 shows the experimental setup. The base of the
IPMC beam is attached to an aluminum frame struc-
ture. Two types of stimuli are applied to the structure.

Figure 7. Schematic of the stable inversion algorithm for a
nonminimum-phase system.
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First, a periodic stimulus is generated by a subwoofer
that sits on the aluminum structure. The subwoofer
receives oscillatory actuation signals generated from
the dSPACE system and produces the corresponding
mechanical vibration, which is then transferred to the
aluminum frame. The second type of stimulus is an
impact, generated by hitting the frame with an iron
hammer. A laser displacement sensor is amounted
above the base of the IPMC sensor, detecting the actual
mechanical displacement at the base. The same current-
amplifier circuit in Figure 2 is used to measure the
IPMC sensing current. The reconstructed mechanical
stimulus signal will be compared with the measured
vibration displacement.

Experiment results. Figure 10 shows the experimental
result for the case of a multitone oscillatory excitation
generated by the subwoofer. As we can see from
Figure 10, there is a reasonable agreement at the steady
state between the reconstructed vibration signals and the
measured displacement from laser sensor. Figure 11

shows the comparison between the measured base vibra-
tion with its sensor-based reconstruction for the case of
an impact stimulus, where good agreement is achieved
again. Notice that the temperature and the humidity
level of the ambient environment in which these experi-
ments are conducted might be different from those for
the parameter identification process, which can contrib-
ute to the errors between the reconstructed signals and
the real measurement. As we discussed in section
‘‘Parameter identification and model validation,’’ impacts
of these factors can be mitigated in several ways.

Conclusion

In this article, we have developed a dynamic model for a
base-excited IPMC sensor in air, which comprises a cas-
cade of a mechanical module accounting for the vibra-
tion dynamics and an electrical module accounting for
the charge dynamics within the IPMC. The model has a
closed form and is geometrically scalable. Schemes have
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Figure 9. Experimental setup for structural vibration monitoring.
IPMC: ionic polymer–metal composite.
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been developed to approximate the original infinite-
dimensional model with one that is finite-dimensional,
to facilitate practical use in sensing and feedback control
applications. Experimental results have validated the
mechanical vibration model and the overall sensing
model. In addition, an inverse compensation scheme has
been described and illustrated with simulation results
and structural monitoring experiments.

Future work can be pursued in several directions. First,
in this article, we have assumed perfectly conducting electro-
des. A natural extension would be to incorporate the effect
of surface resistance so that the model is able to predict
accurately the response of IPMC sensors with nonideal elec-
trodes. Second, as we show in this article, the air-damping
and added-mass effects are negligible when the IPMC sen-
sor is operated in air. This may not be the case if the sensor
is operated in an aqueous environment, where nonlinear
damping and added-mass effects are nonnegligible as shown
in the works of Aureli and Porfiri (2010) and Aureli et al.
(2012). In that case, our model can be potentially extended
to incorporate those effects following the approach by
Aureli et al. (2012) and Aureli and Porfiri (2010). Finally,
we will continue to investigate effective packaging schemes
for IPMC sensors to minimize the influence of environmen-
tal humidity on their behaviors, which will bring IPMC sen-
sors closer to practical applications such as monitoring of
bridges and other structures.
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Appendix 1

Derivation of equation (41)

Based on the algorithm of the Padé approximation
(Baker and Graves-Morris, 1996), for f (s)=

ffiffiffiffiffiffiffiffiffiffiffiffi
s+K
p

expanded around s= s0, one gets equation (40) as

f (s)=
ffiffiffiffiffiffiffiffiffiffiffiffi
s+K
p

’

Pm
l = 0

ql(s� s0)
l

1+
Pn

k = 1

dk(s� s0)
k

ð51Þ

For m= 3, n= 2

d1 =
a2a5 � a3a4

a2
3 � a2a4

d2 =
a2

4 � a3a5

a2
3 � a2a4

q0 = a0

q1 = a1 + a0d1

q2 = a2 + a1d1 + a0d2

q3 = a3 + a2d1 + a1d2

where a0, . . . , a5 are calculated as

a0 = f (s0)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 +K

p
a1 = f (1)(s0)=

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 +K
p

a2 = f (2)(s0)=
�1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s0 +K)3

q

a3 = f (3)(s0)=
3

48
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s0 +K)5

p
a4 = f (4)(s0)=

�15

384
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s0 +K)7

p
a5 = f (5)(s0)=

105

3840

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s0 +K)9

q

and f (k) denotes the kth derivative of f . Substituting
equation (51) into equation (39), we have
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Ĥ
E
(s)=

sbY
ffiffiffi
d
p

ao

P3

l= 0

ql(s�s0)
l

1+
P2

k = 1

dk (s�s0)
k

h�
ffiffiffi
d
p

s+K

=
sbY

ffiffiffi
d
p

ao

u3s3 + u2s2 + u1s+ u0

r3s3 + r2s2 + r1s+ r0

which is equation (41) with

u3 = hq3

u2 = hq2 � 3hq3s0 �
ffiffiffi
d
p

d2

u1 = 3hq3s2
0 � 2hq2s0 + 2

ffiffiffi
d
p

d2s0 �
ffiffiffi
d
p

d1

u0 = � hq3s3
0 +(hq2 �

ffiffiffi
d
p

d2)s
2
0

+(
ffiffiffi
d
p

d1s0 � hq1)s0 + hq0 �
ffiffiffi
d
p

r3 = d2

r2 = d1 � 2d2s0 +Kd2

r1 = d2s2
0 � (d1 + 2Kd2)s0 + 1+Kd1

r0 =Kd2s2
0 � Kd1s0 +K

Appendix 2

Derivation of equation (47)

From equation (42), one can perform Taylor expansion
about rs = r0 to approximate N93(s), considering up to
the second-order terms

N 93(s)’N 93(rs = r0)+
dN93(s)

drs

jrs = r0
(rs � r0)

+
d2N 93(s)

dr2
s

jrs = r0

(rs � r0)
2

2!

= b0 + b1(rs � r0)+ b2(rs � r0)
2 ð52Þ

where

R0 =
ffiffiffiffi
r0

4
p

L

b0 =N 93(rs = r0)

= 2
ffiffiffiffi
r0

4
p ½cos(R0) sinh (R0)� cosh (R0) sin (R0)�

b1 =
dN 93(s)

drs

jrs = r0

=
cos(R0) sinh (R0)� cosh (R0) sin (R0)

2
ffiffiffiffi
r3

0
4
p

� L sin (R0) sinh (R0)ffiffiffiffi
r0
p

b2 =
1

2!

d2N 93(s)

dr2
s

jrs = r0

=
L sin (R0) sinh (R0)

8
ffiffiffiffi
r3

0

p
� 3½cos(R0) sinh (R0)� cosh (R0) sin (R0)�

16
ffiffiffiffi
r7

0
4
p

� L2½cos(R0) sinh (R0)+ cosh (R0) sin (R0)�
8
ffiffiffiffi
r5

0
4
p

Similarly, from equation (44), one can approximate
D91(s) by using the Taylor series expansion

D91(s)’d0 + d1(rs � r0)+ d2(rs � r0)
2

where

d0 =D91(rs = r0)= cosh2 (R0)+ cos2 (R0)

d1 =
dD91(s)

drs

jrs = r0
=
�L½sin (2R0)� sinh (2R0)�

4
ffiffiffiffi
r3

0
4
p

d2 =
1

2!

d2D91(s)

dr2
s

jrs = r0

=
L½3 sin (2R0)� 3 sinh (2R0)� 2R0 cos(2R0)+ 2R0 cos(2R0)�

32
ffiffiffiffi
r7

0
4
p

Substituting equation (46) into equation (45), we
have equation (47) as

ĤM (s)=
b2(

ms2

4I(Y +Css)
� r0)

2
+ b1(

ms2

4I(Y +Css)
� r0)+ b0

d2(
ms2

4I(Y +Css)
� r0)

2
+ d1(

ms2

4I(Y +Css)
� r0)+ d0

=
b94s4 + b93s3 + b92s2 + b91s+ b90

d94s4 + d93s3 + d92s2 + d91s+ d90

where

b94 = b2m2

b93 = 4b1mICs � 8b2mr0ICs

b92 = 4b1mIY � 8b2mr0IY + 16I2C2
s (b2r2

0 + b0 � b1r0)

b91 = 32I2YCs(b2r2
0 + b0 � b1r0)

b90 = 16I2Y 2(b2r2
0 + b0 � b1r0)

d94 = d2m2

d93 = 4d1mICs � 8d2mr0ICs

d92 = 4d1mIY � 8d2mr0IY + 16I2C2
s (d2r2

0 + d0 � d1r0)

d91 = 32I2YCs(d2r2
0 + d0 � d1r0)

d90 = 16I2Y 2(d2r2
0 + d0 � d1r0)
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