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ABSTRACT
Anartificial lateral line (ALL) systemconsists of a set of flow sensors arounda
fish-like body. An ALL system aims to identify surroundingmoving objects,
a common example of which is a vibrating sphere, called a dipole. Accu-
rate identification of a vibrating dipole is a challenging task because of
the presence of different types of uncertainty in measurements or in the
underlying flow model. Proper selection of design parameters of the ALL
system, including the shape, size, number and location of the sensors, can
highly influence the identification accuracy. This study aims to find such an
optimumdesignbydeveloping a specialized bi-level optimizationmethod-
ology. It identifies and simulates different sources of uncertainty in the
problem formulation. A parametric fitness function addresses computa-
tional and practical goals and encompasses the effect of different sources
of uncertainty. It can also analyse the trade-off between localization accu-
racy and the number of sensors. Comparison of the results for different
extents of uncertainty reveals that the optimized design strongly depends
on the amount of uncertainty as well as the number of sensors. Conse-
quently, these factors must be considered in the design of an ALL system.
Another highlight of the proposed bi-level optimization methodology is
that it is generic and can be readily extended to solve other noisy and
nested optimization problems.
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1. Introduction

The lateral line system is an important flow-sensing organ, which is involved in various behaviours
of fish (Bleckmann 1994), such as schooling (Pitcher, Partridge, and Wardle 1976), station holding
(Bleckmann et al. 2012) and object detection (Von Campenhausen, Riess, and Weissert 1981). A lat-
eral line system consists of arrays of flow sensors called neuromasts (Hassan 1993). One of the two
types of neuromasts is the superficial neuromasts, which stick out of the fish skin and respond to
flow velocities (Engelmann et al. 2000). The response of the neuromasts, in the form of neuronal
pulses, is further transmitted to the central nervous system for information processing (Bleckmann
2008).

It is of great interest to develop an engineering equivalent of a biological lateral line for underwater
applications. Such an artificial lateral line (ALL) system will introduce a novel and noiseless sensing
modality for the navigation and control of underwater robots and vehicles (DeVries et al. 2015), and
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provide complementary information to traditional underwater vision sensors and sonar (Fernandez
et al. 2011).

Some theoretical work has been conducted on flow modelling and information processing to
extract information in ALLs (Hassan 1993; Ren and Mohseni 2012; DeVries and Paley 2013).
Although some previous studies aimed at detecting moving objects and vortices (Venturelli et al.
2012; Chambers et al. 2014), most of them focused on localization of a vibrating source, called
the dipole source. The dipole source emulates the rhythmic movement of fish body and fins,
and has been commonly used as a biological stimulus such as counter-specific, predator or
prey (Coombs and Conley 1997a, 1997b). Dipole source localization has also played an impor-
tant role in the development of ALLs, detection and estimation of nearby fish-like robots, and
coordination and control of underwater robots (Dagamseh et al. 2010; Abdulsadda and Tan
2012).

Although many studies have been conducted on localization of a dipole source using the ALL
system (Dagamseh et al. 2010; Yang et al. 2010; Abdulsadda and Tan 2011, 2012, 2013), very few have
addressed the identification of an optimal ALL, the one that providesmaximum localization accuracy
for an arbitrary dipole. Once the ALL is identified, the next task is to locate a finitely specified number
of sensors on theALL. In a previous study (DeVries andPaley 2013), observability-based optimization
of placement of flow sensors was discussed for control purposes. The estimation and optimization
were conducted in a uniform flow field, which was different from the localization of a dipole source.
Furthermore, the flow model employed was commonly assumed to be accurate, although, like most
other theoretically driven models, it depends on assumptions that may not be satisfied in practical
situations.

Ahrari et al. (2015) proposed a parametric fitness function for measuring the accuracy of an
ALL in the presence of uncertainties. The purpose of the ALL was to identify the maximum veloc-
ity and direction of vibration in addition to the coordinates of the dipole. A bi-level optimization
method was developed to find the optimal ALL such that the accuracy of identification for an
arbitrary dipole source is maximized. Unlike previous studies, which either ignored uncertainties
or considered only sensor uncertainty, both flow model and sensor uncertainty were formulated
and simulated in the optimization process. Furthermore, the design optimization of the ALL was
not limited to location of the sensors, but also included the shape and size of the ALL. Start-
ing with a previous preliminary study (Ahrari et al. 2015), this article focuses on the following
aspects.

• The trade-off between computation time and quality of the lower loop is investigated by explor-
ing the effect of intervening parameters. Based on the study, an appropriate parameter setting is
proposed for subsequent studies.

• A few additional practicalities on the design of the ALL system are imposed, including a lower
bound on the shape of ALL, to prevent designs that are not practical.

• The dependence of the optimal ALL system on the extent of uncertainty in the model and sensor
measurements is investigated.

• The results of a widely adopted multi-objective optimizationmethod are compared with the state-
of-the-art generative single-objective optimization to clearly understand the trade-off between the
number of sensors and obtained localization accuracy.

The rest of this article is organized as follows. In Section 2, the dipole identification problem is
formulated. Different sources of uncertainties, including the flow model uncertainty and the sensor
measurement uncertainty are discussed and estimated. In Section 3, the proposed bi-level opti-
mization method is detailed, including the development of a robust parametric fitness function for
measuring the accuracy of the ALL system in the presence of uncertainties. Numerical results are
then provided and discussed in Section 4. Finally, conclusions are drawn in Section 5 and prospective
future studies of this research are highlighted.
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2. Problem outline

In this study, discussion is limited to a two-dimensional setting. In particular, an ALL system is
considered to consist of a cylindrical body with fish-shaped cross-section and multiple sensors that
measure the local flow velocity around the body (see a prototype illustration in Figure 1a). In theory,
it is assumed that the cylindrical body has infinite height and the flow is restricted to the plane of
its cross-section. Consequently, the body configuration is fully captured by the size and shape of the
cross-section.

2.1. Flowmodel

With a given flow model, the flow velocity at any location (xk, yk) can be computed if the parameters
of the dipole source, including its maximum velocity of vibration (A), orientation angle of vibration
(β) and location of the dipole (xs, ys), are known (Figure 1b):

v(xk, yk) = f (θ , xk, yk), θ = [xs, ys,α1,α2] (1)

where α1 = Acos(β) and α2 = Asin(β) and function f is provided by the flow model, which com-
putes the local flow velocity at the place of the sensor caused by the dipole source θ . A potential flow
generated by a dipole source is considered here, as assumed widely in the literature (Hassan 1993;
Abdulsadda and Tan 2013). For the case in which the ALL sensors, the dipole source and the direc-
tion of the dipole vibration are all located in a same plane (x–y plane) parallel to the ALL body’s
cross-section, and in which the presence of body and sensors has negligible effect on the flow distri-
bution (see more discussion in Abdulsadda and Tan 2013), the flow velocity at the sensor site (xk, yk)
can be written as:

v(xk, yk) = a3vd

2rk5
((2(xk − xs)2 − (yk − ys)2)cosβ + 3(xk − xs)(yk − ys)sinβ) (2)

where a is the dipole diameter and vd = Asin(ωt) represents the vibration of the dipole with maxi-
mum velocity of A and angular frequency ω. The value of ω is assumed to be known. Typically, each
sensor can only measure the flow velocity component along a specific direction, which is assumed
to be the case in this work. The signal amplitude for sensor k at frequency ω is extracted as the
measurementMk through, for example, fast Fourier transform, which can be written as:

Mk = f (θ , xk, yk) =
∣∣∣∣∣ (2(xk − xs)2 − (yk − ys)2)α1 + 3(xk − xs)(yk − ys)α2

2r5k/a
3

∣∣∣∣∣ (3)
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Figure 1. (a) A prototype of an artificial lateral line with sensors; (b) illustration of the dipole parameters.
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where θ = [xs, ys, α1, α2] characterizes the dipole source, including its location and vibration ampli-
tude/orientation. In Equation (3), it is assumed that the sensors measure the x-component of the flow
velocity. By exploitation of the proper rotation matrix, Equation (3) can be generalized to the case of
an arbitrary sensing direction.

2.2. Dipole identification

Equation (3) demonstrates that the local flow speed can be determined if four parameters of the dipole
are known. The ALL actually solves an inverse problem to identify the dipole, in which a dipole (θ)
is sought such that the difference between the sensor measurements and the flow field generated by
θ is minimum. This means that the inverse problem can be converted as a minimization problem, as
follows:

MinimizeJ(θ) = M − |f (θ , x, y)|
M

M = [M1,M2, . . . ,MNsensor ]

f (θ , x, y) = [f1, f2, f3, . . . , fNsensor ], fk = (θ , xk, yk)

whereMk is the measured local flow velocity at the kth sensor (given) and fk(θ ,xk,yk) is the theoret-
ically computed flow velocity at the kth sensor using Equation (3). In the absence of uncertainties,
the global minimum of the minimization problem is the actual dipole, at which the error function (J)
is zero, i.e. (θ* = θ) and J(θ*) = 0, unless Nsensor < 4. In the latter case, the number of equations
is less than the number of unknown parameters; therefore, there could be an infinite number of θ*
which result in J = 0.

Owing to the presence of uncertainty in the sensor measurements and the inaccuracy of the flow
model, in general, there is a difference between θ* and θ , called the identification error (e):

e =
[
xs − x∗

s
1cm

,
y
s
− y∗

s

1cm
,
α1s − α∗

1s
1cm/s

,
α2s − α∗

2s
1cm/s

]
(4)

where the underlined quantities denote the parameters of the actual dipole. This equation defines the
identification error as the Euclidean norm of θ*−θ , which is made dimensionless to avoid dimension
mismatch when calculating the norm. In general, e ≥ 0 and, besides, 0 ≤ J(θ*) ≤ J(θ). This means
that the actual location of the dipole is no longer the global minimum. For dipole identification, two
sources of uncertainty can be identified: flow model uncertainty and sensor uncertainty. Most previ-
ous studies on dipole source localization/identification have not explicitly considered these factors or
have accommodated only the sensor uncertainty (e.g.Abdulsadda and Tan 2011, 2013). In this study,
the uncertainties introduced by both the flow model and the sensor measurement are incorporated
into the ALL design systematically.

2.3. Simulation of uncertainties

Limited precision of the sensors introduces one type of uncertainty in the ALL system design. Since
themeasuring range of the sensor is fixed, the amount of uncertainty is assumed to be independent of
the flow magnitude; therefore, it is simulated as an additive noise (Beyer and Meyer-Nieberg 2006):

Mk(θ) = |Mk(θ) + εsensorN(0, 1)|, k = 1, 2, . . . ,Nsensor (5)

where Mk is the indicated flow velocity by the kth sensor, while the true flow velocity is Mk. The
parameter εsensor ≥ 0 determines the noise strength of the sensor uncertainty. N(0,1) is a random
number sampled from the standard normal distribution.
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Analytical methods typically depend on idealized assumptions or simplifications. Consequently,
the actual velocity at a sensor location may be different from the one computed using a flow model.
The difference between the actual and the predicted flow, often used in other engineering studies, as
a fraction of the actual flow, is defined as follows:

Mk(θ) = |fk(θ)| × exp(εmodelN(0, 1)), k = 1 . . . ,Nsensor (6)

where Mk(θ) and fk(θ) are the actual flow velocity and the computed flow velocity according to the
exploited flow model at the kth sensor, respectively. The parameter εmodel ≥ 0 determines the mag-
nitude of the uncertainty in the flow model, as commonly used for simulation of a Gaussian noise
(Hansen et al. 2009), which becomes equivalent to simple multiplicative noise for small values of
εmodel.

Equations (5) and (6) enable simulation of the uncertainties in the identification process. Sensors
measure the flow velocity of M, which differs from the true value (M). On the other hand, an inaccu-
rate flowmodel is utilized to interpret these inaccurate data. The identification error depends onmany
parameters, including the values of εmodel and εsensor, Nsensor, and sensor locations and orientations.

To obtain a rough estimation of the values of εsensor and εmodel, an underwater experiment and a
computational fluid dynamic simulationwere performed, fromwhich values of εsensor = 0.0015 cm/s
and εmodel = 18% were derived (Ahrari et al. 2015).

3. Design optimization

The ultimate goal of the ALL design optimization problem is to find the optimal shape and size of
the body and the locations of sensors on its body such that a fitness measure (g(X)) of the design X
is maximized.

3.1. Design parameters

The conformal mapping technique is used to describe a streamlined body (in this case, the cross-
section profile of the cylindrical body) and the location of sensors on it. Consider the complex plane
C and a point ξ ∈ C. The following transformation maps ξ to z with respect to the transformation
variable λ ∈ R (Panton 1984):

z = ξ + b2/ξ , ξ = Rexp(iβ) − λ, b = R − λ,β ∈ [−π ,π) (7)

Equation (7) defines a disk with radius R, offset along the real axis by λ ∈ R. By choosing b, the disk
can be mapped to a symmetrical, streamlined body. Therefore, R and λ specify the size and the shape
of the body, and βk denotes location of the kth sensor on the fish body. For λ /R = 1, the shape of
the ALL is circular, while for λ /R = 0, the shape becomes a line. Other values between these two
extremes result in a fish-like ALL.

Symmetry about the real axis is exploited to reduce the number of design variables, and thus the
set of design variables, X = [X1, X2, . . . , XD], consists of:

• size variable: X1min ≤ X1 = R ≤ X1max
• shape variable: X2min ≤ X2 = λ/R ≤ X2max
• angular position of the first sensor on the fish body: 0 ≤ X3 = β1 ≤ βmax
• angular position of the kth sensor relative to the (k – 1)th sensor: 0 ≤ Xk = βk–2 –βk–1 ≤ βmax,

for k = 4,5, . . . ,Nsensor/2.

Nsensor specifies the total number of sensors in the ALL. Because of the symmetry about y = 0,
only locations of the sensors on the top part of the body are independent parameters, and thus there
are 2+ 0.5Nsensor design parameters, where Nsensor is an even number. For the rest of this study,
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Figure 2. (a) Illustration of an artificial lateral line and a set of possible dipole locations; (b) an example histogram of the
identification errors.

the following values for the range of design parameters are considered, unless mentioned otherwise:
X1min = 0.5 cm, X1max = 4 cm, X2min = 0, X2max = 1 and βmax = 8π /Nsensor.

3.2. Fitness function

The fitness function of each design needs to be computed to evaluate the ‘goodness’ of the design. The
evaluation of the fitness functionmust take into account the fact that a dipole may lie anywhere in the
predefinedworking area andmay vibrate along any direction in the x–yplane. Since it is not feasible to
consider all possible cases, the identification problem is solved for a finite number (Ndipole) of dipole
locations. For the problem at hand, the bounds for dipole parameters (Uθ and Dθ ) are defined such
that a dipole may lie anywhere outside the ALL, inside a square, and may vibrate in any directions,
while the velocity of the dipole is larger than or equal to a minimum threshold, (A ≥ Amin). For
the rest of this study, Amin = 3 cm/s, Uθ = [10 10 10 10] and Dθ = [−10, −10, −10, 0] are used
(Figure 2a). Note that [x, y, α1, α2] and [x, y, −α1, −α2] are identical dipoles; therefore, the lower
bound of α2 was set to 0.

It is notable that the body of the ALL blocks wave propagation towards a sensor if some parts of it
lie between the sensor and the dipole. Although these sensors may still provide some measurements,
they are excluded from the identification process, as the simplistic potential flow model used here is
not capable of capturing such complex flow phenomena.

For each chosen dipole setting, the inverse problem is solved and the identification error is com-
puted (see an example in Figure 2). The distribution of all identification errors (e = [e1, e2, . . . .,
eNdipole]) is then utilized to define the fitness function, g(X). A simple and reasonable fitness func-
tion is then defined by averaging all identification errors together. However, the mean is not a robust
statistic, since some outliers can significantly influence the calculated average (Figure 2b). Consider-
ing different sources of uncertainty, a robust performancemeasure based on the statistical distribution
of ei is strongly desired. The proposed fitness function follows this goal by giving higher weights (or
credits) to more accurate identifications. The overall fitness is the mean of all the obtained credits:

g(X) = 1
Ndipole

Ndipole∑
i=1

exp(−ζ e2i ) (8)

In the above equation, parameter ζ determines how quickly the obtained credit reduces when the
identification error increases. For fixed distribution of the identification errors, the calculated fitness
increases if ζ is reduced. Selection of an appropriate value for this parameter is discussed later.
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It is notable that because of sensor and flow model uncertainties, random selection of a finite
number of dipoles and the random initial solution for the inverse problem, there is uncertainty in
evaluation of the fitness, a matter which is common in robust optimization studies (Beyer and Send-
hoff 2007; Kang, Lee, and Lee 2012). The fitness function g(X) is a random function, which means
that an independent evaluation of a design X leads to different values for g(X), for which mean and
standard deviation (ḡ, sg) can be computed. This uncertainty in fitness evaluation results in selection
noise, in which a bad solution may be preferred over a better one. Selection noise can be reduced if
the variance among the true fitness of designs is maximized or when the variance of the estimated
fitness under independent evaluations is minimized. Accordingly, the selection reliability index (SRI)
can be defined as follows (Ahrari et al. 2015):

SRI = StDev(ḡ)
mean(sg)

(9)

A larger SRI usually refers to a smaller selection noise. A parameter study is performed in the next
section to monitor the effect of different parameters on the SRI, which helps to select a reasonable
parameter setting.

3.3. A bi-level optimizationmethod

The fitness function formulated in the previous section is based on the values of the dipole identifi-
cation errors. This means that for each design evaluation, the inverse problem, which is actually an
optimization problem itself, must be solved many times. Consequently, the optimization process is
bi-level, where the upper level optimizes all parameters of ALL (X), while the lower level solves the
inverse problem many times to obtain a robust estimate of the location and vibration angle of the
dipole by minimizing J(θ), as follows:

Maximize g(X) = 1
Ndipole

Ndipole∑
i=1

exp(−ζ e2i )

where ei =
[
xs − x∗

s
1cm

,
y
s
− y∗

s

1cm
,
α1s − α∗

1s
1(cm/s)

,
α2s − α∗

2s
1(cm/s)

]
i

Subject to θi
∗ = argmin{J(θi)}

Dx ≤ X ≤ Ux ,

X3 + X4 + X5 + . . . + XD ≤ π

where Dx and Ux are the lower and upper bounds of the design parameters, respectively, and g(X) is
the fitness of the designX, which is directly related to the identification accuracy. The linear constraint
ensures that all the independent sensors are placed on the top of the ALL. The sensing direction of a
sensor is assumed to be tangential to the body at the place of the sensor.

Bi-level optimization has been shown to be effective in many practical and even multi-objective
optimization problems (Deb and Sinha 2009; Linnala et al. 2012), although it has been criticized for
being complex and hard even when the problems in both levels are linear (Colson, Marcotte, and
Savard 2007). The situation is more challenging for the problem at hand owing to the presence of
nonlinearities at both levels and the presence of uncertainties, which can be somewhat mediated by
proper choice of the inverse solver.

3.3.1. Inverse solver (lower level)
The challenge of high computation of bi-level optimization can be moderated by selecting a fast opti-
mization method for the lower level, especially for the problem at hand, where the inverse solver
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should be run several hundred times per design evaluation in the upper level. In this study, the New-
ton–Raphson (N-R) method is selected for the lower level. This method was demonstrated to be a
reliable tool for dipole source localization (Abdulsadda and Tan 2013); however, some changes are
required since there are terms in J(θ) involving absolute values, whichmeans that the gradient of J(θ)
is not defined at certain points. The N-R-based method employed in this study starts the search from
a semi-random initial solution (θ ini):

θ ini = θ + αθ (Uθ − Dθ ) ⊗ r (10)

where r is vector of four uniformly distributed random numbers in [−0.5, 0.5], Uθ and Dθ are the
upper and lower bounds for the dipole parameters, respectively, αθ specifies the relative size of the
region around the true dipole parameters, and the notation ⊗ refers to element-wise multiplication.
For this study, αθ = 0.5 is used.

A line search is performed along the best direction: dbest = −H−1(J)× ∇J, whereH and∇ denote
the Hessian matrix and the gradient vector, respectively, using the golden section search, with an
initial step size of�. J(θ ini), J(θ ini + � × dbest) and J(θ ini−�× dbest) are computed. If the last term is
the smallest, moving along dbest increases J(θ); therefore, dbest is inverted. This may happen because
of multi-modality or the absence of derivatives at some points. The line search terminates after a
maximum of NJ evaluations of J(θ), or when the step size is too small (smaller than 10–4 used in
this study) to make considerable changes in J(θ). The parameter dbest is then updated. This process
continues until the predefined number of evaluations of J(θ) for a single run of the inverse solver
(maxJeval) is consumed. The inverse solver is also terminated if the difference between the initial and
final solutions in a line search loop is smaller than 10−4; therefore, the actual number of evaluations
of J(θ) (usedJeval) can be smaller thanMaxJeval.

Based on the preliminary results, computation of dbest appeared to be about five times costlier
than evaluation of J(θ). Therefore, the value of usedJeval is increased by fivewheneverdbest is updated.
MaxJeval andNJ are chosen to be large enough to allow the algorithm to converge, but not too large to
result in unnecessary increases in computational cost. A parameter study is performed in Section 3.4
to decide on the values of these parameters.

It is noted that N-R is a local search method. Furthermore, there are some points where the func-
tion J(θ) is not analytical. This means that there is no guarantee that the inverse solver can find the
global optimum (θ*), especially in the presence of noise. One alternative, which is adopted in this
article, is to solve the inverse problem N inverse times with different initial solutions (θ ini) for a given
set of measurementsM, which leads to Ninverse estimated values for the dipole source. Among them,
the one with the minimum J is selected as the localized dipole. The effect ofN inverse is investigated in
Section 3.4.

3.3.2. Upper-level optimizationmethod
Since the landscape of the g(X) is unknown and derivatives of g(X) are not explicitly available, a
metaheuristic that can handle multimodality, correlation and especially noise in the fitness function
is preferred. A variant of the covariance matrix adaptation evolution strategy (CMA-ES) (Hansen
and Ostermeier 2001; Hansen 2009) is employed to perform optimization at the upper level, consid-
ering its promising results in the BBOB2009 optimization workshop on noisy test problems (Auger
et al. 2010). CMA-ES belongs to the category of evolution strategies that adapt the full covariance
matrix, which makes it an efficient method for handling correlation among design variables. The
only problem-dependent control parameter of CMA-ES is the population size. A dynamic update of
population size is preferred in this study, which will be discussed in Section 3.4.

3.4. Parameter study

To use the proposed bi-level algorithm, one should decide on the values of ζ in the fitness function,
the evaluation budget for one run of the inverse solver (MaxJeval), the maximum number of calls
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of J(θ) in the line search in the inverse solver (NJ), the number of dipoles over which g(X) is eval-
uated (Ndipole), and the number of times the inverse problem is solved for a given dipole and a set
of sensor measurements with different initial solutions (N inverse). The goal is to find the set of these
parameters such that the identification accuracy and SRI are maximized, while the computation cost
is minimized. For this purpose, 100 randomdesigns (X1,X2, . . . ,X100) are generated. Since there are
many parameters, a few are studied at a time, while the rest are set to some default values unless men-
tioned otherwise. The default values, obtained using a preliminary parameter study, are as follows:
Ndipole = 1024, N inverse = 1, N inverse = 1 and ζ = 1.

To demonstrate the flexibility and robustness of the proposed optimizationmethod, and to analyse
the effect of the extent of uncertainty on the optimized design, three distinct cases are considered for
the rest of this study:

• Case I: Ideal case with εmodel = εsensor = 0,
• Case II: Low uncertainty with εmodel = 0.01 and εsensor = 0.0015 cm/s
• Case III: High uncertainty with εmodel = 0.20 and εsensor = 0.0015 cm/s.

Parameter study and optimization results are investigated for these three cases. IncreasingN inverse
predictably increases the identification accuracy, as demonstrated in Ahrari et al. (2015); however, the
computational time grows proportionally. One interesting finding in Ahrari et al. (2015) was that the
effect of increasingNinverse is similar for all designs. Thismeans that if g(X1) > g(X2) forNinverse = 1,
the probability that g(X1) < g(X2) for other values of N inverse is small, i.e. the rank of solutions does
not change if N inverse is changed. Since selection in CMA-ES is performed according to the rank of
solutions, the optimization can be performed with N inverse = 1 to minimize the computational cost.
The obtained optimum design is then used withN inverse > 1 in practice to increase the identification
accuracy.

3.4.1. Effect of maxJeval and NJ
Parameters maxJeval and NJ control the inverse solver by limiting the overall computation budget
and computation budget per line search step, respectively. Improper selection of these parameters
may lead to premature interruption of the inverse solver or excessive but unnecessary computation.
To investigate the effect of maxJeval and NJ on the identification accuracy, the randomly generated
designs are evaluated using different values for these parameters. Figure 3 illustrates the mean fitness
of 100 random designs for Cases I, II and III. Note that the actual computation (usedJeval) can be
smaller thanmaxJeval, because the inverse solver employs some statistical criteria to abort whenever
it is predicted that further search cannot result in significant change in the solution.

It can be observed that:

• The average fitness increases when maxJeval is increased. This effect is spectacular in Case I,
significant in Case II, but insignificant in Case III.

• For Cases I and II, increasing NJ up to a certain point (about NJ = 15) improves the fitness of the
designs. After that, it has no significant effect.

• A huge decline in the average fitness of the design is observed when the amount of uncertainty
increases. For instance, the average fitness is much higher in Case II (low uncertainty) than in
Case III (high uncertainty).

• The growth of usedJeval with maxJeval is slower than linear. Since computation time is pro-
portional to usedJeval, the trade-off between maxJeval and identification accuracy suggests not
sacrificing the fitness for a smallermaxJeval.

Based on the results from this section, values ofmaxJeval = 1600 and NJ = 30 are set for the rest
of this study.
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(a)

(b)

Figure 3. Average fitness of 100 random designs for different values ofmaxJeval and NJ in (a) Case I, (b) Case II, and (c) Case III; (d)
average usedJeval for different values ofmaxJeval for different cases with Ndipole = 1024.

3.4.2. Effects of population size, Ndipole and ζ

In this study, problem-specific population sizing for CMA-ES is adopted, in which the population size
is reduced dynamically while Ndipole is increased with the iteration counter. The justification is that
in early iterations, a large population size allows an enhancement in exploration of the algorithm;
however, a small value for Ndipole keeps the computational time in a reasonable range. While this
strategy is useful for the initial stage of the algorithm, owing to the presence of high uncertainty
in g(X), the progress rate of the search algorithm near the optimal solution becomes zero before
the population converges to the exact location of the optimum (Beyer and Meyer-Nieberg 2006).
To address this problem, Ndipole is dynamically increased to reduce the standard deviation of g(X).
At the same time, the population size is reduced. The evaluation budget of the whole optimization
process is specified in terms of the number of times the inverse problem is solved (MaxInvSolve).
When one-third of the evaluation budget is consumed, the population size is halved, while Ndipole is
doubled. This is performed again when two-thirds of the evaluation budget is consumed. Based on a
preliminary parameter study, the initial population size andMaxInvSolve are set to 180 and 2× 106,
respectively.

Parameter ζ also affects the selection noise; too small or too a large value may reduce the variation
of fitness among different solutions; however, practical requirements, e.g. the demanded identifica-
tion accuracy, should also be considered while setting this parameter. When the uncertainty is high,
the expectation of the identification accuracy should be less; however, to compare the effect of uncer-
tainties on the fitness of the optimized design in different cases, a fixed value of ζ = 0.1 is used for
the rest of this study.
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4. Numerical results

4.1. Case studies

Three simulation studies are performed to analyse the effectiveness of the proposed optimization tool
in these specific cases, where the final solution is checkedwith engineering intuition. For this purpose,
the optimization algorithm is run for Cases I, II and III, while the dipoles are relocated so that they
lie only on the left (mode a), right (mode b) or top and bottom (mode c) of the ALL. For these trials,
Nsensor = 12 is used. Figure 4 illustrates the arithmetic mean of the final designs in 10 independent
runs for each case.

• For Cases IIa and IIIa, most sensors have moved to the right side of the fish body to maximize the
average number of sensors that can receive a signal from the dipoles. In contrast, for Cases IIb and
IIIb, most sensors have moved to the left side for the same reason.

• The final solutions for Cases IIc and IIIc are totally different. The sensors are quite uniformly
distributed on the ALL and, besides, the ALL is highly stretched, probably to maximize the spread
of sensors so that most of them can still receive a signal from the dipoles on the same side.

• The optimized design of Case I has a comparatively small size and does not show any significant
variation with respect to the locations of the dipoles. This could be due to the fact that since there
are four unknown parameters in the inverse problem, only measurements from four sensors are
required to solve the inverse problem. If the measurements are completely accurate, neither extra
sensor measurements nor diversity in the location of the sensors would provide more information
on parameters of the dipole. One justification for the small size of the ALL may be maximization
of the number of sensors that can receive a signal, so that for all dipoles at least four sensors can
provide a signal.

These results demonstrate that in all cases, there is good agreement between the final designs found
by the optimization method and the one predicted by engineering intuition. The optimal designs
strongly depend on the locations of the dipoles. More importantly, the optimization method can reli-
ably find the optimal design parameters with respect to the defined objective function for each case,
although it becomes harder when uncertainty, and thus the selection noise, is exacerbated.

4.2. Generative bi-objective optimization

In this section, it is assumed that dipoles may lie anywhere in the 20× 20 cm tank, the ultimate case
within the scope of this study. Furthermore, two constraints are imposed by practical requirements.
First, the lower limit of X2 = λ/R is increased to 0.1 to prevent very flat designs that are not practical.

(a) (b) (c)

Figure 4. Mean of the final designs from 10 independent runs for Cases I, II and III, when dipoles are (a) on the right, (b) on the left,
and (c) on the top and bottom of the artificial lateral line. The units of both the horizontal and vertical axes are centimetres.
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(a) (b) (c)

Figure 5. Trade-off between fitness and Nsensor: (a) Case I, (b) Case II, and (c) Case III.

Secondly, in contrast to the setting so far which excludes the dipoles that lie inside or very close
to the fish body, zero credit is given for such dipoles. This implicitly penalizes a larger ALL, since
it receives more zero credits, thereby reducing the overall fitness. This counteracts the undesirable
advantage of larger ALLs, which occupy a larger fraction of the search space and leave a small region
for dipoles to lie in. Predictably, increasing Nsensor can increase the fitness of the final design, since
it provides more data on the dipole; however, fabrication cost and integration complexity increase
with the number of sensors. The trade-off between Nsensor and g(X) can be analysed by performing
a bi-objective optimization in which the second objective is minimization of Nsensor. Practically, a
limited option for the number of sensors is worth considering, e.g. Nsensor ≤ 30 and Nsensor is an
even number. This provides motivation for running the single-objective optimization problem with
different values of Nsensor instead of running a bi-objective optimization.

Each optimization problem is solved 10 times independently and the final solutions from the opti-
mization runs are re-evaluated again with Ndipole ≈ 10,000 for different values of N inverse. Figure 5
plots the obtained trade-off front for each case and some selected values of Nsensor. Figure 6 depicts
the shape and size of five designs representing the distribution of the 10 final solutions. The parame-
ters of these designs are the pth percentile of the corresponding parameters in the final solutions. For
example, the parameters of the 50% percentile design are the median of the corresponding parame-
ters in the final solutions. This may show whether the algorithm has converged to similar solutions.
Based on the obtained results, the following conclusions can be drawn:

• Figure 5 demonstrates that increasing Nsensor always improves the fitness, except for Case I after
Nsensor = 8, and thus a knee in the Pareto front is observed. This knee emerges atNsensor = 12 for
Case II. For Case III, in contrast, no knee can be detected and the slope of the curve remains quite
high everywhere. This implies that when the amount of uncertainty increases, the contribution of
extra sensors becomes more significant.

• In Case I whenNsensor ≥ 8 (Figure 5), the fitness of the optimized design is close to 1 whenNsensor
is great. This means that the identification error for any arbitrary dipole is almost zero. Note that
zero credit is assigned if a dipole is located inside or very close to the fish body; therefore, it is
impossible to reach a fitness of one.

• Increasing Nsensor (Figure 5) has a significant positive effect on the identification accuracy. In
practice, the inverse solver should be run multiple (e.g. more than four) times to maximize
identification accuracy. This effect can be observed for all the cases.

• The similarity of the shape and size of the final designs for a fixed Nsensor in independent runs
(Figure 6) confirms the reliability of the optimization results. Case II withNsensor = 16 is an excep-
tion, in which a few runs have converged to a circular ALL. It seems that for this case there are two
(near-)global minima with almost identical fitness.
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(a)

(b)

(c)

Figure 6. Representation of final solutions for Cases II and III: (a) Nsensor = 8, (b) Nsensor = 16, and (c) Nsensor = 24. Parameters of
each illustrated solution are the pth percentile of the corresponding parameters of the final solutions from 10 independent runs.

(a) (b) (c)

Figure 7. Average fitness of the optimized designs in different cases re-evaluated (Ninverse = 4) for (a) Case I, (b) Case II, and (c)
Case III.

4.3. Importance of the uncertainty amount

Optimized designs from each case are re-evaluated in other cases to investigate fitness degradation
caused by ignoring the effect of the amount of uncertainty in the optimization process. Figure 7 illus-
trates the average fitness of the optimized designs from different cases, re-evaluated for conditions of
all cases.
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According to Figure 7, the optimized solution of each case is the optimal one for that case only.
For example, if the conditions of Case III are applied in practice, solutions from Case III are the
best choice, solutions from Case II have lower fitness and solutions from Case I are far behind the
other two cases. Similar conclusions can be drawn for other situations, with a small exception: if the
condition of Case II is applied in practice, solutions from Cases II and III are almost equally fitted if
Nsensor ≥ 12, although their design parameters differ significantly.

4.4. Simultaneous bi-objective optimization

Solving the optimization problem for each value of Nsesnor has a flip side. The knowledge obtained
through previous runs is overlooked since each run is independent from the others. Alterna-
tively, one may attempt to find multiple and differently sized designs by optimizing both objectives
simultaneously. In this study, one of the most successful multi-objective optimization methods, the
non-dominated sorting genetic algorithm (NSGA-II) (Deb et al. 2002), is employed for this purpose.
The maximum and minimum number of sensors is set to 8 and 32, respectively. To determine the
number and location of sensors present in the design, the range of variables pertaining to sensor
locations is extended to include negative values, for example –A < X4 < A, so that the absence of a
sensor can be determined from the negative value of X4.

For this case, a more accurate evaluation of a design is required since, unlike the CMA-ES proce-
dure, NSGA-II is an elitist method, and the error in the fitness evaluation of a designmay remain until
the end of the optimization process; therefore, Ndipole is set to 1024. The population size andMaxIn-
vSolve for NSGA-II are set to 180 and 107, respectively. Although the evaluation budget is five times
that of CMA-ES with a fixed value ofNsensor, the overall computation is less since one run of NSGA-II
replaces several independent runs of CMA-ESwith different values ofNsensor. The continuous variant
is employed with recommended parameter setting (ηc = ηm = 5, Pc = 0.9, Pm = 1/N).

The final solutions from NSGA-II are re-evaluated and the trade-off fronts obtained using CMA-
ES and NSGA-II methods are illustrated in Figure 8 for N inverse = 2. The figure reveals that the
trade-off front from NSGA-II is identical to that of CMA-ES. This indicates that the trade-off front
obtainedmay be the true optimal one and there is no need for one-by-one computation of each trade-
off solution; instead, the use of a bi-objective NSGA-II is able to find multiple trade-off solutions in a
single simulation. Average values of the size variable (X1 = R) and shape variable (X2 = λ/R) in the
final solutions of both methods are illustrated in Figure 9, which demonstrates that:

Figure 8. Trade-off fronts obtained from the non-dominated sorting genetic algorithm (NSGA-II) and covariancematrix adaptation
evolution strategy (CMA-ES) for different cases.
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(a) (b)

Figure 9. Final solutions using the covariance matrix adaptation evolution strategy (CMA-ES) and non-dominated sorting genetic
algorithm (NSGA-II) for different cases: values of (a) size and (b) shape parameters.

• The optimal shape changes from circular with small R to flat with large R as the amount of
uncertainty increases.

• For Case III, the shape variable (X2 = λ/R) has reached the lower limit while R has reached its
upper limit.

• For a fixed number of sensors and uncertainty amount, the final solutions of the NSGA-II and
CMA-ES are similar.

It can be concluded that when the number of sensors (Nsensor) is flexible, NSGA-II is a more
reasonable tool for finding a trade-off between the objectives for a fairly large range of Nsensor. A bi-
criterion decision-making method can now be employed to choose a single preferred solution from
the trade-off set. None of the three cases exhibits any knee-like region, indicating that there is no
obvious choice for a particular solution in the ALL system design problem. A reference-point based
approach (Wierzbicki 1980) or other multiple-criteria decision making-based methods (Miettinen
1999) would have to be used for choosing a single preferred solution.

5. Conclusions

The optimal design of an ALL system is a challenging task and it demands specialized algorithms to
handle different sources of uncertainty. In this research, two different sources of uncertainty have been
considered in solving the inverse problemof localizing a dipole source based on flowmeasurements at
multiple sensor sites. A robust parametric fitness function has been proposed so that the uncertainty
in fitness evaluation is minimized. Thereafter, a bi-level optimizationmethod has been proposed and
employed to optimize parameters of the ALL, including shape, size of the lateral line and placement
of the sensors over the body. Several numerical studies have been performed to investigate the effect
of the parameters of the algorithm. The recommended parameter settings are then derived from the
results of these studies.

To show the flexibility of themethod and effect of uncertainty on the optimized design, three cases
with different magnitudes of uncertainty have been considered. The developed optimization method
has been first validated by a sensitivity analysis in which dipoles are placed at particular regions of the
search space, so that an intuitive prediction of placement of sensors can be obtained. The lateral line
has subsequently been optimized for different numbers of sensors to monitor the trade-off between
the number of sensors and the accuracy of identification. A comparison among the results of different
cases demonstrated that the amount of uncertainty not only significantly influences identification
accuracy but also varies the optimal ALL system. Increasing the number of sensors monotonically
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and predictably boosts the identification accuracy; however, the gain after a certain point, called the
knee, becomes insignificant. The recommended value of the number of sensors, based on the trade-
off between the fitness and the number of sensors, increases as the amount of uncertainty increases,
and for the case with the largest amount of uncertainty, no knee-like point could be observed for the
tested range of number of sensors.

The dependency of the optimized design on the number of sensors and the amount of uncertainty
highlights the importance of considering these factors in the design process, which, inmost cases, can
hardly be rendered by engineering intuition. It was also observed that the final solutions from each
case can be the optimal ones only for that case, and significant fitness degradation is observed if these
solutions are used in other conditions. Future research in the domain of this study includes extension
of the proposed optimization method to the case in which the ALL system could localize a dipole in
three-dimensional space, or when the dipole is moving, instead of vibrating. The authors also plan
to prototype the obtained optimal design and conduct experiments to validate the numerical results.
It is worth noting that the proposed methodology can also be utilized in other problems requiring
optimal sensor placement, such as in structural health monitoring.
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