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Abstract
The Preisach hysteresis model has been adopted extensively in magnetic and smart material-
based systems. Fidelity of the model hinges on accurate identification of the Preisach density
function. Existing work on the identification of the density function usually involves applying an
input that provides sufficient excitation and measuring a large set of output data. In this paper,
we propose a novel compressive sensing-based approach for Preisach model identification that
requires fewer measurements. The proposed approach adopts the discrete cosine transform of the
output data to obtain a sparse vector, where the order of all the output data is assumed to be
known. The model parameters can be efficiently reconstructed using the proposed scheme. For
comparison purposes, a constrained least-squares scheme using the same number of
measurements is also considered. The root-mean-square error is adopted to examine the model
identification performance. The proposed identification approach is shown to have better
performance than the least-squares scheme through both simulation and experiments involving a
vanadium dioxide (VO2)-integrated microactuator.

Keywords: hysteresis, Preisach model, compressive sensing, identification, vanadium dioxide,
DCT transform

(Some figures may appear in colour only in the online journal)

1. Introduction

Hysteresis is a phenomenon found in ferromagnetic materials
[1–5] and various classes of smart materials [6–16]. Unlike
physics-based hysteresis models that are often derived based
on specific physical properties [1], phenomenological hys-
teresis models are often constructed based on input and output
data, and are more extensively utilized in practical applica-
tions. Examples of reported phenomenological hysteresis
models are Preisach model [2–6, 17], Prandtl–Ishlinskii
model [7, 8], Maxwell model [9, 10], Bouc-Wen model
[11, 12], and Duhem model [13, 14]. Preisach model is one of

the most popular and effective hysteresis models and it has
proven effective in characterizing various systems with
hysteresis.

A Preisach model consists of weighted superposition of
hysterons. Practical parameter identification involves dis-
cretization of the Preisach density function in one way or
another, and one effective method is to approximate the
density function with a piecewise constant function [5]. Both
online [2, 17] and offline [3–6] schemes can be adopted for
model identification. When the discretization level is L, there
are +L L 1 2( ) cells with different density values [18]. The
input needs to provide sufficient excitation for all the density
values for model identification [2]. One example of such
inputs takes the form of damped oscillations, which produces
nested hysteresis loops [2]. The input sequence should con-
tain at least +L L 1 2( ) elements to identify all the densities.
When the discretization level is chosen larger, the
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corresponding Preisach model could better capture the actual
hysteresis, but the identification would require a larger
number of measurements. For instance, in [4], the Preisach
density function was discretized into 200 levels, and at least
20 100 measurements would need to be taken and processed
to identify all the density values. In [6], a 20-level Preisach
model was adopted to characterize the displacement-temper-
ature hysteresis of a vanadium dioxide (VO2)-coated micro-
actuator. In order to capture the hysteresis under quasi-static
conditions, a relatively long wait time was needed for each
measurement due to the slow thermal dynamics, resulting in
long experiment time for collecting the required data for
model identification [6]. Optimal compressions of the Pre-
isach model and the generalized Prandtl–Ishlinskii model
have been explored recently [19, 20]. While the compression
schemes result in hysteresis models with fewer parameters,
one still needs to identify high-fidelity hysteresis models
before carrying out the compression procedures. Therefore, it
is of great interest to design a more efficient identification
approach for the Preisach model that requires fewer input–
output data.

Compressive sensing is an alternative to Nyquist–Shannon
sampling theory for acquisition and reconstruction of sparse
signals. The compressive sensing theory [21–24] states that any
length-N signal q that can be well approximated using K coef-
ficients can be faithfully recovered from =M O K N Klog( ( ))
random linear projections of the signal. Practically, many natural
and man-made signals are sparse or compressible in the sense
that they have compact representations in a transformed domain,
through discrete Fourier transform (DFT) [25], discrete cosine
transform (DCT) [26], or discrete Wavelet transform [27], etc.
For example, in [26], audio signals were transformed using one-
dimensional DCT, and the sparse DCT coefficients were
reconstructed using a compressive sensing-based algorithm. The
compressive sensing technique has been successfully applied in
signal processing [27–29], networks [30, 31], machine learning
[32], as well as system and control [25, 33]. However, there has
been little work, if any at all, reported on the use of compressive
sensing in hysteresis model identification.

In this paper we consider identifying the Preisach model
using a novel compressive sensing-based approach that
requires fewer measurements. The proposed approach adopts
the DCT of the output data to obtain a sparse vector, where the
order of all the output data is assumed to be known. The model
parameters can be efficiently reconstructed using the proposed
scheme. For comparison purposes, a constrained least-squares
scheme using the same number of measurements is also con-
sidered. The root-mean-square error (RMSE) is adopted to
examine the model identification performance. The proposed
approach is first tested in simulation. For example, with 300
measurements, the RMSE error of model estimation based on
the proposed approach is 79.2% smaller than that using the
least-squares scheme. The advantage of the proposed approach
is further verified in identifying the parameters of hysteresis
between the voltage and the deflection of a VO2-integrated
microactuator. On average, the RMSE error of the model
estimation using the proposed approach is 17.8% smaller than
that using the least-squares scheme.

A preliminary version of this work was presented at the
2015 American Control Conference [34]. The enhancements
of this paper over [34] include (1) proposed compressive
sensing-based approach that could generate sparser DCT
coefficients and better model identification and estimation
performances, (2) proofs to show that the matrix S associated
with the Preisach plane memory curve is invertable under a
given input sequence and the reconstruction error under noisy
measurement is bounded, (3) extensive simulation and
experimental studies on evaluating the performance of the
proposed approach, and (4) improved structuring and pre-
sentation throughout the paper.

The remainder of the paper is organized as follows. In
section 2, the Preisach model is briefly reviewed. The com-
pressive sensing-based identification approach is presented in
section 3. In section 4, detailed simulation results for the
identification approach are presented. The effectiveness of the
proposed approach is experimentally verified in section 5.
Finally, concluding remarks and brief discussions on future
work are presented in section 6.

2. Review of the Preisach model

In this section a brief overview of the Preisach model is pro-
vided. Readers are referred to [2, 3, 15, 16] for more details.

2.1. Preisach model

A Preisach model consists of weighted superposition of a
continuum of hysterons. A generic hysteron, gb a, , is a delayed
relay characterized by a pair of thresholds b a,( ). An initial
condition z b a= Î -b au 0 , 1, 1, 0( ) ( ) { } is needed to fully
describe the behavior of the hysteron:

⎧
⎨⎪
⎩⎪  
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where v (·) denotes the input history tv ( ),  t t0 .
The output of a Preisach operator Γ, with input v and initial

condition z z b a b a= , ,0 0{ ( ) } can be represented as
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where m 0 is the density function. The Preisach plane is
defined asP b a b a= , :{( ) }. It often suffices to consider
μ with finite support   b a b av v, : min max{( ) } in P
due to input range constraints or physical saturation [3].

2.2. Discretization

For Preisach model identification, discretizing the density
function μ is typically conducted to obtain a finite number of
parameters. A popular scheme is to approximate the density by
a piecewise constant function—the density value mij is constant
within cell (i, j), = ¼i L1, 2, , ; = ¼ - +j L i1, 2, , 1 [2].
Under this scheme, the Preisach model has +L L 1 2( )
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parameters, where L is the level of uniform discretization along
α (or equivalently, β) direction in the Preisach plane. An
example of Preisach model density function discretization is
shown in figure 1. Note that the cells on the diagonal are
assumed to have the same area as other cells in this work.

The output of the Preisach model (in the discrete-time
setting) at time n is written as

å åm m= +
= =

+ -

u n s n , 3
i

L

j

L i

ij ij0
1 1

1

˜( ) ( ) ( )

where m0 is a bias constant, mij is the density value for cell (i, j),
and sij(n) denotes the signed area of the cell (i, j), representing
the collective effect from all the hysterons within cell (i, j).

2.3. Identification procedure

To simplify the discussion, write all the model parameters
into a column vector m= +w w w wL L1 2 1 2 0( )( ) , where

m=w ,k ij = - - + + -k i L i j1 2 2 2 1( )( ) . Apply an
input sequence = ¼v n n N, 1, 2, ,[ ] , with sufficient excita-
tion and then determine the corresponding s nij [ ] by tracking
the evolution of the memory curve on the Preisach plane.
Stack s nij [ ] into a row of a matrix: =S n k s n, ij( ) ( ), and

+ + =S n L L, 1 2 1 1( ( ) ) . The output vector of the model
= u u u u N1 2˜ ( ˜( ) ˜( ) ˜( )) can be expressed as

=u Sw. 4˜ ( )

Assume that the measured output under v n[ ] is expressed
as = b b b b N1 2( ( ) ( ) ( )) . The vector w can be deter-
mined such that - Sw b 2 is minimized with the non-
negative constraint imposed on all density values [3]. This
contrained least-squares approach is denoted as ‘Least
Squares’ in the figures for the reminder of the paper.

3. Compressive sensing-based Preisach model
identification

3.1. Overview of compressive sensing

The compressive sensing theory [21–24] states that, if a
length-N signal p is K-sparse (namely, p contains no more

than K non-zero entries), then it is possible to faithfully
recover p from its = M O K N K Nlog( ( )) random linear
projections. In other words, consider

= Fy A p, 5( )

where y is an ´M 1 vector of observations, A is an M×N
measurement matrix, Φ is an N×N basis transform matrix,
and p is an ´N 1K-sparse signal to be recovered. It is proven
that the sparse signal p can be recovered if the matrix FA
satisfies the following restricted isometry property (RIP)
condition [23]:

 d d- F +     p A p p1 1 , 6S S2
2

2
2

2
2( ) ( ) ( )

for all S-sparse signal p, where d > 0S is the smallest isometry
constant of matrix FA . Based on [21], p can be recovered
efficiently by solving the following l1 minimization problem:

= F p y A parg min subject to . 71 ( )

When FA is a randomly sampled Gaussian matrix, Bernoulli
matrix, or Fourier matrix, it satisfies the RIP condition with
very high probability [22]. Practically, many natural and
man-made signals are sparse or compressible in the sense
that they have compact representations under DFT [25] or
DCT [26].

The most common DCT definition [26] for one-dimen-
sional signals ¼x x x, , , N1 2 can be expressed as

⎜ ⎟⎛
⎝

⎞
⎠å p

= +
=

X x
N

l dcos
1

2
, 8d

l

N

l
1

( )

where = ¼d N1, 2, , . The resulting N×N DCT matrix Ψ is
orthogonal, whose elements can be written as

⎜ ⎟⎛
⎝

⎞
⎠

p
Y = +

N
l dcos

1

2
. 9dl ( )

3.2. Compressive sensing for Preisach model

When the input sequence is chosen in the form of damped
oscillations (an example of Preisach model with L= 30 is
shown in figure 2), the input sequence is known to produce
sufficient excitation for all the density values [2]. The input
levels are right at the cell walls, namely, each cell will be
either 1 or −1 in terms of the signed area. This particular
input sequence is denoted as the ‘damped oscillation’ input
sequence. The number of input values equals to the number of
model parameters ( = + +N L L 1 2 1( ) ). It can be proved
that the corresponding S is a full-rank N×N matrix. Note
that this paper only considers the ‘damped oscillation’
sequence, and other input sequences also exist such that the
corresponding S is a full-rank N×N matrix.

Proposition 1. Consider a Preisach model (written in the
form of equation (4)) with discretization level L, and
apply the ‘damped oscillation’ input sequence with =N

+ +L L 1 2 1( ) elements. By tracking the evolution of the
memory curve on the Preisach plane, the corresponding S is a
full-rank N×N matrix.

Figure 1. Illustration of a discretization of the Preisach density
function, where the discretization level L=4.
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Proof. Denote SL the matrix S of the Preisach model with
discretization level L under the damped oscillation input
sequence. The proposition can be proved by mathematical
induction as follows

(1) When L=1

⎡
⎣⎢

⎤
⎦⎥=

=
´

Srank rank 0 1
1 1

2; 10

1
2 2

( )

( )

(2) Assume that under the ‘damped oscillation’ input sequence
with = + +N L L 1 2 1( ) elements, =S Nrank L( )

(3) Under the damped oscillation input sequence with
= + + + + = + +Z L L N L1 1 1 2 1 1( )( ) ele-

ments, by reordering the rows and columns of
corresponding +SL 1
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The third equation is obtained by rearranging certain
columns of the previous matrix, more specifically, by
rearranging columns with column index 1, + ¼ +L 2, ,1

¼ +- - + +, , 1l L l L L1 2 4

2

3

2

( )( ) ( ) , where = ¼ +l L1, 2, , 1, to
the left of the matrix.

So under ‘damped oscillation’ input sequence, S is a full-
rank matrix. ,

When only <M N output measurements, yb, are available,
=y b nb 1( ( ) b n b nM2( )) ( ) = Ab n, 1 ,1 ¼n n, , M2

N, where A is an M×N matrix whose M rows are randomly
chosen from N rows of an ´N N identity matrix, then

=y A Sw. 12b · ( )

The number of measurements is less than the number of
model parameters. A novel compressive sensing-based
approach for identifying the Preisach model based on partial
output measurements yb is proposed.

In compressive sensing, a random measurement matrix is
usually adopted to faithfully recover the sparse signals.
Unfortunately, compressive sensing cannot be applied in the
Preisach model identification directly. First, the matrix S in
Preisach model identification must follow certain patterns
(and thus cannot be chosen randomly) due to the Preisach
plane structure. Second, since the input sequence for identi-
fication must provide sufficient excitation, the flexibility of
designing the matrix S is further limited. Finally, the density
vector w of the Preisach model is not necessarily sparse in its
original domain.

Exploiting the fact that many natural and man-made
signals are sparse in a transformed frequency domain, write

= Y » Yq Sw b, 13· · ( )

where Y is an ´N N DCT matrix. q is thus an ´N 1 column
vector contains the DCT coefficients of Sw. It is found that q
is approximately sparse in this work when the density values
are spatially uniform, of a Gaussian profile, or generated
randomly with each density value sampled from a uniform
probability distribution, which is likely because of the
damped oscillation structure of Sw. Since S is a full-rank
matrix, the density values w can be expressed as

= Y- -w S q 141 1 ( )

and equation (12) can be rewritten as

= Y = Y- - -y q A qASS . 15b
1 1 1 ( )

When Y is chosen as the DCT matrix, the sparse signal q can
be reconstructed via compressive sensing algorithm. The
algorithm l1-MAGIC is adopted to efficiently reconstruct the
sparse signal q using a generic path-following primal-dual
method [21]. The density parameter w can be obtained
through equation (14) afterwards. This approach is denoted
as ‘CS’.

The above compressive sensing-based approach only
utilizes M input–output data to reconstruct the density values
w. If the order of N output data is also known, denote =border

b l b l b lN1 2( ( ) ( ) ( )) , such that   b l b l1 2( ) ( )
b lN( ), then =b S worder order , and

= Y » Yq S w b . 16order order order· · ( )

The reconstruction scheme in [21] can still be adopted to
identify the density w q. order is found to be more approxi-
mately sparse than q, partially because S worder is

Figure 2. The ‘damped oscillation’ sequence for Preisach model
identification (L= 30).
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monotonically increasing, and has more concentrated fre-
quency components at low frequencies than that of Sw. It is
verified in simulation and experiments that this approach
generates better model reconstruction and model estimation
performance. This approach is denoted as ‘CS Order’.

In order to facilitate the inverse compensation [5, 6] for
dynamic hysteretic systems based on Preisach model, the
density needs to be non-negative. The density w, as obtained
in equation (14), is not necessarily non-negative. Based on the
aforementioned ‘CS Order’ approach, a constrained least-
squares approach can be further adopted as follows (denoted
as ‘CS Order Non-negative’):

Y - S w q wmin , where 0. 17w order order 2
2· ( )

When signal q is K -sparse and the measurements are without
any noise, the density may be reconstructed with high
accuracy. However, in simulation and experiments, q is found
to be approximately sparse. In practical applications, the
measurements are with measurement errors and noise. It is
thus of practical importance to study the reconstruction
performance for approximately sparse signals with measure-
ment noise.

Proposition 2. Consider identifying the density w of a
Preisach model using a compressive sensing algorithm [21],
based on the expression of equation (14). With measurement
noise, the actual measured data is = Y +-y A q eb

1 , where e
is the measurement noise and  e 2 . In our work, qs is
the truncated signal corresponding to the s largest absolute
values of q, so the remaining -N s entries of qs are zero. The
numbers of entries of qs and q are both N . The reconstruction
of density *w obeys

* - + -   
w w C C , 18s s

q q

s1, 2,
s 1· · ( )

where C s1, , and C s2, are positive constants, and their values
depend on s.

Proof.

* *

*
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
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
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Y -
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- - - -

- -

- - -
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S q q
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s s
q q

s

s s
q q

s

2
1 1 1 1

2

1 1
2 2

1 1
2 1, 2,

1, 2,

s

s

1

1

( )
·

· · ·

· ·
( )

where the second inequality can be proved based on [24].
When a specific input sequence is chosen, the 2-norm of

Y- -S 1 1 can also be calculated. The derivation can be similarly
conducted for the other cases where the order of the output
data are known. ,

Note that the general formulation of compressive sensing
algorithm requires that the transformation matrix Y has a
dimension of ´N N . In order to utilize the compressive
sensing framework to identify the Preisach model using
equation (15), the dimension of the matrix S needs to be

´N N , which further requires that the initial input sequence

has N entries. For input sequence with a different number of
entries, or that with N entries but the corresponding matrix S
is not invertable, equation (15) cannot be adopted directly.
Moore–Penrose pseudoinverse [35] could potentially be uti-
lized as an approximation of the inverse of S. This paper
considers cases where the input sequence has N entries and
the corresponding S is invertable.

4. Simulation results

In this section, the proposed algorithms are tested in simu-
lation for Preisach models with three different density pro-
files, namely, uniform profile, Gaussian profile, and random
profile.

Consider a Preisach model with discretization level
=L 30. The Preisach model has no bias (m = 00 ). Apply the

‘damped oscillation’ input sequence and obtain the corresp-
onding output. The measured output is simulated with added
noise that follows a uniform distribution on the interval [−5,
5]. In order to quantitatively examine the relationship between
the reconstruction performance and the number of measure-
ments, the compressive sensing-based identification approach
is compared with a constrained least-squares scheme. The
constrained least-squares method is realized with the Matlab
command lsqnonneg to identify the vector of parameters that
meets the sign constraints [3]. For each number of measure-
ments used in the identification, simulation is run 1000 times
(thus with different sets of density values and different sets of
chosen input–output data), and the performance is averaged
among all of the results.

4.1. Uniform profile

Consider a Preisach model which has the following uniform
density profile

m = 5, 20ij ( )

where = ¼ = ¼ - +i j L i1, 2, ; 1, 2, , 1. Table 1 shows
the normalized modeling error (RMSE and Maximum error)
comparison between ‘Least Squares’, ‘CS’, ‘CS Order’, and
‘CS Order Non-negative’, when the number of measurements
used for identification is 300. The error is obtained as follows:
first, calculate the RMSE between the output of the identified
Preisach model and that of the actual output, then divide the
RMSE by the output range. Normalization of the RMSE
facilitates the assessment of the algorithm performance. It is
shown that ‘CS Order Non-negative’ produces the smallest
modeling error, followed by ‘CS Order’, ‘CS’, and ‘Least
Squares’.

4.2. Gaussian profile

Preisach densities with a Gaussian profile have been con-
sidered in the literature [2, 6]. Consider a Preisach model
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which has the following Gaussian density profile

⎛
⎝⎜

⎞
⎠⎟m = -

- + -i j
15 exp

15.5 15.5

60
, 21ij

2 2( ) ( ) ( )

where = ¼ = ¼ - +i j L i1, 2, ; 1, 2, , 1. Table 2 shows
the normalized modeling error (RMSE and Maximum error)
comparison between ‘Least Squares’, ‘CS’, ‘CS Order’, and
‘CS Order Non-negative’, when the number of measurements
used for identification is 300. Similarly, it is shown that ‘CS’-
based identification approaches produce better modeling
performances.

4.3. Random profile

Consider a Preisach model which has the following random
density profile: each of the 465 density values independently
follows a uniform distribution on the interval [0, 12].
Figure 3(a) shows a typical example of q. It is seen that the
dominant elements only concentrate at low frequency regions.
The largest absolute value of elements in q is 8665.8, and as
many as 363 elements are less than 1% of the largest elements
of q. Figure 3(b) shows a typical example of qorder. It is seen
that the dominant elements also cover the low frequencies.
The largest absolute value of elements in q is 18 703.4, and it
is found that 415 elements are less than 1% of the largest
elements of q. It is verified in simulation that qorder is con-
sistently more approximately sparse than q. It is thus expected
that ‘CS Order’ would achieve better model reconstruction
performance than ‘CS’. Figure 3(c) shows the reconstruction
performance comparison of q between ‘CS’ and ‘CS Order’.
It is evident that the ‘CS Order’ would achieve much better
reconstruction performance. On average, the RMSE error of
qorder based on ‘CS Order’ is 82.7% less than that of q using
‘CS’. It is noted that all N measurements are needed before
ordering, and the advantage of the ‘CS Order’ approach is that
fewer data is needed in reconstruction, and thus potentially
more computation-efficient.

Figure 4(a) shows the reconstruction performance com-
parison of density w between ‘Least Squares’, ‘CS Without
DCT’, ‘CS’, ‘CS Order’, and ‘CS Order Non-negative’,
where ‘CS Without DCT’ directly uses the compressive
sensing algorithm to identify the density w based on
equation (12). It is shown that except the ‘CS Without DCT’,
all of the CS-related reconstruction approaches result in better
density reconstruction performances than that of the ‘Least

Table 1. Comparison on the identification performance of Preisach
model with a uniform density profile.

Scheme RMSE Max

Least Squares 0.0057 0.0411
CS 0.0039 0.0237

CS Order 0.0031 0.0221
CS Order Non-negative 0.0028 0.0175

Table 2. Comparison on the identification performance of Preisach
model with a Gaussian density profile.

Scheme RMSE Max

Least Squares 0.0111 0.0620
CS 0.0049 0.0373

CS Order 0.0027 0.0137
CS Order Non-negative 0.0023 0.0124

Figure 3. (a) Signal q showing the sparseness; (b) signal qorder is
more approximately sparse than q; (c) the reconstruction perfor-
mance comparison based on ‘CS’ and ‘CS Order’.
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Squares’. Among these CS-related approaches, ‘CS’ is the
worst, and ‘CS Order Non-negative’ is consistently the best.
On average, the RMSE errors of reconstructed density based
on ‘CS Order Non-negative’, ‘CS Order’, and ‘CS’ are
28.1%, 34.5%, and 73.1% of the error using ‘Least Squares’,
respectively. The ‘CS Without DCT’ cannot faithfully
reconstruct the density, and the construction error is higher
with more measurements, due to the fact that the density
vector is not approximately sparse, and the measurement
matrix does not follow the RIP condition, and thus this
approach is not considered further in the rest of this paper.
Figure 4(b) shows the normalized modeling error comparison.
On average, the RMSE errors based on ‘CS Order Non-
negative’, ‘CS Order’, and ‘CS’ are 18.3%, 22.6%, and 47.2%
of the error using ‘Least Squares’, respectively.

Based on Proposition 2, the CS-related approaches have
bounded reconstruction error under bounded measurement

noise. It is shown that when the magnitude of the bound for
the measurement noise increases, the magnitude of the
reconstruction error becomes larger. With the measurement
noise following a uniform distribution on the interval
⎡⎣ ⎤⎦- ,D D

2 2
, figure 5(a) shows the corresponding density

reconstruction RMSE with varying amplitudes of measure-
ment noise. Figure 5(b) shows the average run-time between
the CS-related approaches and the least-squares algorithm.
The computations are run in Matlab on a computer with Intel
(R) Core(TM) i7-2600 3.40 GHz CPU and 4.00 GB memory.
It is seen that when the number of measurements is increas-
ing, ‘CS’ and ‘CS Order’ are much more efficient than ‘Least
Squares’. The ordering of the output consumes much less
time than the generic path-following primal-dual method for
solving the compressive sensing-based reconstruction algo-
rithm. ‘CS Order Non-negative’ is slightly more time-

Figure 4. (a) Density w reconstruction error comparison; (b) the
modeling error comparison. Figure 5. (a) Density reconstruction error with varying measurement

noise based on ‘CS’; (b) the average identification run-time
comparison.
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consuming than the ‘Least Squares’ approach, while it can
ensure that the identified density function contains no nega-
tive elements. On average, the identification run-time of
‘Least Squares’, ‘CS’, ‘CS Order’, and ‘CS Order Non-
negative’ are 1.18 s, 0.28 s, 0.29 s, and 1.99 s, respectively.

To further validate the proposed approach, a random
input sequence shown in figure 6(a) is used, figure 6(b) shows
the corresponding output corrupted with a noise that has the
aforementioned distribution with =D 20. Figure 6(c) shows
the normalized model estimation error comparison under the
random input. On average, the RMSE errors of reconstructed
density based on ‘CS Order Non-negative’, ‘CS Order’, and
‘CS’ are 22.3%, 24.4%, and 48.8% of the error using ‘Least

Squares’, respectively. For example, when the number of
measurements is 300, the average RMSE errors using ‘Least
Squares’, ‘CS’, ‘CS Order’, and ‘CS Order Non-negative’ are
0.048, 0.024, 0.011, and 0.010, respectively.

5. Experimental results

VO2 is an interesting class of smart materials with a myriad of
microactuation, optical, and memory applications. It undergoes
an insulator-to-metal transition at around 68 C◦ , during which
resistance [20], induced mechanical stress [6], and optical
transmittance demonstrate pronounced hysteresis. The proposed
identification algorithm is verified in experiments for identifying
and characterizing the hysteresis between the voltage input and
the deflection output of a VO2-integrated microactuator.

5.1. Measurement setup

The experimental setup used is shown in figure 7(a). The
microactuator used in this setup consisted of a silicon dioxide
(SiO2) microcantilever with patterned VO2 film inside the
structure and a patterned metal layer (Au/Ti) on top. The VO2

film was used as the active actuation element in the cantilever,
while the metal layer was used to form the heating element and
the traces for the VO2 resistance contacts. The measurement
system was based on a laser scattering technique, using an IR

Figure 6. (a) A random input sequence for model validation; (b)
corresponding output under the random input sequence in (a); (c)
model estimation error comparison.

Figure 7. (a) Side view schematic for the measurements setup for
deflection of a microactuator with an integrated heater; (b) Top view
of the VO2-based integrated actuator devices.
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laser (l = 985 nm) and a position sensitive detector (PSD) to
track the displacement of the microactuator. A charge couple
device (CCD) camera was used for alignment and calibration
purposes. A data acquisition system and field programmable
gate array (DAQ/FPGA) with a computer interface was used to
automate the control/monitor of electric signals. The power of
the sensing laser (10 mW) was calibrated to be the minimum
possible to be sensed by the PSD without heating the cantilever
due to photon absorption. The voltage output (VD) of the PSD
was linearly proportional to the position of the laser. Using
images captured by the CCD camera, this voltage (VD) was
mapped to the deflection of the cantilever. The chip was inside a
side braze packaging (wire-bonded), which was connected to the
DAQ/FPGA. The current IH shown in figure 7(b) was used to
control the temperature of the microactuator by Joule heating.
The current was generated using two resistances in series: the
heater resistance and an external resistance, whose only purpose
was to limit the maximum current (12.78 mA) that can be
applied to the system. An input voltage from the DAQ/FPGA
and the computer interface was used to generate this current.

5.2. Identification and verification

A VO2-integrated silicon microactuator is subject to two
actuation effects when its temperature is varied [6]. The first is
the phase transition-induced stress, which makes the beam bend
towards the VO2 layer when the microactuator is heated. The
deflection due to phase transition can be modeled by a Preisach
model. The second effect is the differential thermal expansion-

Figure 8. (a) Input-output data for identifying Preisach model
( =L 30); (b) true density function identified based on 467
measurements.

Figure 9.Density reconstruction error comparison based on (a) Least
Squares; (b) CS; (c) CS Order; (d) CS Order Non-negative
approaches.
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induced stress, which makes the beam bend away from the VO2

layer under heating. The latter effect is modeled with a linear
term. As a result, the hysteresis between the deflection and the
temperature is non-monotonic, and can be modeled as

å åm m= + +
= =

+ -

u n c v n s n . 22d
i

L

j

L i

ij ij0
1 1

1

˜( ) ( ) ( ) ( )

The model expressed in equation (20) can be expressed
in the form of equation (4). Take discretization level =L
30 as an example, where = +w contains N L L 1( )
+ =2 2 467 elements, and can be written as =w

m+w w w cL L d1 2 1 2 0( )( ) . Apply the following input
sequence to the system: the first 466 elements are the same as
a damped oscillation sequence shown in figure 2, the 467th
element of the input can be any value other than 0 to ensure that
the corresponding matrix S is invertable. S is a 467 ´ 467
matrix, where = + + =S n k s n S n L L, , , 1 2 1 1ij( ) ( ) ( ( ) ) ,
and + + =S n L L v n, 1 2 2( ( ) ) [ ]. Figure 8(a) shows the
non-monotonic hysteresis behavior between the voltage input
and the deflection output. Figure 8(b) shows the corresponding
density function (true density) identified based on the 467
measurements shown in figure 8(a).

It can be proved that by applying the aforementioned
input sequence, the rank of the corresponding S is 467.
Instead of utilizing all of the 467 corresponding output
deflection measurements, a subset of the output measurements
were randomly chosen for identification. For each number of
measurements used in the compressive sensing algorithms
and least-squares scheme, the reconstruction algorithms are
run 1000 times (thus with different sets of chosen input–
output data), and the performance is averaged over all runs.

When the number of measurements used for identifica-
tion is 300, figures 9(a)–(d) show typical density function
reconstruction error comparisons. It is calculated that the
RMSE error using ‘Least Squares’, ‘CS’, ‘CS Order’, and ‘CS
Order Non-negative’ are 0.122 μm -V 2, 0.116 μm -V 2,
0.096 μm -V 2, and 0.059 μm -V 2, respectively.

Figure 10 shows the normalized modeling error com-
parison. It is shown that ‘CS Order Non-negative’ con-
sistently produces the smallest modeling error, followed by
‘CS Order’, ‘CS’, and ‘Least Squares’. On average, the

RMSE modeling errors based on ‘CS Order Non-negative’,
‘CS Order’, and ‘CS’ are 13.4%, 25.3%, and 76.8% of the
error using ‘Least Squares’, respectively.

The effectiveness of the compressive sensing-based
identification is further examined by comparing the model
estimation performance under a random input shown in
figure 11(a). The measured deflection output is shown in
figure 11(b). Figure 11(c) shows the model estimation errors
under the models identified with the compressive sensing

Figure 10. The average RMSE modeling error comparison.

Figure 11. Density reconstruction error based on (a) a random input
sequence for model validation; (b) output of the random input
sequence in (a); (c) model estimation errors.
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schemes and the least-squares scheme, respectively. On
average over cases with different number of measurements,
the RMSE of reconstructed density based on ‘CS Order Non-
negative’, ‘CS Order’, and ‘CS’ are 72.9%, 78.4%, and 84.5%
of the error using ‘Least Squares’, respectively. For example,
when the number of measurements used for identification is
300, the average RMSE errors using ‘Least Squares’, ‘CS’,
‘CS Order’, and ‘CS Order Non-negative’ are 1.010 μm,
0.891 μm, 0.831 μm, and 0.778 μm, respectively. These
findings are consistent with the simulation results.

6. Conclusion and future work

In this paper efficient and effective identification of the Pre-
isach model was studied under the compressive sensing fra-
mework that required much fewer measurements. The
proposed approach adopted the DCT transform of the output
data to obtain a sparse vector. The proposed identification
approach was shown to have better identification performance
than the least-squares scheme through both simulation and
experiments involving a VO2-integrated microactuator. In
future work, the transformation of the output data will be
further studied to generate sparser vectors. The use of Moore-
Penrose pseudoinverse will be studied for input sequences
with a different number of entries with the number of the
model parameters and the matrix S is not invertable. Com-
pressive sensing for other types of hysteresis models, such as
the Prandtl–Ishlinskii models, will also be studied.
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