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Modeling and Inverse Compensation of
Temperature-Dependent Ionic Polymer—Metal
Composite Sensor Dynamics
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Abstract—Ionic polymer—metal composites (IPMCs) have in-
trinsic sensing capabilities. Like many other sensing materi-
als, however, IPMC sensors demonstrate strong temperature-
dependent behaviors. In this paper, we present the first system-
atic studies on temperature-dependent IPMC sensing dynamics. A
cantilevered IPMC beam, soaked in a water bath with controlled
temperature, is excited mechanically at its tip. The empirical fre-
quency response of the sensor, with the tip displacement as an input
and the short-circuit current as an output, shows a clear depen-
dence on the bath temperature. The sensing dynamics is modeled
with a transfer function with temperature-dependent coefficients.
By fitting the values of the coefficients at a set of test temperatures,
we capture the temperature dependence of the coefficients with
polynomial functions, which can be used to predict the sensing dy-
namics at other temperatures. We also investigate the inversion of
the sensing dynamics, for extracting the mechanical signal given
the sensor output. A stable but noncausal inversion algorithm is
applied to deal with the unstable zeros of the original sensing dy-
namics. Inversion with finite preview time is further explored to
achieve near real-time decoding of the sensor output. Experimen-
tal results with both harmonic stimuli and free vibrations have
validated the effectiveness of the proposed modeling and inversion
schemes for IPMC sensors under different temperatures.

Index Terms—Ionic polymer-metal composite (IPMC),
inverse compensation, modeling, sensors, temperature-dependent
dynamics.

I. INTRODUCTION

VER the past decade or so, electroactive polymers

(EAPs), a novel family of smart materials have received
tremendous interest for their potential applications in sens-
ing, actuation, and energy harvesting [1]. Several important
examples of EAPs include ionic polymer—-metal composites
(IPMCs) [2], conjugated polymers [3]-[8], and dielectric elas-
tomers [9], [10]. In particular, IPMCs are a class of soft actuation
and sensing materials that hold strong promise for versatile ap-
plications because they are amenable to microfabrication [11],
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Fig. 1. Illustration of the IPMC sensing principle. A mechanical stimulus
induces redistribution of mobile ions (and thus the net charge density) resulting
in a detectable signal across the electrodes. Note that the illustrative schematic
does not attempt to depict the ion locations precisely. In particular, in reality,
fixed anions are distributed randomly throughout the ion-exchange polymer
instead of being only at the proximity of the metal electrodes.

work in air and in various fluid media without stringent packag-
ing requirements, require low-actuation voltages (several volts),
and have minimal structural complexity in implementation as
actuators and sensors.

As illustrated in Fig. 1, an IPMC consists of three layers, with
an ion-exchange polymer membrane (e.g., Nafion) sandwiched
by metal electrodes. Inside the polymer, (negatively charged)
anions covalently fixed to polymer chains are balanced by mo-
bile (positively charged) cations. An applied voltage across an
IPMC leads to the transport of cations and accompanying sol-
vent molecules, resulting in both differential swelling and elec-
trostatic forces inside the material, which cause the material to
bend and hence the actuation effect [2], [12], [13]. IPMC actua-
tors have been proposed for various applications in biomedical
devices and underwater robotics [14]-[17]. On the other hand,
an applied mechanical stimulus could redistribute the cations
inside an IPMC, producing a detectable electrical signal (typ-
ically open-circuit voltage or short-circuit current) that is cor-
related with the mechanical stimulus (see Fig. 1), which ex-
plains the sensing principle of IPMCs. IPMC sensors have been
proposed for measuring force, pressure, displacement, or ve-
locity in medical applications, structural health monitoring, and
robotics [18]-[24].
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In recent years, extensive effort has been made in model-
ing and understanding IPMC sensors [25]. de Gennes et al.
proposed a static model based on linear irreversible thermo-
dynamics to capture both actuation and sensing mechanisms
of IPMCs [26]. Using an analogy to piezoelectric materials,
Newbury and Leo presented a geometrically scalable “gray-
box” model for IPMC actuators and sensors [27], [28]. The
latter model was further elaborated and verified by Bonomo
et al. [29]. Farinholt and Leo [30] derived the charge sensing
response for a cantilevered IPMC beam under a step change in
tip displacement, which is based on a partial differential equa-
tion governing the charge dynamics proposed by Nemat-Nasser
and Li [12]. Taking a systems perspective, Chen et al. devel-
oped a physics-based, geometrically scalable model for IPMC
sensors, represented as an infinite-dimensional transfer func-
tion [31]. Takagi et al. examined the modeling of IPMC sensors
using the voltage and the current as the output, respectively, and
studied the influence of the cations on the sensing dynamics
[32].

Despite the aforementioned progress, there has been little
or no studies reported on temperature-dependent sensing be-
haviors of IPMCs. As for many other sensing materials, how-
ever, temperature has a significant impact on the behavior of
IPMC sensors through its influence on ion/solvent transport and
electrical/mechanical properties of the material. In various ap-
plications envisioned for IPMC sensors (e.g., structural health
monitoring, biomedical devices), the temperature of the work-
ing environment of an IPMC sensor could vary significantly.
Without properly accounting for the influence of the tempera-
ture, it will be difficult to accurately interpret the results from
the IPMC sensor output.

In this paper, we present, to our best knowledge, the first sys-
tematic studies of the temperature dependence of IPMC sensing
dynamics, including its experimental characterization, model-
ing, and inverse compensation. To characterize the sensor dy-
namics, we place a cantilevered IPMC beam in a water bath, the
temperature of which can be precisely controlled. The short-
circuit current output of the IPMC is measured as the beam tip
is subject to harmonic excitation. The empirical frequency re-
sponse of the sensor, with the tip displacement as an input and
the short-circuit current as an output, exhibits a clear dependence
on the bath temperature.

While one could try to capture the temperature-dependent
sensing behavior using physics-based models (e.g., [31]), such
an approach would be difficult since temperature influences
virtually all physical parameters, including diffusivity, dielec-
tric constant, density, Young’s modulus, and electromechanical
coupling. Identifying the relationships between those parame-
ters and temperature is a daunting task. Therefore, an empirical
modeling approach is adopted here, where a transfer function
with temperature-dependent coefficients is used to represent the
sensing dynamics. The values of the coefficients for a set of
temperatures are identified by fitting the measured frequency
responses at those temperatures. Through curve fitting, these
values are subsequently used to obtain low-order polynomial
functions that describe how individual coefficients vary with
the temperature. These coefficient functions enable one to ob-

tain the sensor model at other temperatures, as we show later in
this paper.

Inreal applications, one is interested in extracting information
about the mechanical stimuli (e.g., the displacement) based on
the sensor output. This requires inverting the sensor dynamics.
However, the IPMC sensing dynamics turns out to be of non-
minimum phase; in other words, it has zeros with positive real
parts, or “unstable” zeros. Consequently, the direct inverse of the
original sensing dynamics is an unstable system and thus cannot
be implemented. To address this problem, we exploit the tech-
niques for inverting nonminimum-phase systems [33], where
the resulting inverse is stable but noncausal. In particular, to ob-
tain the sensor input at time ¢, the algorithm requires the output
trajectory during [¢, 00). To facilitate near real-time decoding of
the sensor input, we further explore inverse compensation with
finite preview time (i.e., look-ahead time) [34]. Experimental
results with both harmonic stimuli and free vibrations have val-
idated the effectiveness of the proposed modeling and inversion
schemes for IPMC sensors under different temperatures.

The remainder of this paper is organized as follows. The
characterization of the temperature-dependent IPMC sensing
behavior is presented in Section II. Modeling of such a depen-
dence is discussed in Section III. In Section IV, we describe the
inverse compensation algorithm and show its effectiveness with
experimental results. Inversion with finite preview time is pre-
sented in Section V. Finally, concluding remarks are provided
in Section VI.

II. EXPERIMENTAL CHARACTERIZATION OF
TEMPERATURE-DEPENDENT IPMC SENSING DYNAMICS

A. Material Preparation and Experimental Setup

The IPMC used in this study was fabricated with Nafion-117,
a commercial ion-exchange material from DuPont, by following
the general ion-exchange and electroless electrode plating pro-
cesses described in [35]. First, oxygen and argon plasma treat-
ment was applied to roughen the surface of the Nafion film [36],
followed by cleaning with boiling acid (HCI) and then with boil-
ing deionized water (sample preparation). After these prepara-
tion steps, the sample was placed in [Pt(NH;),|Cl; for over 3 h
to incorporate the platinum complex cations into the polymer
(ion-exchange). Then, we applied the reducing agent NaBH,
to the membrane in a water bath of 60 °C, which reduced the
platinum complex ions to platinum near the membrane surfaces
(electrode plating). The ion-exchange and electrode plating pro-
cesses were repeated several times until the electrodes were suf-
ficiently strong and thick, as indicated by the surface resistance.
Finally, a layer of gold (100 nm) was deposited with e-beam to
further reduce the surface resistance. The final thickness of the
IPMC film was about 210 pm. A sample with length 18 mm
and width 6.5 mm was used in the following experiments.

Fig. 2 shows the experimental setup for characterizing the
IPMC sensor dynamics at different temperatures. A cantilevered
IPMC beam was soaked in a water bath sitting on a digital hot-
plate (Thermo Scientific, HP131225). A relay controller (Auber
Instruments, SYL-2342) was used to control the bath temper-
ature with a precision of 0.5 °C, based on the feedback from a
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Fig. 2. Experimental setup for characterizing temperature-dependent IPMC
sensing behavior.
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Fig. 3. Schematic of the mechanical excitation mechanism (top view).

T-type thermal couple (Omega, HTTC36-T-116G-6). For me-
chanical excitation, the tip of the IPMC beam was inserted into
a slit cut in a wooden piece, which was firmly coupled to the
membrane of a subwoofer speaker through a lightweight cup.
A voltage applied to the speaker induces vibration of the mem-
brane and, subsequently, tip displacement of the IPMC beam.
The mechanical excitation mechanism is further illustrated in
Fig. 3. Since the IPMC beam is very flexible and presents lit-
tle resistance to the motion of the wood piece, we can treat
the mechanical coupling from the speaker membrane to the
IPMC tip as nearly rigid and assume that the IPMC tip displace-
ment is identical to the displacement of the coupling cup, which
was measured with a laser sensor (Baumer Electric, OADM
2016441/S14F).

The short-circuit current measured between the two elec-
trodes of the IPMC beam was taken as the sensor output. Fig. 4
shows the schematic of the measurement circuit, which consists
of two cascaded operational amplifiers (op-amps). Since the “-”
terminal of op-amp 1 is virtually the ground, the two electrodes
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of IPMC are short-circuited. The sensing current generated un-
der this configuration (t) is proportional to the voltage output
v1(t) = Ryi(t). The second op-amp is introduced for gain ad-
justment, where the resistor R is tunable. The output vy (t) is
related to the current signal i(t) viave (t) = (R3 R /R2)i(t). In
the circuit we used, Ry = 470 k), Ry = 10 k2, and R3 was
adjustable from 0 to 50 k€). Acquisition and processing of the
IPMC sensor output and the laser sensor output were conducted
through a dSPACE system (dSPACE, DS1104).

B. Characterization and Discussion of Temperature-Dependent
Sensing Behavior

The IPMC sensor is treated as a dynamic system, where its in-
put is the tip displacement d(¢) and its output is the short-circuit
current i(t). For a sinusoidal displacement, d(t) = dy sin(27 ft)
with frequency f, and the corresponding current output i(t)
is not a pure sinusoidal signal in general, due to the elec-
tromechanical nonlinearities of the material. However, for rel-
atively small stimuli, we can treat the sensor as approxi-
mately linear and extract the fundamental frequency component
io(t) = 1o (f)sin(2w ft + ¢(f)) from the measured i(t), using
techniques such as the fast Fourier transform. The empirical fre-
quency response of the sensor, consisting of the gain response
and the phase response, indicates how the sensor responds to
the stimulus at different frequencies. In particular, the gain (or
magnitude) response is defined as M (f) = 201og; (io(f)/do)
and the phase response is defined as ¢(f), both as a function
of the frequency f. In this paper, the units of d(t) and i(¢) are
taken to be mm and pA, respectively. The magnitude M and
the phase ¢ are expressed in terms of decibel and degree, re-
spectively. These definitions will apply to Figs. 5, 8 and 9 in the
following.

In our experiments, for a given temperature, a sinusoidal
tip displacement was applied with frequency ranging from 10
to 100 Hz and the corresponding sensor output was recorded.
IPMC could sense stimuli lower than 10 Hz [31] or higher than
100 Hz, but we had restricted to the aforementioned frequency
range because of the bandwidth constraint of the speaker sys-
tem. In particular, the response of the speaker becomes jerky
when the frequency of the input is lower than 10 Hz, and be-
comes weak when the frequency is higher than 100 Hz, which
is understandable considering its original intended use. How-
ever, as we will further discuss in Section VI, such a frequency
limitation has minimal (if any) impact on the validity of the
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Fig. 5. Empirical frequency responses of an IPMC sensor under different
temperatures. The input and output of the system are taken to be the IPMC tip
displacement and the short-circuit current, respectively.

proposed approach to modeling and inverse compensation of
the temperature-dependent sensing behavior.

We measured the empirical frequency response of the sensor
at different temperatures in the range of 23-65 °C. For each new
temperature, sufficient time (more than 20 min) was allocated
before taking the measurement, to let the IPMC sample sit in
the bath so that its electrical, mechanical, and fluidic properties
would have reached the steady state. The experiments were per-
formed first with the temperature rising sequentially, and then
with the temperature descending sequentially. No pronounced
hysteresis was observed between the empirical frequency re-
sponse of the sensor and the bath temperature.

Fig. 5 shows the measured frequency responses at three dif-
ferent bath temperatures: 25, 45, and 65 °C. In the figure, both
the magnitude and phase responses show significant variation
with temperature. If we view the sensor as a high-pass filter,
it appears from the magnitude plot that, as the temperature in-
creases, both the cutoff frequency and the high-frequency gain
decrease. From the phase plot, the phase lag between the current
output and the displacement input seems to increase consistently
with the temperature.

The temperature-dependent sensing behavior, as observed in
Fig. 5, can be attributed to a number of factors. For example, it
is known that the water uptake of Nafion depends on the tem-
perature, and the sensing behavior could vary with the amount
of water uptake (or hydration) [31]. As another example, the
stiffness of the IPMC is an important parameter in determin-
ing the sensing response, as shown in [31]. We measured the
Young’s modulus of the IPMC beam at different temperatures,
using the experimental setup shown in [11, Fig. 5], and found
that the Young’s modulus depends nonlinearly on the temper-
ature (see Fig. 6). Such dependence could be partly due to the
water uptake factor, but other factors could play a role too.
Besides water uptake and material stiffness, the ion diffusivity
is yet another critical parameter of the sensing dynamics [12],
[30], [31] that is heavily influenced by the temperature. Finally,
the dielectric constant of IPMC, resistivity, and other electrical
parameters are conceivably functions of the temperature. All
the aforementioned factors could depend on the temperature in

500

4807

20 30 40 50 60 70
Temperature (°C)

Fig. 6.  Measured Young’s modulus of IPMC versus the bath temperature.

a nonlinear and complex way, and many of these variables are
difficult to measure directly. Therefore, it would be a daunting
task to provide a physical explanation of the specific trend ob-
served in Fig. 5. Instead, using an empirical approach to model
the temperature-dependent sensing dynamics becomes a natu-
ral alternative. As we will show later, such an approach will
also lead to efficient algorithms for decoding the IPMC sensor
signals under different temperatures.

III. MODELING OF TEMPERATURE-DEPENDENT
SENSING DYNAMICS

For a given temperature, we used a linear time-invariant sys-
tem to describe the IPMC sensing dynamics empirically. It was
found that a fourth-order transfer function G(s) could ade-
quately approximate the measured frequency response for our
sample, with

b484+b353+b282+b18+b0
G(s) = —; 3 5 )
s* 4+ a3s° + a8 + a8+ ag

ey

The coefficients {a;}?_, and {b;}!_, depend on the tempera-
ture. It is desirable to capture such a dependence with simple
functions, so that the model at any temperature (within the stud-
ied range) can be obtained. To achieve this, we first identified the
coefficients corresponding to a set of seven temperatures (23,
25, 30, 40, 50, 60, and 65 °C). For each of these temperatures,
given the measured frequency response and the desired system
order, we used the MATLAB command invfregs to find the co-
efficients for the approximating transfer function G (). Then by
fitting the values of each coefficient at different temperatures,
we got a low-order polynomial function of the temperature 7'
for that coefficient. For example, Fig. 7 shows the identified ag
at different temperatures, along with the approximation by the
polynomial function

ag(T) = (4.81 — 0.043(T — 23.07) — 0.00028(T — 23.07)?
+8.56 x 107°(T — 23.07)*) x 10'°.

To verify the prediction capability of the temperature-
dependent model, we constructed the models at 35 and 45 °C
based on (1) and the coefficient functions {a;(T")}3_, and
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Fig. 8. Comparison of the measured frequency response and the model pre-

diction at 35 °C. The input and output of the system are taken to be the IPMC
tip displacement and the short-circuit current, respectively.

{b;(T)}}_, evaluated at T = 35 and 45, respectively. Note that
35 and 45 °C were not used in data-fitting for obtaining the co-
efficient functions. Figs. 8 and 9 show the comparison between
the measured frequency response and the predicted frequency
response based on the models at these temperatures. The good
agreement between the model prediction and the measurement
in both figures shows that we can effectively predict the sensing
dynamics at different temperatures.

IV. INVERSE COMPENSATION OF SENSOR DYNAMICS

A. Inverse Compensation Scheme

In applications, we need to infer the underlying mechanical
signal given the output of an IPMC sensor. Let d and % denote
the tip displacement and the current output of the sensor, re-
spectively, and let D(s) and I(s) be their Laplace transforms.
Then, I(s) = G, (s)D(s) with

_ b4 (T)54 + b3 (71)55 + bQ (T)82 + b1 (T)S + bo (T) .

G (s) st 4 a3(T)s? 4+ ax(T)s? 4+ a1 (T)s + ao(T)

2
Inferring D(s) [or d(t)] requires the inversion of the sensing
model G, (s); namely, D(s) = (1/G; (s))I(s). However, the
models G, (s) we obtained are of nonminimum phase and the re-

H
o

—— 45° C (measured)
—— 45° C (predicted)

Magnitude (dB)
3

o ; ‘
0 20 40 60 80 100
0 " . v '
=)
()
e
o -200}
7]
©
<
o
-400 ‘ : i i
0 20 40 60 80 100

Frequency (Hz)

Fig. 9. Comparison of the measured frequency response and the model pre-
diction at 45 °C. The input and output of the system are taken to be the IPMC
tip displacement and the short-circuit current, respectively.

sulting 1/G, (s) would be unstable and thus not implementable.
For example, the model at 35 °C is

—17.35* 4+ 2.2 x 10%s® — 10752 — 9.4 x 10%s + 4.5 x 1010
st 4+ 83553 + 6.3 x 10582 + 2.5 x 1085 + 4.4 x 1010

which has one stable zero —106.7 and three unstable zeros:
35.2, 662.2 + 498.35. The nonminimum-phase property may
have resulted from the fundamental sensing physics. Chen
et al. derived an infinite-dimensional, physics-based dynamic
model for IPMC sensors, and the corresponding reduced (finite-
dimensional) model was of nonminimum phase [31].

One alternative for circumventing the aforementioned prob-
lem could be identifying a stable transfer function model for
the inverse dynamics directly based on the measurement data.
In other words, one could take the IPMC sensing current as
an input and the tip displacement as an output and seek a sta-
ble model for this relationship. However, despite our extensive
search, there exist no stable inverse models that can provide
reasonable match to the measured data.

In this paper, we explore the use of techniques for stable
inversion of nonminimum-phase systems [33], [34] to obtain
the IPMC tip displacement based on the sensing output. Let
G(s) be the forward sensor model, with input D(s) and output
I(s). It is assumed that G(s) is hyperbolic, implying that it
has no zeros on the imaginary axis. The inversion problem is
formulated as follows: given the sensor output function i(t),
0 <t < o0, find the function d(t), 0 < t < oo, such that

i(t) = G(s)[d](?) ©)

where the mixed frequency-time domain notation G(s)|[d] rep-
resents the signal obtained by passing d(-) through the system
G(s). If G(s) is a minimum-phase system, the solution d(t) can
be computed easily using

d(t) = H(s)[i](t) 4)

with H(s) = (1/G(s)). For a nonminimum phase G(s), as in
the case of an IPMC sensor, H (s) contains unstable poles and
thus the algorithm (4) is not implementable. To solve the inver-
sion problem, we decompose H (s) = H;(s) + H, (s) where all
poles of Hy(s) have negative real parts (stable) while all poles
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Fig. 10.  Schematic of the inversion algorithm.

of H,(s) have positive real parts (unstable). Note that by the as-
sumption on G(s), H (s) has no poles on the imaginary axis. The
solution d(¢) to the inversion problem will correspondingly have
two parts: d(t) = ds(t) + dy (t), where ds (t) = H,(s)[é](t) and
d, (t) is computed as follows.

We first mirror the signal i(¢) with respect to t = 0 and obtain
i(t) = i(—t). Then, we pass the time-reversed signal 7 through

a stable system H, () 2 H,(—s)

dy = Hy(s)[7](t).

We then obtain d, from dy, by reversing the time again, d,, (t) =
dy(—t).

Fig. 10 illustrates the overall inversion algorithm. Note that
evaluating d, (t*) [or equivalently, Ju(ft*)], for some t*, re-
quires knowing z(t’ ), for all ¥ < —t*, or equivalently, i(t),
for all ¢ > t*. Therefore, the essence of stable inversion of a
nonminimum-phase system lies in converting an originally sta-

ble but causal system to a stable but noncausal system.

B. Experimental Results

In Fig. 11, we compare the displacement trajectory mea-
sured by the laser sensor with that predicted by the inverse
compensator based on the IPMC sensor output, where the bath
temperature was 50 °C. In the experiment, a sinusoidal mechan-
ical stimulus was applied at 25 Hz. The top panel shows the
measured IPMC sensing current, the middle panel compares
the measured and predicted tip displacement trajectories, and
the bottom panel shows the prediction error. Figs. 12 and 13
show the results when the bath temperature was 35 °C with the
mechanical stimulus applied at 20 and 54 Hz, respectively. It
can be seen that, for different bath temperatures and stimulus
frequencies, the predicted and actual displacement trajectories
have always achieved excellent agreement, indicating that the
modeling and inverse compensation schemes are effective.

We have also experimented with a different type of mechan-
ical stimuli. Instead of using the forced oscillation with the
speaker system, we first displace the IPMC beam tip and hold it
still, and then let it go. The beam will go through free, damped
oscillations. Figs. 14 and 15 show the results when the bath
temperatures were 50 and 35 °C, respectively. The top panel
in each figure shows the measured IPMC sensing current while
the bottom panel shows the measured and predicted tip displace-
ments. In both cases, the measured and predicted displacements
have good agreement following the first peak; in particular, the
prediction has captured well both the decay and the oscillation
frequency. However, there is big mismatch around the time when
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the beam is released. There could be two causes for this. First,
the sensor dynamics could be slightly different from the modeled
case because of the holding process (blocking force applied).
Second, stable but noncausal implementation of the inversion
algorithm could result in some nonzero trajectory even prior to
the moment the beam was released, which is analogous to the
“preactuation” effect in the context of inversion-based output
tracking control [33]. The exact cause of the mismatch during
the transients is still under investigation.

V. INVERSE COMPENSATION WITH FINITE PREVIEW TIME

The algorithm introduced in Section IV-A is noncausal. In
particular, to evaluate the value of d,, at any time ¢*, one needs
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to know the trajectory of the current output i(¢) for all ¢ > ¢*.
In other words, the algorithm would only be useful for the
postprocessing of the sensor data. In many applications, it is
desirable to extract the mechanical stimulus information in near
real time. For this purpose, we examine inverse compensation
with finite preview (or look-ahead) time.

In order to explain the algorithm with finite preview time,
we first rewrite the computation in the lower branch of Fig. 10
in the time domain. Let (A, By, Cy,) be a minimal state-space
realization of the unstable system H,,(s)

Iy () = Ayay (t) + Byu(t)
y(t) = Cuzy (t)

where x,, Ay, By, and C,, have appropriate dimensions, and u
and y denote the scalar input and output, respectively. We can
then write

|
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—~
L
—
U
KR

(&)

It is evident from (5) that the evaluation of d, (¢) requires know-
ingi(t'), ¢ > t.In the finite preview-based algorithm, the upper
limit of integration in (5) is changed to ¢ + T}, for some finite

preview time 7}, > 0. In other words, an approximation d(t) to
d(t) is obtained as

t+T,
d(t) = —C, / e M Bt dt. (6)
t

An important question is how to pick a small 7}, so that the finite
preview-based estimate d is sufficiently close to d. Based on the
work of Zou and Devasia [34], a sound choice 7" of T}, is related
to the real part r of the least unstable pole (i.e., the pole closest
to the imaginary axis) of H,, (s). In particular, 7* = (4/r(). This
can be understood as follows. Since (1/r() also represents the
time constant [37] 7y of the stable system H,, (—s), the influence
of i(t) from 7* = 47y seconds away on the inversion output is
negligible.

We now validate the analysis with an example where the
bath temperature is 35 °C. From the discussion in Section IV-A,
ro = 35.2, and the corresponding 7* = 0.114 s. Fig. 16 shows
the comparison of the model-predicted displacement trajectory
with the actual measurement for the bath temperature of 35 °C,
where we have used a finite preview time of 7*. The trajectory
of IPMC sensor signal, which is used as the input to the in-
verse compensation, is the same as in Fig. 12 and is thus not
shown here. From Fig. 12, the performance of the inversion
with preview of 7" seconds is comparable to the case with infi-
nite preview time, and in both cases the largest error is around
0.2 mm. On the other hand, if we reduce 7, to one half of 77,
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there is a threefold increase in the prediction error, as is seen in
Fig. 17. This indicates that 7* indeed provides a good choice for
the finite preview time 7),.

VI. CONCLUSION

In this paper, we have characterized the temperature de-
pendence of IPMC sensor dynamics and proposed an empir-
ical modeling approach for capturing such a dependence. The
model takes the form of a linear time-invariant system with
temperature-dependent parameters via simple, polynomial func-
tions. In practice, an auxiliary measurement of temperature will
be used to determine the model parameters. An inverse com-
pensation scheme has been further presented for extracting the
mechanical stimulus given the sensor output. Since the sensor
model has unstable zeros, direct inversion is not feasible. The
proposed scheme implements the inversion in a stable but non-
causal way. To reduce the processing delay, we have explored
the inversion with a finite preview time. Experimental results,
with sinusoidal and free-vibration mechanical stimuli, have con-

firmed that the modeling and inverse compensation approach is
effective.

Note that the main contribution of this paper is the proposed
methodology for capturing and compensating the temperature-
dependent dynamics of IPMC sensors, and the quantitative re-
sults obtained for the specific sample used in the study are of less
relevance. Because of the empirical nature of the approach, the
model structure (e.g., the order of the model), model parameters,
and parameter—temperature relationships could vary with mate-
rials, operational frequency range, and sample dimensions. For
example, the experimental characterization of the temperature-
dependent behavior was limited to 10-100 Hz and the resulting
model may not necessarily capture well the response under a
step stimulus. However, the general idea of how to model and
accommodate the temperature dependence as presented in this
paper is expected to work under those and other different sce-
narios. In addition, the presented approach can potentially be
used for other classes of electroactive polymer sensors, such
as conjugated polymer sensors [38], [39], where the tempera-
ture could impact various electrical, mechanical, and chemical
properties of the material.

Future work will involve the application of the proposed
approach to modeling and compensating the temperature-
dependent behavior for IPMC actuators, which has been con-
firmed in our preliminary work. We will also examine the use of
the proposed methodology in real applications, such as flow
sensing and tactile sensing, where the ambient temperature
could be time varying.
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