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Self-Excited Limit Cycles in an Integral-Controlled System
With Backlash

Alex Esbrook, Xiaobo Tan, and Hassan K. Khalil

Abstract—In this technical note, we study the properties of self-excited
limit cycles in an integral-controlled system containing a play operator. A
Newton-Raphson algorithm is formulated to calculate the limit cycles, and
we prove that the amplitude and period of these limit cycles have linear
relationships to system parameters. These results are confirmed in simula-
tion, where we demonstrate the ability to predict the properties of the limit
cycles.

Index Terms—Backlash, closed-loop analysis, hysteresis, limit cycles.

I. INTRODUCTION

For systems with hysteresis, most existing work aims to provide suf-
ficient conditions under which a given controller structure guarantees
stability of the system in question. In particular, results in the nanopo-
sitioning literature focus on proving boundedness of the tracking error
[1]-[3]. A natural question therefore is to consider the behavior of the
system when these conditions are not satisfied; alternatively, what ef-
fects do hysteresis nonlinearities have on the steady-state solutions of
the system? Several authors, perhaps most notably those of [4], have re-
marked that hysteresis can lead to unwanted oscillations. Further inves-
tigations into these oscillations are limited. One result is in [5], where
conditions are presented under which the method of harmonic balance
predicts the existence of periodic solutions in systems with relay hys-
teresis. The authors of [6] utilized the describing function method to
predict the existence of a limit cycle in a Terfenol-D-based actuator,
and demonstrated its existence in experiments. These works focused
fundamentally on the question of existence, and did not investigate any
properties of the limit cycles in detail. Describing function methods
have also been used to demonstrate some approximate solutions to hys-
teretic systems [7], [8]. There is also some additional work on limit cy-
cles in systems with relay hysteresis [9], which was driven primarily
by researchers in the field of electronic circuits in the 60’s.

In this technical note, we offer an in-depth exploration into the prop-
erties of self-excited limit cycles occurring in a particular class of sys-
tems with hysteresis. In particular, we focus on an »-dimensional linear
plant controlled by an integral controller, where a play operator [10],
[11] is present in the feedback loop. While the considered hysteresis
model will not capture sophisticated hysteresis in systems such as smart
material actuators, it has been chosen for several reasons. First, as
we show in this note, it allows one to rigorously analyze the limit
cycle properties and examine the impact of controller and plant pa-
rameters. Second, the results will apply directly to systems involving
mechanical plays (backlashes). Finally, there are applications, such as
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Fig. 1. (a) Closed-loop system described in (1). (b) Illustration of a play
operator.

biomimetic robots, where oscillatory control inputs need to be gener-
ated [12]. The choice of a simple hysteresis model facilitates the im-
plementation of an oscillator and offers insight as to how the oscillator
output behavior (amplitude, bias, and frequency) can be tuned with the
model parameters.

We focus our attention on odd symmetric limit cycles within the
system. A Newton-Raphson algorithm is formulated to calculate the
limit cycles, and using the odd symmetry of the operator, we are then
able to prove that linear relationships exist between several properties
of the limit cycles and the parameters of the system. These calculations
yield precise results regarding the behavior of the limit cycles in the
system, as opposed to the approximate results of the describing func-
tion method or results that focus on the question of existence. We then
verify these results simulation, where we also demonstrate the effec-
tiveness of the Newton-Raphson algorithm at predicting the solutions
of the system.

A preliminary version of this note, which dealt with the case in-
volving scalar plants only, was presented at the 2013 American Control
Conference.

II. SELF-EXCITED LIMIT CYCLES IN A SYSTEM WITH HYSTERESIS

We consider a linear system preceded by a play operator and a unity
gain controlled using integral control and state feedback as illustrated
in Fig. 1(a);

#(8) = Aa(t) + B (0(t) + W, 13 0)()

a(t) =Cuxlt)

v(t) = — Kix(t) — Koo (t) e
wherez € R, 0 € R, A € R**", B e R",C € RV, K, €
R1%" and K> € R. The play operator W, is a unit hysteretic ele-
ment illustrated in Fig. 1(b). Each play operator W, is parametrized by
r, representing the play radius or threshold of the operator. When the
input #(#) is monotone and continuous, we can express the output u.(t)
of a play operator W,. as

w(t) = W, [v; u(0)] (£)
= max {min {v(#) + r.u(0)},v(#) —r}. 2
The output u (%) is also referred to as the state of the play operator W,..
For general inputs, the input signal is broken into monotone segments,
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and the output is then calculated by setting the last output of one mono-
tone segment as the initial condition for the next.

Notice from Fig. 1(b) and (2) that there are two basic modes in which
the state of a play operator can reside. The first is the boundary region,
in which u(t) = v(#) & r. The second mode of operation is the interior
region, where (f) is constant, represented in (2) by the term (0).
We will make use of the boundary and interior region terminology
throughout the technical note. Furthermore, we will also refer to the
leftmost boundary branch in Fig. 1(b) as the descending region, and
the rightmost boundary branch as the ascending region. The play oper-
ator is used in the Prandtl-Ishlinskii hysteresis operator, which uses a
superposition of play operators and a linear gain to model a hysteresis
phenomenon [10], [11].

The well-posedness of (1) follows from the arguments in [13]. We
now begin our analysis of (1) by providing a coordinate transform in
order to place (1) into a switched system form. Let us define

a(t) = — Koo () + W, [v; 0](#). 3)

The derivative of « requires us to define the derivative of a play op-
erator, which is in general discontinuous. Let II denote the set of all
closed intervals of ¢ € ® in which W,.[v: 0](¢) lies in a boundary re-
gion, and let II° denote its complement. We therefore have a piecewise
continuous definition for W, given by
_— [ iftell
Wl = {1 @

0(t) = — K1 [(A — BR4)x(t) + Ba(f)] — K, [Cx(t)]
[-K1(4d — BR;) — K>2Cl«(t) — K1 Ba(t). ®)

Note that the derivative of W, is continuous everywhere except when
the play operator exits the interior region. Using (3)—(5), we can derive
a switched system form for (1):

A)(t) = 1'1i(1‘) A)/(t)v i = 17 2
. [A-BK, B
A= { —CKs 0}

A—- DK, D
Ay = 6
? {—201(2 - K1(A-BEK,) —-K.B ©
where v = [27, a]T ,and r is the play radius. The matrix A, character-

izes the systems behavior in the interior region of the hysteresis, while
As does so for the boundary region of the hysteresis. To describe the
switching behavior of i(¢), we will define the operator

i(t) = QLW [e: 0(0)] (1) %)

where Q[W,[v;0](#)] = 1 when W, is in the interior region, and
Q[W,.[; 0](t)] = 2 when W, is in the boundary region. From sim-
ulations of (6) (not shown due to space limitations), we observe that if
the control gains are chosen such that A, is unstable and A- is Hur-
witz, the trajectories of (6) converge to a limit cycle. Furthermore, the
limit cycle is sine-like, in that it is both odd-symmetric and changes
the sign of its derivative twice a period. Based on these observations,
we will develop a Newton-Raphson algorithm to calculate the sine-like
solutions of the limit cycle.

A. Computation of the Limit Cycles

Our search for the solution of the limit cycles begins from a state
vo at Zo such that the play operator is in the ascending linear section.
LetZ; denote the time when the play operator enters the interior region
from the boundary region; this will be denoted as the first switching

time. Similarly, we define ¢z, #3, and £, as the second, third and fourth
switching times (see Fig. 2). Since the system starts in the boundary
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Fig. 2. Illustration of the state of the play operator P, during a sine-like limit
cycle. The stars indicate times when the system dynamics switch.

region, #(0) = 2,7(f{) = 1,i(f; ) = 2, and so on, where " indicates
the time moment right after ¢;, for j = 1,2, - - -. Furthermore, based
on our assumption of sine-like limit cycles, ~v(#4+) = ~(0); therefore
t4 — to is the period of the limit cycle. From the description of the
play operator, for any sine-like limit cycle, the control (%) at these
switching times obeys the equations

B(E) =0 ®)
v(t) —v(ty) =2r )
i(F2) =0 (10)

v(ls) —v(la) = — 2r. (11)

Furthermore, symmetry allows us to only consider the conditions (8)
and (9). We will let £, = £, — g and ts = 2 — %, ; these values will
be referred to as the switching intervals. We can then translate these
equations into functions of <. From (8) and the definitions of v and
As, we can quickly arrive at

Hi(yo.t1) 2 Re®*yy =0 (12)

where & = [-A1(A—DBK,)— K>C, —BK,]. Since W, is constant
in the interior region, from (9) and (3), we can derive

Holyo. b 1) 2 [K 1[I — ¢™12)e* 2y =20 (13)

where [ is an appropriately dimensioned identity matrix. Finally, be-
cause we are seeking sine-like limit cycles, we also have the constraint
equation

ST (0.t t) = (T 46126050 =0 (14)

which is derived from the forward-time solution of the switched system
from¢ = %, to ¢ = %;. Note that the existence of a set of values
(7. t1, t2) satisfying (12)—(14) will imply the existence of a sine-like
limit cycle. The proof for the existence of more generally shaped limit
cycles, however, is a challenge that is beyond the scope of this note.
We now present the following lemma, which addresses the symmetry
of the dynamics of the system.

Lemma 1: Let vo be the state of (6) when the system enters the
ascending branch from the interior region, and let ~(#2 ) denote the state
of (6) when it enters the descending boundary region. Assume that the
system switches once between states o and y(#2 ). Then, if the system
lies at —~ att = #; in the descending region, the state of the system
when the system enters the ascending region is —~(Zz).

Proof: Based on (8) and (9), we know that 4o and +(Z2) must
obey
(h) =e M, () = M y(h)
0= I;'E?AQLIA/O

2r =[—K1 1[I — e 2](F)

(15)
(16)
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where £ and f2 are the switching intervals. Now consider the behavior
starting from —+(0). Then

(@) = — ey, 3 (B) =M (F)
0=~ Ke™ling a7
—2r = [ KA = M () (18)

where 7 and &5 are the switching times and ¢} and ¢5 are the switching
intervals for the system when it is initialized at —+5. Note the minus
sign on the 2r term in (18). This is because we are entering the oppo-
site region of the play operator from the original case, and therefore this
switching condition would be derived from (11) instead of (9). Com-
paring (15) with (17), we notice that the sole difference is the presence
of the negative sign, which cannot affect whether ¢ = 0. Therefore, ]
is equal to ¢, , implying ~(#]) = —+(Z,). Using this in (18) yields

K[ = e 2y ()= — 20
K[ — 2y )y =20

Since we have recovered (16), we know that#; = ¢, which completes

the proof. O
Remark 1: This lemma shows that as long as a vy can be found
such that vo = —~(%2), the system possesses a sine-like limit cycle.

However, this result is proved under the assumption that the sign of @
does not change in the interval [¢1, 2], which implies there is only one
switching between ¢y and ¢. . Proving that this does indeed occur is part
of our ongoing future work.

Equations (12)—(14) yield n 4+ 2 equations with n + 2 unknowns,
Yo = [0, aq] , t1, and t2. We will refer to solving this set of simul-
taneous equations as the limit cycle problem. Due to the nonlinearity
of these equations, we will utilize the well-known Newton-Raphson
method to find a solution to the limit cycle problem. Denote our un-
knowns as & = [vd , ¢, tz]T. We can then define

P(@) = [ (@). u(@). Bo(®)] (19)
We can now apply the Newton-Raphson method to obtain a solution to
the above equation using the iterative formula

T =" — T () P(D) (20)
where
ax a3 (20}
v 9tq Oty
J(<I>) — e e amn @1

These partial derivatives can be readily calculated in closed-form based
on (12)—(14); see the Appendix section for details. The limit cycle is
then characterized by the solution of the equation
P(2*) = 0. (22)
Note that $* completely characterizes the behavior of the limit cy-
cles, as once the switching times and initial conditions are known, the
closed-form solution of the limit cycle can be computed from succes-
sive solutions of the two (switching) linear systems. Note that the so-
lution of (6) evolving according to $ obeys the Poincare mapping

W= U () S ettt A0 23)

The (local) stability of this mapping is determined by linearizing the
mapping about the fixed point 5 ; if the eigenvalues have magnitude
less than 1, then the solution is locally stable [14].
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B. Properties of the Limit Cycles

While the solution of the limit cycle problem ®* must be calculated
numerically, we can utilize the (12)—(14) to prove some properties of
the limit cycles corresponding to the solution ®*. First, we will see
how the solution &* varies with the play radius r.

Proposition 1: Let the solution of the limit cycle problem with » =
7* be denoted by &~ = [+, ], tfj]T. Then, if » = r*¢;, where
cr >0,8, =[ev7 1, tiﬁ]T is a solution to the limit cycle problem.

Proof: We begin by directly computing (13) evaluated at &, =
[eivsT 17, tj]T with r = #*¢;, which can be written as
[ K0 1[I — e?12])et2t e qg = 20y (24)

By dividing both sides by ¢, we arrive at the solution of Ho (P, ).
Since the left-hand sides of (12) and (14) are linear with respect to
the initial state, the ¢; term can be immediately divided out, proving
[Tt tj]T solves the limit cycle problem. |

Proposition 1 shows that there is a linear relationship between the
play radius » and the amplitude of the limit cycles generated in (6),
(7). Next, we can show that the bias of the limit cycles can be set to
non-zero values. Consider the system

2(t) = Az(t) + B (v(t) + W, [v; 0](t))
6(t) =Ca(t) — y»r

v(t) = — Kix(t) — Rao (1) (25)
where - is a constant reference. The only difference between the above
equation and our original system is the presence of the term ¥,.. Let us

assume that
rank ({2 ﬁ]) =n+1

This is a well known necessary and sufficient condition for the ex-

istence of a steady-state solution to systems with constant references

when integral control is used. Let # € R" and & € R be such that
0= (A - BK,)r — BK,7,

0=C% — yr. (26)

Defining # = —K | # — Ko#, we can see that (26) reduces to

A Bllx] _[0
¢ oolle] lu
Therefore, our assumption guarantees the existence and uniqueness of
Z and 7. Next, define the coordinates
r=x—¥% d&=0-7. 27
Note that since y,, T and & are constants, the closed-loop system can
be written as [using (26)]

i(t) =(A — BK)#(t) + B (—K26(t) + Wi [:0](t))
o(t) =Ci. (28)
This is the same form as that considered in (1). Therefore, the system
(25) and (7) possesses the same limit cycle as (6), (7), with the excep-
tion of a constant shift in the coordinates o and a'. We present this result
as the following proposition.

Let ®g = [’)({ L.t
lution of the limit cycle problem for (6), (7). Then,
o = [(wo+ )T .0 — Ko7, t], tg]l is a solution to the
limit cycle problem for the system (25) and (7).

T
Proposition  2: ]" denote the so-
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Finally, we consider a special case of the system (1), where we as-
sume z to be a scalar whose derivative obeys

z(t) = ax(t) + (v(t) + W, [v; 0](¥))

where a > (0. We then select the control to be v(t) = [kpa. a® /2]v(t),
where k, € (0.5.1). The eigenvalues of the systems then linearly scale
with increasing a. The system matrices are then

A(t) = Aot i=1.2 (29)
where
[ =Fkp)a 1 . (1= kpla 1
“h _|: —a?/2 0]’ Az= —a® — k(1 —kp)a® —kya

We can now show that the frequency of the limit cycles is linearly
related to the parameter a. Let us focus on the system in the boundary
region of operation, i.e., ¥(#) = A2+(t). The characteristic equation
of this system is

§% — Tr(A2)s 4+ Det{Ag) = 0. (30)

with

Tr(A2) = (1 — 2k,)a, Det(Ay) = a®

where Tr and Det denote the trace and determinant, respectively. Note
that the condition %, € (0.5. 1) implies, from the coresponding char-
acteristic equations, that A, is unstable, and that A, is Hurwitz. Let
us consider the state . as the output of this second-order system, and
formulate a canonical form transformation. Let y; = @ and y» = &.
This transforms the system equations based on A, with our specified
control gains into

X1(t) = xa(t) 3D
xa2(t) = — a”x1(t) + (1 — 2kp)axa(D). (32)
Next, let 51 = ax1, and let 72 = x2. The 7} equations are then
N (t) =ana(t) (33)
H2(t) = —ani(t) + (1 — 2k, )ana () (34)
Finally, let the time variable ¢ = a7, which implies that
d 14
dr ~ adt’
Equation (33) now becomes
i,
an T) =n2(T) 35)
dr
1,
D2y = — () + (1 = 28, ) (7) (36)

dr
which is independent of @. The same transform can be applied to the
system governed by the 4| matrix, which then also becomes indepen-

dent of a. The resulting system equations in these transformed coordi-
nates are

77(T) 244'111177(/—)7 i = 1, 2

0 1 0 !
:lﬁl = _1/2 (1_Lp):|* *4772: |:_1 (1—2kp)j|
(37

We can then apply (12)—(14) to (37), whose solution will be indepen-
dent of @. By reversing the coordinate transforms on resulting solution,
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Fig. 3. Switching times computed from algorithm and simulation, versus gain
k, for the system described in (29).

we see that the effect of increasing « is to scale down the amplitude
and scale up the frequency of the resulting oscillations. Equivalently,
the switching intervals ¢, and 2 are scaled by 1/a. This result allows
us to present the following proposition.

Proposition 3: Consider the system (29). Let the solution of the
limit cycle problem with @ = «* be denoted by [va®, ¢F, t;]T. Then,
ifa = a"cy, where ¢; > 0, 1/c,[~¢",¢7.¢5] is a solution to the
limit-cycle problem.

III. SIMULATION RESULTS

We now continue our examination of the limit cycles through simu-
lation. The first set of simulations are performed on a system obeying
(29), where @ = 1, and » = 0.5. First, we explore the variation of
the solution to the limit cycle problem ®* with respect to the con-
troller gain k. The effect of the gain k, on the limit cycle solution
is difficult to determine analytically; we instead explore its effect in
simulation. Simultaneously, we verify the capability of the proposed
Newton-Raphson method in computing the limit cycles by comparing
its results to those observed in simulation.

Fig. 3 shows the switching times of the limit cycle as computed by
both the Newton-Raphson algorithm and directly from simulation of
the dynamics. The range of %,, considered was 0.55 to 0.99. There are
several features of note on this figure. First, we are able to confirm the
algorithm’s effectiveness at computing the solution to the limit cycle
with a scalar plant, as the simulation results agree very closely with
the algorithm results. Second, looking at Fig. 3, we see that as %k, ap-
proaches 1, the system spends more and more time in the interior re-
gion (denoted ¢2) versus the boundary region (denoted £, ). This is be-
cause the eigenvalues in the boundary region are significantly faster
than those in the interior region when %, is high, meaning the system
must spend more time in the interior region to keep the system in steady
state. Accordingly, smaller values of k,, results in the system spending
more time in the boundary region than the interior region.

Fig. 4 shows the variation of the limit cycle solutions with k,,. Again,
we see that the simulation and algorithm calculations are in tight agree-
ment. Fig. 4 also indicates that as k), approaches 0.5, the limit cycle
solutions rapidly grow in size. This signals a rapid growth in the am-
plitude of the limit cycles for k,,, with the system becoming unstable
for k,, > 0.3. Furthermore, Fig. 5 shows that the amplitude of the os-
cillations is strongly correlated with the size of aq.

We also verify the ability of our algorithm to predict solutions to
limit cycles in higher order systems. We examine the limit cycles ap-
pearing in a system composed of a second-order plant, controlled by
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a PI controller, and preceded by a unity gain and play operator. This
system can be expressed in state-space form

)] [0 17 [au(t) 0
|:;1'72(7‘):| - |:—2 1:| |:,1,’2(f):| + |:1,?(f) + Wi [v; 0](t)

a(t) =x1(1)

v(t) =k, (—ey(t) — 0.322(t) — a(t)) (38)
where %, = 1.8. Figs. 6 and 7 show the evolutions of the initial state
o and the switching times (¢, ¢2), respectively, with the algorithm
iterations. Observations of the convergence rates of different variables
can be made from these figures. Around 60 iterations of our Newton-
Raphson algorithm are required for the limit cycle solutions to settle
to their final values, while the switching times converge significantly
faster, requiring only around 20 iterations.

IV. CONCLUSIONS AND FUTURE WORK

We have demonstrated the ability to predict the properties of self-ex-
cited limit cycles generated by a system with hysteresis. Of particular
interest is our result that the amplitude and periods of these limit cy-
cles have linear relationships with the system parameters. We have also
showed that a Newton-Raphson algorithm can be used to compute the
closed-form of the limit cycles. These results can be utilized by control
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Fig. 6. Evolution of the limit cycle initial states, with successive

Newton-Raphson iterations for the system described in (38).

1.4 T T T T

t

Sty

—_
T
L

©

©
T
.

Switching Times
=} o
e o

0 20 40 60 80 100
Iteration Count

Fig. 7. Evolution of the switching times with successive Newton-Raphson it-
erations for the system described in (38).

designers to alter control designs to either create or eliminate oscilla-
tions in systems with backlash. Future work will include investigating
whether (22) admits a unique solution, as our computational exam-
ples have suggested. We will also explore the extension of this work
to PI operators with multiple play hysterons, where a significant chal-
lenge arises from the much larger number of possible switches in the
dynamics.
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Berlin-

Particle Filtering Framework for a Class of Randomized
Optimization Algorithms

Enlu Zhou, Michael C. Fu, and Steven I. Marcus

Abstract—We reformulate a deterministic optimization problem as a
filtering problem, where the goal is to compute the conditional distribution
of the unobserved state given the observation history. We prove that in
our formulation the conditional distribution converges asymptotically to a
degenerate distribution concentrated on the global optimum. Hence, the
goal of searching for the global optimum can be achieved by computing
the conditional distribution. Since this computation is often analytically
intractable, we approximate it by particle filtering, a class of sequential
Monte Carlo methods for filtering, which has proven convergence in
“tracking” the conditional distribution. The resultant algorithmic frame-
work unifies some randomized optimization algorithms and provides new
insights into their connection.

Index Terms—Cross-entropy method, particle filtering, randomized op-
timization.

I. INTRODUCTION

Global optimization problems arise in many areas of importance and
can be extremely difficult to solve, due to the presence of multiple local
optimal solutions and the lack of structural properties such as differen-
tiability and convexity. In a general setting, there is little problem-spe-
cific knowledge that can be exploited in searching for improved solu-
tions, and it is often the case that the objective function can only be
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