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Abstract
As a flow-sensing organ, the lateral line system plays an important role in various behaviors of
fish. An engineering equivalent of a biological lateral line is of great interest to the navigation
and control of underwater robots and vehicles. A vibrating sphere, also known as a dipole
source, can emulate the rhythmic movement of fins and body appendages, and has been widely
used as a stimulus in the study of biological lateral lines. Dipole source localization has also
become a benchmark problem in the development of artificial lateral lines. In this paper we
present two novel iterative schemes, referred to as Gauss–Newton (GN) and Newton–Raphson
(NR) algorithms, for simultaneously localizing a dipole source and estimating its vibration
amplitude and orientation, based on the analytical model for a dipole-generated flow field. The
performance of the GN and NR methods is first confirmed with simulation results and the
Cramer–Rao bound (CRB) analysis. Experiments are further conducted on an artificial lateral
line prototype, consisting of six millimeter-scale ionic polymer–metal composite sensors with
intra-sensor spacing optimized with CRB analysis. Consistent with simulation results, the
experimental results show that both GN and NR schemes are able to simultaneously estimate
the source location, vibration amplitude and orientation with comparable precision.
Specifically, the maximum localization error is less than 5% of the body length (BL) when the
source is within the distance of one BL. Experimental results have also shown that the
proposed schemes are superior to the beamforming method, one of the most competitive
approaches reported in literature, in terms of accuracy and computational efficiency.

(Some figures may appear in colour only in the online journal)

1. Introduction

The lateral line system is an important flow-sensing organ for
fish [6]. A lateral line comprises arrays of mechanoreceptive
units called neuromasts. Each neuromast consists a bundle of
sensory hair cells encapsulated in a gelatinous cupula [17] .
There are two types of neuromasts, superficial neuromasts that
stand on the skin, and canal neuromasts that are located in fluid-
filled canals below the skin surface. With distinct dynamic
characteristics, superficial neuromasts tend to respond to

3 Author to whom any correspondence should be addressed.

flow velocities while canal neuromasts respond to flow
accelerations (or pressure gradients) [39, 22]. The interaction
between the flow and the cupula generates trains of neuronal
pulses which are transmitted to the central nervous system for
information processing [7, 12, 13]. The lateral line is involved
in various behaviors of fish, such as prey/predator detection
[33, 50], schooling [49], station holding [8], object detection
and avoidance [60, 62], rheotaxis [45, 27], energy-efficient
swimming [41], and courtship and communication [13].

An engineering equivalent of a biological lateral line is
of great interest to the navigation and control of underwater
robots and vehicles. In particular, an artificial lateral line will
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represent a new, noiseless sensing modality for underwater
applications that is complementary to traditional sensors such
as vision and sonar [12, 42]. A number of micromachined flow
sensors, inspired by neuromasts in fish lateral lines [23, 43, 51,
63] or by wind receptor hairs in insects [21, 47], have been
reported in the last decade. These sensors typically have an
out-of-plane beam structure that bends or deforms during the
interaction with a flow. The bending or deformation, which
carries information about the flow, is captured via resistance
change [23, 43, 47, 51, 61, 64] or capacitance change [21, 53].
Hair cell-inspired sensors have also been developed at slightly
larger scales, exploiting optical transduction [38] or novel
sensing materials such as ionic polymer–metal composites
(IPMCs) [2, 3] and gel-supported lipid bilayers [54].

Extensive behavioral and neurophysiological studies have
been conducted by biologists to understand how hydrodynamic
stimuli are encoded and processed in the lateral line system
[7, 14–16, 19, 62], which could potentially provide insight into
information processing for artificial lateral lines. Theoretical
work on flow modeling in the context of lateral lines is often
instrumental in both explaining hydrodynamic imaging by
fish and guiding the information extraction in artificial lateral
lines. For example, Hassan modeled the flow field around
a fish when the latter passes by or approaches an obstacle
[29], moves in open water or approaches a plane surface
[30], glides alongside or above a plane surface [31], and
is near an oscillating sphere (also known as dipole) [32].
Ren and Mohseni derived the flow inside a trunk canal in
the presence of vortex street, and examined its implications
in vortex sensing [52]. Sichert et al explored the use of
hydrodynamic multipole expansion to explain how aquatic
animals distinguish shapes of moving objects [57], and in
another work Sichert and van Hemmen investigated the
shape influence of a submerged moving object on the lateral
line perception using the conformal mapping theory [58].
Bouffanais et al performed analytical and numerical studies
on the pressure field around a cylindrical object in a uniform
flow and examined the estimation of location, size, and cross-
section shape of the object based on the measured pressure
field [9]. There has also been experimental work in exploring
the strategies for vortex sensing [38, 5, 59] and object tracking
and recognition [24].

Barring some of the aforementioned research in vortex
sensing and object imaging, much of the work in information
processing for biological and artificial lateral lines has been
focused on dipole source localization. The dipole source
emulates the rhythmic movement of fins and body appendages,
and has been widely used as a stimulus (playing the role of
predator, prey, or conspecific) in the study of biological lateral
lines [14, 15, 19, 28]. Dipole source localization has also
become a benchmark problem in the development of artificial
lateral lines, for demonstration of the latter’s capability
in mimicking their biological counterpart. In addition, for
underwater applications, localization of dipole sources has
implications in detecting and estimating nearby fish-like robots
and therefore is relevant to robot coordination and control.

Dagamseh et al proposed the use of characteristic points
(zero-crossings, maxima, etc.) in the measured velocity

profile along the lateral line for dipole source localization
[20], similar to what was proposed by Franosch et al for
modeling the localization by the clawed frog Xenopus [25].
However, this approach would require prohibitively many
sensors to determine the characteristic points, and it is limited
to a maximum detection distance of 1/

√
2 body length

(BL). Franosch et al also suggested a maximum-likelihood
estimator-type model for dipole localization by Xenopus [25],
although no algorithms were presented to solve for the optimal
source location. Data-matching/table-lookup approaches were
presented by Pandya et al, where the measured signal pattern
was compared with a large, pre-obtained set of templates
or an empirical model fitted with sufficient amount of data
[48]. These approaches suffered from the need for excessive
computing and storage resources, or the difficulty in system-
level implementation [48]. Recently, a beamforming (BF)
algorithm for array signal processing was used to localize
a dipole source and a tail-flicking crayfish, and showed
better performance than the matched filter [65]. In our prior
work, we proposed a neural network-based scheme for dipole
localization [3]; however, due to its black-box nature, the
approach would require massive training data unless the
dipole’s vibration amplitude and orientation are known.

In this paper, using the analytical model for a dipole-
generated flow field, we formulate a nonlinear estimation
problem and present two novel iterative schemes for
simultaneously localizing a dipole source and estimating its
vibration amplitude and orientation. The first scheme, which
is based on the Gauss–Newton (GN) method, solves the
nonlinear estimation problem through iterative linearization.
In the second scheme, the Newton–Raphson (NR) method is
used to solve the nonlinear equation resulting from the first-
order optimality condition. The flow model, with measurement
noise properly incorporated, is also used to derive the Cramer–
Rao bound (CRB). Analysis based on the CRB is subsequently
exploited for the optimal design of intra-sensor spacing of the
lateral line. Simulation is conducted to localize a dipole source
placed at different points along an ellipsoidal track, with its
vibration amplitude and orientation varying from one point to
the next. Simulation results have shown that both the GN and
NR algorithms are able to simultaneously estimate the source
location, vibration amplitude and orientation with comparable
precision. Furthermore, the comparison with the CRB shows
that the algorithms achieve near-optimal performance at many
points.

We have further validated the algorithms using an
experimental prototype of lateral line that comprises six
millimeter-scale IPMC flow sensors. With excellent agreement
with the simulation results, the experimental results confirm
that the GN and NR schemes have comparable performance
in accuracy and computational efficiency with the GN scheme
having a slight advantage. Specifically, for a BL of 10 cm, the
maximum localization error is less than 5% of the BL when
the source is within the distance of one BL. Experimental
results have also shown that the proposed schemes are
superior to the BF method; when the BF method is only
required to determine the dipole location (with vibration
amplitude/orientation given), its maximum (average, resp.)
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localization error is three (four, resp.) times of those under the
GN and NR schemes while consuming comparable computing
time.

A preliminary version of some of the results reported in
this paper was presented at the 15th International Conference
on Advanced Robotics [1]. Important enhancements of this
paper over [1] include CRB-based design and performance
analysis for artificial lateral lines, analysis of computational
complexity and storage requirement for each algorithm, more
in-depth simulation analysis, experimental evaluation of the
proposed recursive estimation schemes, and the inclusion of
the BF method for performance comparison.

The remainder of this paper is organized as follows. The
problem setup is described in section 2. The GN, NR, and
BF algorithms are described in section 3, along with the CRB
analysis. Simulation and experimental results are presented in
sections 4 and 5, respectively. Finally, concluding remarks are
provided in section 6.

2. Problem formulation

As widely assumed in the literature [28, 32, 35], we consider
a potential flow generated by a vibrating sphere, the dipole
source. The velocity potential ϕ at a spatial point can be
expressed as [40]

ϕ(r) = a3(vd · r)

2‖r‖3
, (1)

where a is the diameter of vibrating sphere, vd is the
instantaneous velocity of the dipole source, r represents
the relative location of the point of interest with respect to
the dipole, and ‖ · ‖ denotes the Euclidean norm of a vector.
At the point r, the flow velocity v(r) is

v(r) = −∇ϕ(r) = a3(3(vd · r)r − ‖r‖2vd)

2‖r‖5
. (2)

Since our goal in this paper is to localize the dipole source,
we redefine r hereafter as the location of the dipole source
with respect to a known point. Note that the formula (2) for
the dipole-generated velocity field remains valid under the new
definition of r, because v(−r) = v(r). The use of the model (2)
is supported by our earlier experimental work reported in [4].

To ease the discussion, we will focus on the case where
the lateral line sensor and the dipole source are located in the
same plane (denoted as the x − y plane) in which the axis
of dipole oscillation lies; see figure 1 for illustration. This
is a scenario widely adopted in the study of biological and
artificial lateral lines, and our proposed estimation method
will extend to the more general, three-dimensional case in
a straightforward manner. As depicted in figure 1, the dipole
source is located at (xs, ys) and vibrates with velocity vd, where
the angle between the vibration axis and the x-axis is φ. Let
an array of N sensors be located in parallel to the x-axis, with
their locations assumed to be known and denoted as (xi, yi),
0 � i � N − 1. We assume that the presence of sensors
has negligible effect on the flow distribution as characterized
in (2); further discussion on sensor-flow interactions will be
provided in subsection 5.2. We assume that each sensor is able
to provide a noisy measurement of the local flow velocity v

Figure 1. Illustration of the problem setup. The dipole source is
located at (xs, ys).

along one direction, which, without loss of generality, is taken
to be the x-direction in this paper. The latter consideration is
motivated by the fact that most beam-like flow sensors [2, 21,
23, 43, 51, 53, 61, 64] can only sense one component of the
flow velocity. In the absence of noise, from (2), we get

v(xi, yi) = a3vd

2‖ri‖5
((2(xi − xs)

2 − (yi − ys)
2) cos φ

+ 3(xi − xs)(yi − ys) sin φ), (3)

where ri = (xi −xs, yi −ys)
T , with ‘T ’ denoting the transpose.

Let the sphere vibrate with angular frequency ω and
amplitude A, i.e.,

vd = A sin(ωt).

Furthermore, due to the periodic nature of the dipole-generated
flow, we consider extracting the signal amplitude at frequency
ω from each sensor as the measurement. In particular, given
the raw signals from time n1 to n2, {si(n)}n2

n=n1
, the signal

amplitude at ω can be readily obtained through techniques
such as fast Fourier transform (FFT) [46] or sliding discrete
Fourier transform (SDFT) [34, 56], and this inherent filtering
process greatly reduces the noise contained in the raw sensor
signal. For sensor i, the measurement Mi can then be written
as

Mi =
∣∣∣∣a3((2(xi − xs)

2 − (yi − ys)
2)α1 + 3(xi − xs)(yi − ys)α2)

2‖ri‖5

+ di

∣∣∣∣, (4)

where α1 = A cos φ, α2 = A sin φ, and di is the (amplitude)
measurement noise for sensor i. Note that, to accommodate
the nonnegativity constraint for the extracted amplitude,
we have placed the noise di inside | · |, since in general the
noise could be positive or negative. The noises {di}N−1

i=0 are
assumed to have zero mean and be uncorrelated with each
other.

Based on the sensor measurements, we are interested
in estimating the location (xs, ys), vibration amplitude A,
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and vibration direction φ of the dipole source. For ease of
presentation, for i = 0, . . . , N − 1, define

fi(θ ) = a3

2‖ri‖5
((2(xi − xs)

2 − (yi − ys)
2)α1

+ 3(xi − xs)(yi − ys)α2) (5)

where θ = (α1, α2, xs, ys) represents the set of parameters to
be estimated. Once θ is obtained, we can find the vibration
amplitude A =

√
α2

1 + α2
2 and vibration orientation φ =

arctan(α2/α1)). We further define

M
�= (M0, . . . , MN−1)

T ,

f (θ )
�= ( f0(θ ), . . . , fN−1(θ ))T ,

d
�= (d0, . . . , dN−1)

T .

We then have

M = | f (θ ) + d| , (6)

where | · | denotes the component-wise absolute value of the
vector. The estimation problem is formulated as follows. Let
the dipole diameter a, frequency ω, and the sensor locations
{(xi, yi)}N−1

i=0 be known. Given the sensor measurement M,
provide an estimate θ̂ for the parameter θ , such that

J(θ̂ ) = (M − | f (θ̂ )|)T (M − | f (θ̂ )|) (7)

is minimized, where | f (θ̂ )| is the predicted measurement based
on the estimated parameters.

Before presenting the estimation algorithms, we briefly
comment on the assumptions made on the knowledge of a,
ω, and {(xi, yi)}N−1

i=0 . Clearly, it is natural to assume knowing
{(xi, yi)}N−1

i=0 . If the frequency ω is not given a priori, it can
be identified through FFT of the sensor signals. Finally, if a is
unknown, one will be able to estimate a3A as a lump parameter,
since that is how a and A collectively affect the flow field.

3. Estimation algorithms

In this paper we propose and compare two recursive algorithms
for obtaining the parameter estimate θ̂ that minimizes the
cost function J in (7). The function f (θ ) is linear in α1 and
α2, but highly nonlinear in (xs, ys). In the first algorithm,
briefly summarized in subsection 3.1, | f (θ )| is linearized at
each intermediate parameter estimate, and the estimate at the
next iteration is obtained by solving a standard least-squares
problem. This algorithm is also known as the GN method
[36]. In the second algorithm, described in subsection 3.2,
we first derive the (nonlinear) equation capturing the first-
order necessary condition for minimizing J, and then solve the
equation using the NR method [36].

We will further compare our proposed algorithms
experimentally with the BF algorithm, which was one of the
most competitive algorithms reported for dipole localization
[65]. The algorithm will be briefly reviewed in subsection 3.3.

The CRB [18] establishes the lower limit for the variance
of any unbiased estimator, and we have conducted CRB
analysis for both the optimal design of a lateral line sensor and
the evaluation of the proposed algorithms. The CRB analysis
is presented in subsection 3.4.

3.1. GN algorithm

Linearizing the function | f (θ̂ )| about some nominal point θ̄ ,
we have

| f (θ̂ )| ≈ fL(θ̂ )
�= | f (θ̄ )| + B(θ̄ )(θ̂ − θ̄ ), (8)

where

B(θ̄ ) = ∂ | f (θ )|
∂θ

∣∣∣∣
θ=θ̄

.

The estimation problem is then converted to finding θ̂ , such
that

J1(θ̂ ) = (M − fL(θ̂ ))T (M − fL(θ̂ ))

is minimized. This becomes a standard least squares estimation
problem, the solution of which is

θ̂ = θ̄ + λ(B(θ̄ )T B(θ̄ ))−1BT (θ̄ )(M − | f (θ̄ )|), (9)

where λ is a stepping parameter. To minimize the impact of
error introduced by the linearization, a recursive version of (9)
is used, where θ̄ is replaced by the estimate at the previous
iteration:

θ̂k+1 = θ̂k + λ(B(θ̂k)
T B(θ̂k))

−1BT (θ̂k)(M − | f (θ̂k)|), (10)

with θ̂1 = θ0, an initial guess for the parameters. The algorithm
is stopped when ‖θ̂k+1 − θ̂k‖ � ε or k = kmax, where ε > 0
is a specified tolerance and kmax is the maximum number of
allowed iterations.

We can readily estimate the computational and memory
complexity of the algorithm (10). Let nθ denote the dimension
of the parameter vector θ ; in the context of this paper, nθ = 4.
Let O denote the order of magnitude. Then the following
computational complexity is incurred during each iteration:

• Evaluation of B(θ̂k): O(nθN),
• Evaluation of the product B(θ̂k)

T B(θ̂k): O(n2
θN),

• Evaluation of the nθ × nθ matrix B(θ̂k)
T B(θ̂k): O(n3

θ ),
• Evaluation of the next multiplication by BT (θ̂k):
O(n2

θN),
• Evaluation of the final multiplication by M − | f (θ̂k)|:
O(nθN),

The total computational complexity during each iteration
is then O(n3

θ + 2nθ (1 + nθ )N).
Similarly, we can evaluate the memory storage

requirement:

• Storage of θ̂k and θ̂k+1: O(2nθ ),
• Storage of B(θ̂k): O(nθN),
• Storage of the nθ ×nθ matrix B(θ̂k)

T B(θ̂k) and its inverse:
O(2n2

θ ),
• Storage of M and | f (θ̂k)|: O(2N).

The total memory storage is thus O(2nθ + 2n2
θ + (2 +

nθ )N).
The computational complexity and the memory storage

requirement for the GN algorithm are thus both linear in the
number of sensors, N, which provides nice scalability when
one is interested in a large array of sensors. With nθ = 4
and a modest sensor number N (say, N < 20), the algorithm
is suitable for real-time execution on medium-to-high-end
microcontrollers or digital signal processors that are typically
used for underwater robots.

4



Bioinspir. Biomim. 8 (2013) 026005 A T Abdulsadda and X Tan

3.2. NR algorithm

The necessary condition for minimizing (7) is

∂J

∂θ̂
= 0, (11)

which implies

g(θ̂ )
�=

(
∂| f |
∂θ̂

)T

(M − | f (θ̂ )|) = 0. (12)

An estimate of the parameter θ can then be obtained by solving
the nonlinear equation (12) using the NR method:

θ̂k+1 = θ̂k − λG−1(θ̂k)g(θ̂k), (13)

where λ is stepping parameter, and G(θ̂ ) denotes ∂g
∂θ̂

and can
be evaluated as

G(θ̂ ) =
N−1∑
i=0

(Mi − | fi(θ̂ )|)∂
2 | fi|
∂θ̂2

−
(

∂ | fi|
∂θ̂

)T (
∂ | fi|
∂θ̂

)
.

The starting value θ̂1 in (13) is set to be θ0, an initial guess of
the parameters. Similar to the GN method, the iteration in (13)
is stopped when ‖θ̂k+1 − θ̂k‖ � ε or k = kmax for prespecified
ε and kmax.

Following similar analysis as in section 3.1, we can
show that the computational complexity and memory storage
requirement for each iteration of the NR algorithm are
O(n2

θ + n3
θ + nθ (1 + 2nθ )N) and O(3nθ + 2n2

θ + (2 +
nθ + n2

θ )N), respectively. They again show linear scalability
with N, indicating the promise of the algorithm in real-time
applications.

3.3. BF algorithm

The BF algorithm based on Capon’s method was used by
Yang et al to estimate a five-dimensional (5D) dipole state
(3D location and 2D vibration orientation) [65]. In our dipole
localization setup, the dipole state is fully captured by the
4D parameter vector θ . Given the raw sensor signals for
instantaneous flow velocities (projected into the sensing axes),
denoted as {s0(n), . . . , sN−1(n)}n2

n=n1
, one constructs an energy-

like map E(θ̂ ), which indicates how likely the actual dipole
state is θ̂ . The optimal estimate of θ is then obtained as

θ̂∗ = arg max
θ̂

E(θ̂ ). (14)

In order to evaluate E(θ̂ ), one first evaluates the correlation
matrix R based on the measurements from all sensors:

R = 1

n2 − n1

n2∑
n=n1

S(n)ST (n),

where S(n) = [s0(n), s1(n), . . . , sN−1(n)]T . The energy-like
function E is then computed as

E(θ̂ ) = 1

| f (θ̂ )|T R−1| f (θ̂ )| . (15)

To search for the maximizing θ̂ for E, one typically scans
through the space for the dipole state [65]. The latter involves
creating a discrete grid of dipole state components, and the

resulting total number of grid points increases exponentially
with the dimension of the dipole state.

Let ns = n2 − n1, and let ng denote the number of the
grid points for the parameter space. Then it can be shown
that the computational complexity of the BF algorithm is
O((ns + 2ng)N2 + N3), and the memory storage requirement
is O(ng + nsN + 2N2). The numbers ns and ng are typically
very large; for example, even if one discretizes each parameter
into only ten levels, ng would be 104. In addition, the N3

dependence on the sensor number shows that the algorithm
is computationally demanding when the number of sensors is
relatively large.

3.4. CRB analysis

Consider (4). For the CRB analysis, we assume that the noise
di from each sensor is Gaussian with zero mean and variance
σ 2. Given the dipole state θ , the probability for the sensors to
have the measurement M = (M0, . . . , MN−1)

T is expressed as

P(M, θ ) =
N−1∏
i=0

1

(2πσ 2)1/2
(e

−1
2σ2 (Mi− fi(θ ))2 + e

−1
2σ2 (−Mi− fi(θ ))2

),

(16)

=
N−1∏
i=0

2

(2πσ 2)1/2

(
e

−M2
i

2σ2 e
− f 2

i (θ )

2σ2 cosh
Mi fi(θ )

σ 2

)
. (17)

The log-likelihood function is then

ln P(M, θ ) = N
2

(2πσ 2)1/2
− 1

2σ 2

N−1∑
i=0

M2
i − 1

2σ 2

N−1∑
i=0

f 2
i (θ )

+
N−1∑
i=0

ln

(
cosh

Mi fi(θ )

σ 2

)
. (18)

The Fisher information matrix I(θ ) can then be derived as

I(θ ) = − E
[
∂2 ln P(M; θ )

∂θ2

]

= 1

σ 2

N−1∑
i=0

{
fi(θ )

∂2 fi(θ )

∂θ2
+

[
∂ fi(θ )

∂θ

] [
∂ fi(θ )

∂θ

]T

−
∫ ∞

Mi=0
gi(Mi, θ )Pi(Mi, θ )dMi

}
, (19)

where E[·] denotes the expectation,

gi(Mi, θ )
�= tanh

(
Mi fi(θ )

σ 2

)
Mi

∂2 fi(θ )

∂θ2

+ M2
i

σ 2

[
∂ fi(θ )

∂θ

][
∂ fi(θ )

∂θ

]T [
1 − tanh2 Mi fi(θ )

σ 2

]
,

(20)

Pi(Mi, θ ) = 1

(2πσ 2)1/2
{e −1

2σ2 (Mi− fi(θ ))2 + e
−1
2σ2 (−Mi− fi(θ ))2}.

(21)

The appendix provides the intermediate steps for arriving at
(19). Note that I−1(θ ) represents the lower bound (CRB)
on the estimation variance for any unbiased estimator of θ ;

5
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specifically, the variance of the jth component of θ̂ , denoted
as θ̂[ j], satisfies

Var(θ̂[ j]) � [I−1(θ )] j, j, j = 1, . . . , 4. (22)

In section 4, we will illustrate the use of (22) for the
optimal design of a lateral line sensor and for the localization
performance evaluation of the proposed estimation algorithms.

4. Simulation results

4.1. CRB-based optimal design of lateral line sensor

The CRB analysis presented in subsection 3.4 can be used
for the optimal design of a lateral line system, including both
the number of flow sensors and the geometric arrangement
of these sensors. The latter point is illustrated here with an
example of optimizing the intra-sensor spacing, which is later
adopted in the construction of an experimental prototype. We
consider a working area of 20 × 10 cm2 (−10 � x � 10,
0 < y � 10), and assume that the lateral line consists of
six flow sensors, uniformly distributed along the x-axis and
centered at the origin. We would like to determine the sensor-
to-sensor spacing that minimizes the localization error, in a
sense that will be described next.

Additional parameters for the optimization problem,
largely motivated by our experimental setup, include sphere
diameter a = 1.9 cm, vibration frequency 40 Hz, and vibration
amplitude A = 0.191 cm. Note that the choice of different
values for a, A, and vibration frequency will not have impact
on the optimal design since it will simultaneously scale
the sensor outputs by the same amount. In order to ensure
good localization performance when the dipole is at different
locations and vibrating with different orientations within the
working area, we divide the area into a grid of 1 × 1 cm2 cells,
resulting in a total of 210 grid points (x = 0,±1, . . . ,±10,
y = 1, 2, . . . , 10). And at each grid point, we consider 12
orientations φ(n) = π/n, n = 1, 2, . . . , 12, that uniformly
span the orientation space.

For a given intra-sensor spacing, for each grid point
(x(k), y(k)), 1 � k � 210, and each orientation φ(n),
1 � n � 12, we evaluate the corresponding CRBs, Cx(k, n),
Cy(k, n), Cα1 (k, n), and Cα2 (k, n) for the estimation variances
σ 2

x (k, n), σ 2
y (k, n), σ 2

α1
(k, n), and σ 2

α2
(k, n), respectively. Due

to the different meanings and units for Cx(k, n), Cy(k, n),
Cα1 (k, n), and Cα2 (k, n), we introduce a normalization scheme
for these CRB elements so that they can be properly combined
into a single quantity for optimization: for p = x, y, α1, α2,
define

μp(k) = max
n=1,2,...,12

Cp(k, n). (23)

The cumulative uncertainty for a given intra-sensor spacing is
then obtained as

Uc = 1

12

210∑
k=1

12∑
n=1

(
Cx(k, n)

μx(k)
+ Cy(k, n)

μy(k)
+ Cα1 (k, n)

μα1 (k)

+Cα2 (k, n)

μα2 (k)

)
.
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Figure 2. CRB-based cumulative uncertainty in localization as a
function of intra-sensor spacing.

Figure 2 shows the cumulative uncertainty Uc as a function
of the intra-sensor spacing, for three different noise variances
σ 2 for the measurement noise. Here m1 = 0.0065 cm2 s−2

represents a typical value of variance for our IPMC prototype
flow sensors. It is clear that there is an optimal range (around
2 cm) for the intra-sensor distance where the cumulative
localization uncertainty is minimized. Larger or smaller
spacing leads to bigger uncertainty. This can be explained
as follows. When the sensors are too packed, they cannot pick
up sufficiently distinct signals (think about the extreme case of
all sensors stacked together) and cannot cover a wide area with
large signal-to-noise ratio (SNR). On the other hand, when the
sensors are very far apart, some sensors become too distant
from the dipole source and their SNRs become very low,
negatively impacting the localization performance. Another
interesting observation from figure 2 is that, the optimal intra-
sensor spacing is not sensitive to the value of the noise variance.
This is a positive news for the design, since it is often difficult
to know the precise value of σ 2 in practice.

4.2. Localization of dipole source with unknown vibration
amplitude and orientation

We now present simulation results on the performance of
the proposed GN and NR schemes on localizing a dipole
source with unknown vibration amplitude and orientation.
Figure 3 illustrates the simulation setup. The lateral line
system, consisting of six flow sensors with intra-sensor spacing
of 2 cm, is placed parallel to the x-axis and centered at the
origin. The dipole source is placed at 19 different locations
along an ellipsoidal track that is centered at (0, 6) cm.
Specifically, the dipole locations are prescribed by

(xs(k), ys(k)) = (10 cos ψ(k), 6 + 4 sin ψ(k)) ,

k = 1, 2, . . . , 19, (24)

where ψ(k) = (k−1)π

9 . Note that point 1 and point 19
overlap, as shown in figure 3. The sphere diameter a, vibration
frequency, and the measurement noise variance σ 2 are set to
be 1.9 cm, 40 Hz, and m1 (0.0065 cm2 s−2), respectively.

4.2.1. The role of sensor array in resolving location ambiguity.
Before presenting the simulation results on localization, we
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Figure 4. Illustration of the capability of a sensor array to resolve
the ambiguity in source locations. A source at point 5 and point 15
produces the same output for sensor 4 when vibrating with two
different amplitudes, but the corresponding outputs for other sensors
are distinct for the two source locations.

illustrate the advantage of a flow sensor array in resolving
the challenge of localization ambiguity faced by a single
sensor, where a closer source with smaller-amplitude vibration
could produce the same output as a farther source with larger-
amplitude vibration. Figure 4 shows the flow velocities at the
six sensor sites when the source is at two different locations,
point 5 and point 15 as illustrated in figure 3. At point 5, the
source is assumed to vibrate with an amplitude of 0.141 cm
and an orientation of 0◦, and at point 15 (which is closer to
the sensors), the source is assumed to vibrate with the same
orientation but an amplitude of 0.0022 cm. As can be seen from
figure 4, while the source produces the same flow velocity (x-
component) for the sensor located at (1, 0) cm (the fourth
sensor from the left), the flow velocities at other sensor sites
are quite different under the two source locations. Such distinct
profiles of sensor array output offer the opportunity to uniquely
identify the location of a source.

4.2.2. Results on source localization. In order to test the
algorithms’ capability in estimating vibration amplitude A and
orientation φ in addition to the source location, we vary A (in

Table 1. Average computational time per localization point for
different values of convergence threshold ε.

ε Average time under GN (s) Average time under NR (s)

0.05 0.95 1.14
0.01 1.1 1.2
0.001 2.2 2.24

cm) and φ along the track as follows:

A(k) = 0.191 − 0.01(k − 1), (25)

φ(k) = (k − 1)π

9
. (26)

The stopping criterion ε for both the GN algorithm and the
NR algorithm is chosen to be 0.01, and the maximum number
of iterations is set to be kmax = 2500. Figure 5(a) shows the
actual and estimated source locations under the GN method
and the NR method for a typical run. It can be seen that
the localization is well accomplished under both schemes.
Furthermore, figure 5(b) shows the localization error for each
of the 19 points on the track, where the error is defined as the
Euclidean distance between the actual and estimated locations.
The two proposed methods have comparable performance in
terms of the localization error. The maximum error under the
GN method is 0.38 cm and that under the NR method is
0.39 cm. Figure 6(a) shows the estimated source vibration
amplitudes and the estimation errors for both methods. The
maximum amplitude error is 0.0013 and 0.0015 cm for the GN
and NR methods, respectively. Figure 6(b) shows the estimated
source vibration orientations and the corresponding errors.
The maximum orientation error is 0.12 and 0.13 rad for
the GN and NR methods, respectively. From figures 5 and
6, we can see that both the GN and NR methods are able
to simultaneously estimate the location, vibration amplitude,
and vibration orientation successfully. In addition, while the
GN method has slightly higher estimation accuracy for all
variables, the overall performances of the two methods are
quite close.

4.2.3. The impact of threshold ε. We have examined
the impact of threshold ε on the estimation accuracy and
computational time. The simulation described in section 4.2.2
is repeated for two additional values of ε, 0.05 and 0.001.
Figure 7 shows the localization errors under the proposed GN
and NR algorithms for different values of ε. It can be seen that,
while there is considerable reduction of error when ε is reduced
from 0.05 to 0.01, there is no gain in estimation accuracy
when ε is reduced from 0.01 to 0.001. This shows that, due
to the noise in the sensor measurement, there is a limit on ε

beyond which the performance cannot be further improved.
Table 1 lists the average computational time per localization
point with different ε values. Here the computational time is
based on the simulation in Matlab on a Samsung laptop with
a 2.53 GHz processor and 4 GB RAM, where the localization
is executed for seven times and the average of times taken for
those executions is obtained. As expected, there is a monotonic

7
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Figure 5. Simulation results. (a) Estimation of source locations; (b) localization errors at the 19 points.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

A
m

pl
itu

de
 (

cm
)

Actual amplitude

Gauss−Newton method

Newton−Raphson method

0 5 10 15 20
0

0.5

1

1.5
x 10

−3

Index of points

A
m

pl
itu

de
 e

rr
or

 (
cm

)

(a)

0 5 10 15 20
0

2

4

6

So
ur

ce
 d

ir
ec

tio
n 

(r
ad

.)

Actual direction

Gauss−Newton method

Newton−Raphson method

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Index of points

D
ir

ec
tio

n 
er

ro
r 

(r
ad

.)

(b)

Figure 6. Simulation results. (a) Estimation of the source vibration amplitudes; (b) estimation of the source vibration orientations.
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Figure 7. Simulation results: localization errors at the 19 points when different values for convergence threshold ε are used: (a) under the
GN algorithm; (b) under the NR algorithm.
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relationship between the computational time and ε; however,
this relationship is highly nonlinear. This is partly due to the
fact that, for ε = 0.001, the algorithms are mostly terminated
when the iteration number k reaches kmax. In summary, for
a given problem setup, there is an optimal ε that results in
the best estimation performance while consuming the least
amount of computing time for achieving that performance. In
practice, such an ε can be identified through simulating the
algorithms with empirically characterized noise variances for
the sensors.

4.2.4. The role of initial values: region of convergence. We
have further investigated the impact of the initial estimate of
parameters on the convergence of the algorithms. Figure 8
shows the computed radius of the region of convergence
(ROC), for each of the two algorithms, at points 1–10 as
illustrated in figure 3. The ROC radius at each point i represents
the radius of the largest circle around point i, such that any
initial location estimate within that circle will result in the
convergence of the algorithm to point i. From figure 8, both
the GN and NR algorithms have finite ROC radii, which are
comparable to each other. In addition, the ROC seems to be the
largest when all sensors have relatively high output (when the
source is at point 6). It should be noted though, that the actual

ROC is most likely not a disk; therefore, the estimate of ROC
shown in figure 8 is conservative. Finally, while the results in
figure 8 suggests the importance of properly choosing initial
parameter estimates for each source location, in practice, when
tracking a moving dipole, one can simply use the results for a
previous location as the initial estimate for the current location,
as long as a relatively accurate initial estimate is provided for
the very first location.

4.3. Further CRB analysis on performance

We have further used the CRB analysis to evaluate the
localization performance of our proposed methods. In this
evaluation, a similar setup as in subsection 4.2 is considered,
except that we fix the vibration amplitude and orientation at
all points to be 0.191 cm and 0◦, respectively, and treat them
as known. We run the simulation of localizing the 19 points
using the GN and NR algorithms for 20 times, based on which
the empirical estimation variances σ 2

x and σ 2
y for xs and ys

are obtained. Figure 9 shows the comparison of the square-
roots of empirical variances with those of the corresponding
CRBs. It is clear that the CRBs are lowest when the source
location is closest to the lateral line (points 13–16), which
is explained by the highest SNRs at those locations. The
empirical estimation variances under both schemes are higher
than the CRBs; however, the differences are not big, especially
at the points where the SNRs are large. This analysis confirms
that the proposed GN and NR schemes deliver close-to-optimal
estimation performance.

5. Experimental results

5.1. Experimental setup

We have experimentally examined the performance of the
proposed GN and NR algorithms and the BF algorithm
reported in the literature, using an artificial lateral line
prototype consisting of six IPMC sensors, shown in figure 10.
An IPMC has three layers, with an ion-exchange polymer
membrane sandwiched by metal electrodes. Inside the
polymer, (negatively charged) anions covalently fixed to
polymer chains are balanced by mobile, (positively charged)
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Figure 9. Simulation results: comparison of square-roots of empirical estimation variances (a) σx and (b) σy with the square-roots of
corresponding CRBs.
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Figure 10. An experimental prototype of IPMC-based lateral line
system.

cations. Deformation under a mechanical perturbation
redistributes the cations, producing a detectable electric signal
(e.g., short-circuit current) that is well correlated with the
mechanical stimulus, which explains the sensing principle
of an IPMC [55]. Each sensor in our lateral line prototype,
measuring 8 mm long, 2 mm wide, and 200 μm thick, was cut
from an IPMC sheet fabricated by the Smart Microsystems
Laboratory at Michigan State University, following a recipe
similar to the one described in [37]. Based on the optimization
results from CRB analysis (subsection 3.4), the intra-sensor
separation was set to be 2 cm, resulting in a total span of
10 cm for the sensor. The latter can be considered as the BL of
the lateral line system. We will test the capability of the system
in localizing a dipole source within a distance of about one BL,
which is the typical working range for biological lateral lines.
All sensors can bend in the direction that is parallel to the
lateral line, thus measuring the flow component in the same
direction.

Figure 11(a) illustrates the experimental setup.
Experiments are conducted in a tank that is 6 feet long, 2
feet wide, and 2 feet deep. The short-circuit current output of
each IPMC sensor is amplified with a two-stage amplification
circuit, the details of which can be found in [26]. Acquisition

and processing of the IPMC sensor output are conducted
through a dSPACE system (DS1104, dSPACE Inc., Germany).
A digital low-pass filter is further implemented to remove
high-frequency noises from the sensor signals. The dipole
source is created with a mini-shaker (Model 4810, Brüel &
Kjaer, Denmark) (figure 11(b)), the vibration amplitude and
frequency of which can be readily controlled through a voltage
input to the mini-shaker. A lightweight bar firmly attached to
the mini-shaker then translates the vibration to a sphere rigidly
coupled to the bar. The sphere, which is a aluminum ball, has
a diameter of 1.9 cm. The sphere and the IPMC sensors are
submerged underwater, about 5 cm from the water surface. The
dipole source location and vibration direction with respect to
the IPMC lateral line can be adjusted by moving the stand
holding the IPMC lateral line. The dipole frequency is chosen
to be 40 Hz, which is in the typical range for the study of
biological and artificial lateral lines. The vibration amplitude
of the sphere is measured with a laser displacement sensor
(OADM 20I6441/S14F, Baumer Electric).

5.2. Calibration of IPMC sensors

The relationship between the current output I of an IPMC
sensor and the local flow velocity v can be captured by the
cascaded connection of fluid–structure interaction dynamics
G1 and IPMC transduction dynamics G2, both of which can
be treated as linear when the flow is relatively small. The
dynamics G1 describes how the tip displacement q of the sensor
beam responds to the flow v, and can be modeled following
the approach presented by McHenry et al in modeling the
interactions between a superficial neuromast and the ambient
flow [44]. The dynamics G2, on the other hand, relates the
current output I to the tip displacement q and can be captured
with a physics-based model [11]. It can be shown that, based on
the physical parameters for the IPMC sensors and the operating
frequency in our experiments, the transfer function G1(s) can

Tank

Power
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Supporting
frame

Vibrating sphere
dipole

IPMC bending
direction

IPMC
Sensors

dSPACE

Electronic
conditioning
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Figure 11. Experimental setup. (a) Schematic of the experimental system; (b) the dipole source.
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Figure 12. Illustration of IPMC sensor calibration.

be approximated by [44]

G1(s) = q(s)

v(s)
= c1

s
, (27)

and G2 by [10]

G2(s) = I(s)

q(s)
= c2s, (28)

where s is the Laplace variable, and c1 and c2 are lumped
physical constants. The detailed derivation and approximation
of G1 and G2 are outside the scope of this paper, and hence
omitted here in the interest of brevity.

From (27) and (28), the short-circuit current output
of an IPMC sensor is (approximately) proportional to the
instantaneous local flow velocity. The proportionality constant
can vary from sensor to sensor because of the spatial
inhomogeneity in the fabricated IPMC material, difference
in exact sensor dimensions, and discrepancy across different
channels of the sensing circuit. The constant is identified
through a calibration procedure described next. We put the
mini-shaker-based dipole source at different locations with
respect to each sensor and extracted the amplitude of sensing
current with FFT. The theoretical value of the flow velocity
at the location of the sensor is obtained using (5). Figure 12
shows the IPMC signal amplitude versus the theoretical local
velocity for one IPMC sensor, from which an approximately
linear relationship between the sensor output I and the flow
velocity v parallel to the lateral line can be observed. The
proportional constant η = I

v
is identified using the Matlab

command polyfit(·, ·, 1).
The proportionality constants identified for the six

IPMC sensors are η1 = 0.49 μA(cm s−1)−1, η2 =
0.21μA(cm s−1)−1, η3 = 0.165 μA(cm s−1)−1, η4 =
0.23 μA(cm s−1)−1, η5 = 0.24 μA(cm s−1)−1, and
η6 = 0.3 μA(cm s−1)−1. Given ηi, the flow velocity at the
site of sensor i is calculated from the sensor output Ii via

vi = Ii

ηi
.

5.3. Experimental results on dipole source localization

We have conducted localization experiments in a very similar
setup as for the simulation (see figure 3). Specifically, we

have placed the dipole source (relative to the lateral line) at
19 points along an ellipsoidal track centered at (0, 6) cm,
as prescribed by (24). The vibration amplitude at each point
varies according to (25). Due to the difficulty in precisely
orienting the dipole vibration axis, we have chosen to use only
two different orientations, 0 and π

2 rad. In particular, we set

φ(k) =
{

0, k = 1, . . . , 10
π

2
, k = 11, . . . , 19

For each location, sensor outputs of 10 s are acquired at a
sampling rate of 1 kHz. FFT is performed on the data to extract
the signal amplitudes, which are then used for estimation with
the GN and NR methods. For comparison purposes, the same
(raw) sensor data have been used for estimation using the BF
algorithm; see the description in subsection 3.3.

Figure 13 shows the experimental results on the
localization. It is notable that the localization performance
has only slightly degraded from that in simulation (figure 5).
The maximum localization errors for the GN and NR
methods are 0.46 and 0.48 cm, respectively, which occur
at point 19, where the vibration amplitude is the smallest.
Figures 14(a) and (b) show the estimated source vibration
amplitudes and source vibration directions at the 19 points.
For both methods, the maximum errors in the amplitude
estimation are around 0.002 cm, about 50% larger than those in
simulation. The maximum errors in the orientation estimation
are around 0.12 rad, which are almost the same as those in
simulation; this might be explained by the fact that only two
different orientations were tested in the experiments. Another
observation is that, in consistency with the simulation results,
the GN method has demonstrated slightly better performance
than the NR method.

We have further examined the performance of the BF
algorithm on the same data. In order to create the energy-like
map for each dipole state, one needs to discretize the space for
the dipole state (location, vibration amplitude, and vibration
orientation). Clearly, the resolution of the discretization has
a direct impact on the estimation performance; a finer grid is
expected to produce more accurate resolution (sharper map),
but at the cost of computational time. To ease the computation,
we have assumed that the vibration amplitude and orientation
at each location are known, and thus focused on only the
estimation of source location. We have used three different
resolutions for discretizing the working area, 0.02×0.02 cm2,
0.05 × 0.05 cm2, and 0.1 × 0.1 cm2. The dipole location is
estimated by visually finding the maximum of the energy-
like map. As an illustration, figure 15 shows the energy-like
map when the dipole source is placed at point 3, with the
0.1 × 0.1 cm2 discretization grid, where the peak is clearly
visible.

Figure 16 shows the localization results corresponding to
the three discretization schemes under the BF approach. As
one would expect, the localization error decreases as the grid
gets finer; however, the error does not scale linearly with the
grid resolution. The maximum localization errors for the three
discretization schemes (finer to coarser) are 0.91 cm, 1.1 cm,
and 1.33 cm, respectively. For a more clear comparison, table 2
summarizes the average and maximum localization errors for
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Figure 13. Experimental results: (a) estimation of source locations; (b) localization errors at the 19 points.
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Figure 14. Experimental results: (a) estimation of the source vibration amplitudes; (b) estimation of the source vibration orientations.
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Figure 15. Experimental results: constructed energy-like map when
the dipole is located at point 3 (0.1 × 0.1 cm2 grid).

the 19 points, for the GN, NR, and three BF algorithms. It can
be seen that, with the finest grid (0.02 × 0.02 cm2), the BF
algorithm results in an average/maximum localization error
that is twice as much as what is resulted from the GN and NR
algorithms.

Table 2. Experimental results: maximum and average estimation
errors under different algorithms. ‘BF (0.02)’ stands for BF with
0.02 × 0.02 cm2 grid, and similar interpretations apply for ‘BF
(0.05)’ and ‘BF (0.1)’ . Note that vibration amplitude and
orientation are assumed known for the BF algorithms.

BF BF BF
Algorithms GN NR (0.02) (0.05) (0.1)

Average localization 0.21 0.21 0.48 0.65 0.89
error (cm)
Max. localization 0.46 0.48 0.91 1.1 1.33
error (cm)
Average amplitude 0.0014 0.0014 – – –
error (cm)
Max. amplitude 0.0019 0.0021 – – –
error (cm)
Average orientation 0.1 0.1 – – –
error (rad)
Max. orientation 0.12 0.14 – – –
error (rad)

To put the comparison in perspective, we have further
recorded the computation time taken by each algorithm. The
localization problem at all 19 points is executed under each

12



Bioinspir. Biomim. 8 (2013) 026005 A T Abdulsadda and X Tan

−10 −5 0 5 10
0

2

4

6

8

10

x (cm)

y 
(c

m
)

Actual track
BF (0.02 × 0.02)
BF (0.05 × 0.05)
BF (0.1 × 0.1)

Sensors

(a)

0 5 10 15 20
0

0.5

1

1.5

Index of points

L
oc

al
iz

at
io

n 
er

ro
r 

(c
m

)

0.02 × 0.02 lattices
 0.05 × 0.05 lattices
0.1 × 0.1 lattices

(b)

Figure 16. Experimental results: localization of the dipole source using the BF algorithm: (a) estimation of the source locations;
(b) localization errors at the 19 points.

Table 3. Average computational time per localization point for
different algorithms.

Algorithms Average time (s)

GN 1.1
NR 1.2
BF (0.02 × 0.02 cm2) 11.2
BF (0.05 × 0.05 cm2) 2.1
BF (0.1 × 0.1 cm2) 1.26

algorithm for seven times, and table 3 summarizes the average
time per point taken by each algorithm. Note that for GN
and NR, the computation includes FFT and executing the
recursive update until convergence, and for the BF algorithm,
the computation includes evaluating the correlation matrix and
constructing the energy-like map. From table 3, it can be seen
that GN is slightly more efficient than NR. With a discretization
grid of 0.1 × 0.1 cm2, the BF algorithm takes a comparable
amount of computation time as GN or NR; however, from
table 2, the corresponding maximum localization error is three
times as much. Considering that the GN and NR algorithms
simultaneously estimate four variables while the BF algorithm
only does two (in this setup), we can conclude that the proposed
GN and NR algorithms are more accurate and computationally
efficient than the BF algorithm. One likely reason that the
BF algorithm produces larger estimation error is the noise
in the raw signals from IPMC sensors, which would have a
lesser impact for the GN and NR schemes because of the FFT
procedure.

6. Conclusion

In this paper we proposed and examined in detail two iterative
schemes for dipole source localization based on measurements
from an artificial lateral line. The schemes, referred to
as Gauss–Newton (GN) algorithm and Newton–Raphson
(NR) algorithm, respectively, were derived with a nonlinear
estimation perspective to simultaneously estimate the dipole
location, vibration amplitude, and vibration orientation. We
performed CRB analysis based on the analytical flow model,
and demonstrated its use in the design of the lateral line system

via the example of optimizing intra-sensor spacing. The CRB
analysis was also used later to confirm the near-optimality of
the proposed algorithms.

We conducted both simulation and physical
experimentation to validate the proposed algorithms.
The good consistency between the simulation results and
the experimental results does not only suggest the physical
relevance of our simulation setup, but also supports the
validity of the analytical models and algorithms for the
physical system. With a body length (BL) of 10 cm for
the lateral line system, simulation and experimental results
showed that both the GN and NR algorithms can successfully
localize the dipole source and estimate its vibration amplitude
and orientation within 1 BL, with the maximum localization
error less than 5% of the BL. We also found that, while the
GN algorithm did consistently better than the NR algorithm,
the overall performance and computational complexity of the
two algorithms are very comparable. We also found that the
proposed algorithms showed clear advantage over the beam-
forming algorithm in terms of accuracy and computational
efficiency. On the other hand, we note that the convergence
(to the true solution) of the proposed GN and NR schemes
depends on the proper choice of initial conditions, while the
BF method always results in a solution that is close to the true
solution, where the error is determined by the resolution of
discretization in the parameter space.

The work reported in this paper will be extended in several
directions. First, we used FFT to extract the signal amplitude
as the sensor measurement, which is not amenable to online
implementation. Our first step for future work is to use sliding
discrete Fourier transform (SDFT) [34, 56] to update the signal
amplitude as new raw data samples come in. This will not
only allow us to perform source localization in real time, but
also enable the tracking of a moving dipole source, where the
received signal amplitude is time-varying. Second, we will
consider a lateral line system mounted on a streamlined body
(like a fish body), and accommodate the impact of the body in
both the optimization of the sensor design and the development
of localization algorithms.
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Appendix. Derivation of (19)

From (17), we have

∂ ln P(M, θ )

∂θ
= 1

σ 2

N−1∑
i=0

{
− fi(θ )

∂ fi(θ )
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(
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σ 2

)
Mi

∂ fi(θ )
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and consequently,
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σ 2
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(A.1)

Taking the negative expectation on (A.1) results in

−E
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which is (19).
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offer to flow sensing? Bioinspir. Biomim. 6 036001

[6] Bleckmann H 1994 Reception of Hydrodynamic Stimuli in
Aquatic and Semiaquatic Animals (Progress in Zoology)
ed W Rathmayer (Stuttgart, Germany: Gustav Fischer
Verlag) pp 1–115

[7] Bleckmann H 2008 Peripheral and central processing of lateral
line information J. Comput. Physiol. A 194 145–58

[8] Bleckmann H, Przybilla A, Klein A, Schmitz A, Kunze S
and Brucker C 2012 Station holding of trout: behavior,
physiology and hydrodynamics Nature-Inspired Fluid
Mechanics ed C Tropea and H Bleckmann (Berlin:
Springer) pp 161–77

[9] Bouffanais R, Weymouth G D and Yue D K P 2011
Hydrodynamic object recognition using pressure sensing
Proc. R. Soc. A 467 19–38

[10] Chen X, Zhu G, Yang X, Hung D L S and Tan X 2013
Model-based estimation of flow characteristics using an
ionic polymer–metal composite beam IEEE/ASME Trans.
Mechatronics 18 932–43

[11] Chen Z, Tan X, Will A and Ziel C 2007 A dynamic model for
ionic polymer–metal composite sensors Smart Mater.
Struct. 16 1477–88

[12] Coombs S 2001 Smart skins: information processing by lateral
line flow sensors Auton. Robots 11 255–61

[13] Coombs S and Braun C B 2003 Information processing by the
lateral line system Sensory Processing in Aquatic
Environments ed S P Collin and N J Marshall (New York:
Springer) pp 122–38

[14] Coombs S and Conley R A 1997 Dipole source localization by
mottled sculpin: I. Approach strategies J. Comput. Physiol.
A 180 387–99

[15] Coombs S and Conley R A 1997 Dipole source localization by
mottled sculpin: II. The role of lateral line excitation
patterns J. Comput. Physiol. A 180 401–15

[16] Coombs S, Hastings M and Finneran J 1996 Modeling and
measuring lateral line excitation patterns to changing dipole
source locations J. Comput. Physiol. A 178 359–71

[17] Coombs S, Janssen J and Webb J C 1988 Diversity of lateral
lne systems: evolutionary and functional considerations
Sensory Biology of Aquatic Animals ed J Atema, R R Fay,
A N Popper and W N Tavolga (New York: Springer)
pp 553–94

[18] Cover T M and Thomas J A 1991 Elements of Information
Theory (New York: Wiley)

[19] Curcic-Blake B and van Netten S M 2006 Source location
encoding in the fish lateral line canal J. Exp. Biol.
209 1548–59

[20] Dagamseh A M K, Lammerink T S J, Kolster M L,
Bruinink C M, Wiegerink R J and Krijnen G J M 2010
Dipole-source localization using biomimetic flow-sensor
arrays positioned as lateral-line system Sensors Actuators A
162 355–60

[21] Dijkstra M, van Baar J J, Wiegerink R J, Lammerink T S J, de
Boer J H and Krijnen G J M 2005 Artificial sensory hairs
based on the flow sensitive receptor hairs of crickets
J. Micromech. Microeng. 15 S132–8

[22] Engelmann J, Hanke W, Mogdans J and Bleckmann H 2000
Hydrodynamic stimuli and the fish lateral line Nature
408 51–52

[23] Fan Z, Chen J, Zou J, Bullen D, Liu C and Delcomyn F 2002
Design and fabrication of artificial lateral line flow sensors
J. Micromech. Microeng. 12 655–61

[24] Fernandez V I, Maertens A, Yaul F M, Dahl J, Lang J H
and Triantafyllou M S 2011 Lateral-line-inspired sensor

14

http://dx.doi.org/10.1080/19475411.2011.650233
http://dx.doi.org/10.1117/12.881877
http://dx.doi.org/10.1088/1748-3182/6/3/036001
http://dx.doi.org/10.1007/s00359-007-0282-2
http://dx.doi.org/10.1098/rspa.2010.0095
http://dx.doi.org/10.1109/TMECH.2012.2194300
http://dx.doi.org/10.1088/0964-1726/16/4/063
http://dx.doi.org/10.1023/A:1012491007495
http://dx.doi.org/10.1007/s003590050057
http://dx.doi.org/10.1007/s003590050058
http://dx.doi.org/10.1007/BF00193974
http://dx.doi.org/10.1007/978-1-4612-3714-3
http://dx.doi.org/10.1002/0471200611
http://dx.doi.org/10.1242/jeb.02140
http://dx.doi.org/10.1016/j.sna.2010.02.016
http://dx.doi.org/10.1088/0960-1317/15/7/019
http://dx.doi.org/10.1038/35040706
http://dx.doi.org/10.1088/0960-1317/12/5/322


Bioinspir. Biomim. 8 (2013) 026005 A T Abdulsadda and X Tan

arrays for navigation and object identification Mar. Technol.
Soc. J. 45 130–46

[25] Franosch J-M P, Sichert A B, Suttner M D and van
Hemmen J L 2005 Estimating position and velocity of a
submerged moving object by the clawed frog xenopus
and by fish: a cybernetic approach Biol. Cybern.
93 231–8

[26] Ganley T, Hung D L S, Zhu G and Tan X 2011 Modeling and
inverse compensation of temperature-dependent ionic
polymer–metal composite sensor dynamics IEEE/ASME
Trans. Mechatronics 16 80–89

[27] Gardiner J M and Atema J 2007 Sharks need the lateral line to
locate odor sources: rheotaxis and eddy chemotaxis J. Exp.
Biol. 210 1925–34

[28] Goulet J, Engelmann J, Chagnaud B P, Franosch J-M P,
Suttner M D and van Hemmen J L 2008 Object localization
through the lateral line system of fish: theory and
experiment J. Comput. Physiol. A 194 1–17

[29] Hassan E-S 1985 Mathematical analysis of the stimulus for the
lateral line organ Biol. Cybern. 52 23–36

[30] Hassan E-S 1992 Mathematical description of the stimuli to
the lateral line system of fish derived from a
three-dimensional flow field analysis: I. The cases of
moving in open water and of gliding towards a plane
surface Biol. Cybern. 66 443–52

[31] Hassan E-S 1992 Mathematical description of the stimuli to
the lateral line system of fish derived from a
three-dimensional flow field analysis: II. The case of gliding
alongside or above a plane surface Biol. Cybern.
66 453–61

[32] Hassan E-S 1993 Mathematical description of the stimuli to
the lateral line system of fish derived from a
three-dimensional flow field analysis: III. The case of an
oscillating sphere near the fish Biol. Cybern. 69 525–38

[33] Hoekstra D and Janssen J 1985 Non-visual feeding behavior of
the mottled sculpin, cottus bairdi in Lake Michigan
Environ. Biol. Fishes 12 111–7

[34] Jacobsen E and Lyons R 2003 The sliding DFT IEEE Signal
Process. Mag. 20 74–80

[35] Kalmijn A J 1988 Hydrodynamic and acoustic field detection
Sensory Biology of Aquatic Animals ed J Atema, R R Fay,
A N Popper and W N Tavolga (New York: Springer)
pp 83–130

[36] Kay S M 1993 Fundamentals of Statistical Signal Processing:
Estimation Theory (Upper Saddle River, NJ: Prentice-Hall)

[37] Kim K J and Shahinpoor M 2003 Ionic polymer–metal
composites: II. Manufacturing techniques Smart Mater.
Struct. 12 65–79

[38] Klein A and Bleckmann H 2011 Determination of object
position, vortex shedding frequency and flow velocity using
artificial lateral line canals Beilstein J. Nanotechnol.
2 276–83

[39] Kroese A B A and Schellart N A M 1992 Velocity- and
acceleration-sensitive units in the trunk lateral line of the
trout J. Neurophysiol. 68 2212–21

[40] Lamb H 1932 Hydrodynamics (Cambridge: Cambridge
University Press)

[41] Liao J C 2004 Neuromuscular control of trout swimming in a
vortex street: implications for energy economy during the
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