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a b s t r a c t

Prandtl–Ishlinskii (PI) hysteresis models have been used widely in magnetic and smart material-based
systems. A generalized PI model, consisting of a weighted superposition of generalized play operators,
is capable of characterizing saturated and asymmetric hysteresis. The fidelity of the model hinges
on accurate representation of the envelope functions, play operator radii, and corresponding weights.
Existing work has typically adopted some predefined play radii, the performance of which could be
far from optimal. In this paper, novel schemes are proposed for optimally compressing generalized PI
models, subject to a complexity constraint characterized by the number of play operators. An information-
theoretic tool, entropy, is adopted to capture the information loss in replacing a group of weighted play
operators with a single play operator. The optimal compression algorithm is reformulated as an optimal
control problemand solvedwith dynamic programming, the computational complexity ofwhich is shown
to be much lower than that of exhaustive search. Simulation results are first presented to examine the
performance of the proposed approach in approximating a PI model consisting of a large number of
play operators, where cases with different types of weight distributions are explored. The approach is
further applied to compress an experimentally identified generalized PI model for the complex hysteresis
behavior between the resistance and temperature of vanadium dioxide, a promising multifunctional
material. Both simulation and experimental results demonstrate that the proposed algorithms in general
yield far more superior performance than a typically adopted scheme where the play radii are assigned
uniformly.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Hysteresis is a nonlinear phenomenon that has been found in
a wide class of magnetic and smart material systems. There has
been considerable amount of recent work dealing with modeling
and control of systems with hysteresis (Krejci & Kuhnen, 2001;
Song, Zhao, Zhou, & de Abreu-Garcia, 2005; Tan & Baras, 2004;
Zhang,Merced, Sepúlveda, & Tan, 2014b). Hysteresismodels can be
classified into physics-based and phenomenology-based models.

✩ This work was supported in part by the National Science Foundation (ECCS
0547131, CMMI 0824830, CMMI 1301243). Emmanuelle Merced was supported by
theNational Science Foundation under Grant No. DGE-0802267 (Graduate Research
Fellowship Program). Thematerial in this paper was partially presented at the 2013
ASME Dynamic Systems and Control Conference, October 21–23, 2013, Palo Alto,
CA, USA. This paper was recommended for publication in revised form by Associate
Editor Alessandro Chiuso under the direction of Editor Torsten Söderström.

E-mail addresses: zhangj78@egr.msu.edu (J. Zhang), mercedem@hp.com
(E. Merced), nelsons@egr.msu.edu (N. Sepúlveda), xbtan@egr.msu.edu (X. Tan).
1 Tel.: +1 517 432 5671; fax: +1 517 353 1980.

http://dx.doi.org/10.1016/j.automatica.2015.04.012
0005-1098/© 2015 Elsevier Ltd. All rights reserved.
The physics-based models (Harrison, 2003) are usually derived on
the basis of particular material properties or physical principles. In
contrast, phenomenology-basedmodels, such as Preisach operator
(Song et al., 2005; Tan & Baras, 2004; Zhang et al., 2014b),
Prandtl–Ishlinskii (PI) model (Esbrook, Tan, & Khalil, 2013; Krejci
& Kuhnen, 2001; Wang & Su, 2006; Zhang, Merced, Sepúlveda,
& Tan, 2014a), Duhem model (Oh & Bernstein, 2005), Bouc–Wen
model (Ikhouane & Rodellar, 2006), andMaxwell model (Vo-Minh,
Tjahjowidodo, Ramon, & Brussel, 2011), are often applicable to
a broader class of systems with hysteresis, and thus have been
adopted more extensively to model hysteresis behavior. Among
them, the PI model is popular and has been proven effective in
hysteresis modeling and control.

A PI model consists of a weighted superposition of elementary
play (or stop) operators. The classical PI model (Krejci & Kuhnen,
2001) is limited to modeling symmetric and non-saturated
hysteresis. Kuhnen (2003) formulated a modified PI model that
combines play operators with deadzone operators to enable the
modeling of asymmetric hysteresis. Generalized play operators
(Brokate & Sprekels, 1996; Visintin, 1994), where the envelope
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function takes a nonlinear form, can be used to construct
generalized PI models capable of modeling complex asymmetric
hysteresis with output saturation (Al Janaideh, Rakheja, & Su,
2009). Al Janaideh et al. further developed an analytical inversion
algorithm for a generalized PI model (Al Janaideh, Rakheja, & Su,
2011).

Existing work on PI models has typically adopted some prede-
fined play radii (Esbrook et al., 2013; Krejci & Kuhnen, 2001; Kuh-
nen, 2003), the modeling performance of which could be far from
optimal. While it is generally true that the modeling performance
improves with an increasing number of play operators, computa-
tional and data storage costwill also increase for themodel and the
corresponding model-based inverse compensation schemes. Ob-
taining an accurate model while maintaining relatively low calcu-
lation and storage complexity, most dominantly reflected by the
number of play operators, is thus an issue of practical interest. In
the recent work of the authors (Zhang, Merced, Sepúlveda, & Tan,
2013a), the Kullback–Leibler (KL) divergencewas explored in opti-
mally compressing the density function of a Preisach operator. The
optimization, however, was realized by an exhaustive search due
to the particular setting of the Preisach plane.

In this paper we present, to our best knowledge, the first
study on the optimal compression of a generalized PI model
subject to a given number of play operators. An information-
theoretic tool, entropy, is adopted to measure the information
loss when representing a group of weighted play operators with
a single play. Prior to compression, a scaling operation on the
original weights is further introduced to accommodate the fact
that, given the same weight value, a generalized play with a
larger radius has less impact on the total output. The compression
problem is then reformulated as an optimal control problem
and subsequently solved with dynamic programming (DP). The
computational complexity of theDP algorithm is shown tobemuch
lower than that of exhaustive search.

Extensive simulation results are presented to examine the
performance of the proposed compression algorithms, where a
generalized PI model with a large number of play operators is
treated as ‘‘original’’. Weight distributions of different forms are
explored. Simulation results show that, in general, the entropy-
based approaches deliver far better performance than a typically
adopted scheme where the play radii are assigned uniformly. The
effectiveness of the proposed approach is further verified in the
compression of an experimentally identified generalized PI model
for the complex hysteretic relationship between temperature
and resistance of a promising multifunctional material, vanadium
dioxide (VO2) (Coy, Cabrera, Sepúlveda, & Fernández, 2010;
Merced, Cabrera, Davila, Fernández, & Sepúlveda, 2012; Zhang
et al., 2014b). Note that the proposed optimal compression
approach also works for the classical PI model since it is a special
case of the generalized PI model.

The remainder of the paper is organized as follows. In Section 2,
the classical and generalized PI models are briefly reviewed. Sec-
tion 3 presents the optimal compression problem formulation, and
the entropy-based optimal compression algorithms. In Section 4,
the performance of the compression algorithms is tested in simu-
lation for different forms of weight distributions for the general-
ized PI model. In Section 5, the compression schemes are further
verified using experimental data on a VO2 film. Finally, concluding
remarks are presented in Section 6.

A preliminary version of this paper was presented at the
2013 ASME Dynamic Systems and Control Conference (Zhang,
Merced, Sepúlveda, & Tan, 2013b). The enhancements of this paper
over (Zhang et al., 2013b) include (1) an improved measure for
information loss that incorporates both the entropy of the weight
distribution and the effect of spatial distribution of the radii.
(2) a proposed method for scaling the weight distribution of a
generalized PI operator prior to compression, and demonstration
of its advantage over compression without this scaling step, (3)
extensive simulation studies on evaluating the performance of
the proposed algorithms for weight distributions of different
characteristics, and (4) improved structuring and presentation
throughout the paper.

2. Review of PI models

In this section, a brief overview of the classical and generalized
PI models are provided. Readers are referred to Al Janaideh et al.
(2009), Brokate and Sprekels (1996), Kuhnen (2003) and Visintin
(1994) for more details.

2.1. Classical PI model

The classical PI model consists of a weighted superposition of
basic play (or stop) operators. As illustrated in Fig. 1(a), the play
operator is characterized by its radius r . For a given input function
v(t), the output w(t) of a play operator with radius r and initial
condition w(t−) is defined as

w(t) = Fr [v](t) = fr(v(t), Fr [v](t−)), (1)

where

fr(v(t), w(t−)) =

max(v(t) − r, w(t−)), if v(t) > v(t−)

min(v(t) + r, w(t−)), if v(t) < v(t−)

w(t−), if v(t) = v(t−),

(2)

and t− = limϵ>0,ϵ→0 t − ϵ.
The output of a classical PI model is expressed as an integral in

the following form:

yP(t) =

 R

0
p(r)Fr [v](t)dr, (3)

where p(r) is the weighting function of the PI model, which is
usually chosen to be non-negative, and R represents themaximum
play radius.

For practical implementation, the classical PI model is repre-
sented as a weighted summation of a finite number of play opera-
tors as follows:

yP(t) = p(r0)v +

N
j=1

p(rj)Frj [v](t), (4)

where rj > 0 is the play radius of the jth play operator, p(rj)
is the corresponding weight, and N denotes the number of play
operators.

2.2. Generalized PI model

The generalized PI hysteresis model can capture complex
hysteresis loops with both asymmetry and output saturation (Al
Janaideh et al., 2009, 2011).

Following a similar treatment as in Al Janaideh et al. (2009,
2011), a generalized play operator with radius r is defined by (see
Fig. 1(b))

w(t) = F γ
r [v](t) = f γ

r (v(t), F γ
r [v](t−)), (5)

where f γ
r (t, w(t)) is defined as

f γ
r (v(t), w(t−))

=

max(γL(v(t)) − r, w(t−)), if v(t) > v(t−)

min(γR(v(t)) + r, w(t−)), if v(t) < v(t−)

w(t−), if v(t) = v(t−),

(6)
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Fig. 1. Input–output relationships of (a) a classical play operator with radius r; (b)
a generalized play operator with radius r (shown as solid curves) and a generalized
play operator with radius r = 0 (shown as dashed curves).

where γL(·), and γR(·) are two envelope functions that are strictly
increasing. The envelope functions describe the properties of the
play operators. For any radius r ≥ 0 and input v(t), the condition
γL(v(t)) + r ≥ γR(v(t)) − r needs to be satisfied in order to meet
the order preservation property of hysteresis behavior (Iyer & Tan,
2009).

The output of a generalized PI model can be expressed in the
integral form as

yP(t) =

 R

0
p(r)F γ

r [v](t)dr. (7)

Similar to the classical PI case, a discrete-version of the
generalized PI model can be written as

yPγ (t) = D(v(t)) +

N
j=1

p(rj)F γ
rj [v](t), (8)

where D(·) is a non-decreasing Lipschitz continuous function that
represents the non-hysteretic component.

When γL(v(t)) = γR(v(t)), the generalized PI model can be
utilized to model symmetric hysteresis; when D(·) is linear and
γL(v(t)) = γR(v(t)) = v(t), the generalized PI model degenerates
to a classical PI model. For this reason, the remainder of the paper
deals exclusively with the generalized PI model.

3. Optimal compression: problem statement and algorithms

Note that, for a PI hysteresis operator, its output is a weighted
superposition of outputs (states) of individual play operators and
hence is linear with respect to the weight parameters. As a
result, one can identify the weight parameters offline or online
by minimizing the difference between the actual output and the
output of the estimated model. On the other hand, the play radii
of a PI operator determines the states of individual play operators,
but the relationship between the radii and the states are complex
and involves the past history of the input, and one cannot express
the output of a PI operator directly in terms of its play radii.
Consequently, determining the play radii based on the output
difference between the original model and the estimated model
is difficult if not impossible. Therefore, in this paper we seek to
minimize the difference in ‘‘weight distribution’’ (including both
play radii and their weights) between the original and reduced
PI operators, which would imply that the output of the reduced
model will be close to that of the original model, under all input
functions.

The number of play operators in the generalized PI model di-
rectly determines the computational and storage cost in hystere-
sis modeling, parameter identification, and inverse compensation.
Therefore, it is taken as themeasure of complexity for a generalized
PI model in this paper. Consequently, the compression of a high-
fidelity PI model with a large number (N) of play operators deals
with finding a smaller number (M,M < N) of play operators and
Fig. 2. Schematic illustrating the compression of a weighting function. The solid-
line segments are the original weighting function, and the dotted-line segments
are the newweighting function. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

the corresponding weights to best represent the original PI model.
This problem is closely tied to optimal compression of the weight
vector {p(rj)}Nj=1 in the discrete case, which is formulated precisely
and solved in this section.

3.1. Formulation of the weight compression problem

Fig. 2 shows a nonnegative weighting function p(r) with N
elements, pj = p(rj), 0 ≤ r1 < r2 < · · · rN < ∞. The
compression of the original weighting function is to use a new
weighting function with (M,M < N) elements: p̂j = p̂(r̂j), 0 ≤

r̂1 ≤ r̂2 ≤ · · · r̂M−1 ≤ r̂M < ∞ to approximate the original
weighting function.

In order to compress the weighting function, the notion of
partition is firstly introduced. Denote D = {βk}

M
k=0 as the set of

partition indices (0 = β0 < β1 < · · · < βM−1 < βM = N),
that partitions the weighting function into M groups. The original
weights with indices βk−1 + 1, βk−1 + 2, . . . , βk belong in the k-
th group, k = 1, 2, . . . ,M . For each group, the original weighting
function is approximated with only one element (shown in Fig. 2
as red dotted segments), and the new element is characterized as

r̂k =

βk
i=βk−1+1

p(ri)
βk

j=βk−1+1
p(rj)

ri,

p̂(r̂k) =

βk
i=βk−1+1

p(ri).

(9)

The optimal compression problem is to find the compression
strategy D∗

= {β∗

k }
M
k=0 that best approximates the given weighting

function. To facilitate the formulation of the problem, we consider
a function Fk as the information loss measure in approximating
the distribution p(ri), βk−1 + 1 ≤ i ≤ βk with p̂k(r̂k). The
overall compression cost function can be generally chosen as eitherM

k=1 Fk or maxk Fk.

3.2. Optimal compression algorithm

While a number of methods, such as evolutionary algorithms
(Goldberg, 1989) and simulated annealing (Kirkpatrick, Gelatt,
& Vecchi, 1983), could be used to solve nonlinear optimization
problems, these approaches are typically computation-intensive
and cannot guarantee globally optimal solutions. In this paper, we
exploit the structure of the compression problem and reformulate
it as an optimal control problem. The reformulation allows us
to use dynamic programming to obtain the (globally) optimal
solution, aswell as analyze the complexity of the algorithm.Denote
xk = βk as the state, and uk = βk − βk−1 as the control input,
k = 1, . . . ,M . The optimization problem is then reformulated
as: finding inputs u = (u1, u2, . . . , uM−1), such that the total
cost is minimized. Note that since β0 = 0 and βM = N are
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fixed, uM will be determined automatically by u and thus is not a
decision variable. The compression cost Fk for each group is clearly
determined by βk−1 and uk, or Fk = Fk(xk−1, uk). The dynamic
programming algorithm to be presented next considers the overall
cost function J1 with the form of

M
i=1 Fi. The algorithm is similar

for the case when the cost function is in the form of maxi Fi.
Specifically, we have

xk = xk−1 + uk,

J1(x0,u) =

M−1
i=1

Fi(xi−1, ui) + f (xM−1),
(10)

where f (xM−1) represents the ‘‘terminal cost’’—the information
loss for the last group. The optimal control u∗

= (u∗

1, u
∗

2, . . . ,
u∗

M−1) is defined as

u∗
= argmin

u
J1(x0,u). (11)

Once the optimal control u∗ is found, the optimal compression
strategy is obtained as: β∗

0 = 0, β∗

1 = β∗

0 + u∗

1, . . . , β
∗

k =

β∗

k−1 + u∗

k , . . . , β
∗

M = N . The following proposition provides the
algorithm for finding u∗, the proof of which follows the standard
dynamic programming principle (Bertsekas, 2005).

Proposition 1. Consider a sequence of M−1 optimization problems,
with the cost functions defined as

Jk(xk−1, {ui}
M−1
i=k ) =

M−1
i=k

Fi(xi−1, ui) + f (xM−1), (12)

k = 1, . . . ,M − 1, and the corresponding value function as

Vk(xk−1) = min
{ui}

M−1
i=k

Jk(xk−1, {ui}
M−1
i=k ). (13)

Then the value functions along with the optimal control sequence {u∗

i }

can be obtained recursively as follows:

VM−1(xM−2) = min
uM−1

FM−1(xM−2, uM−1)

+ f (xM−2 + uM−1), (14)
. . .

Vk(xk−1) = min
uk

Fk(xk−1, uk) + Vk+1(xk−1 + uk), (15)

k = M − 2, . . . , 2, 1, and u∗

k is obtained as the minimizing uk in the
computation of Vk(xk−1), k = 1, . . . ,M − 1.

Remark 1. Note that the procedure in Proposition 1 will generate
{u∗

k} as a state-dependent policy. The original optimization
problemhas a fixed initial state of x0 = 0,which results in a specific
optimal control sequence when applied to the feedback policy.

The dynamic programming approach has a significant advan-
tage over the exhaustive search in terms of computational com-
plexity. Take the number of evaluations of information loss in
partitioned groups required by each algorithm as the metric of
computational complexity. For the dynamic programming ap-
proach, the terminal cost function f (xM−1) requires N evaluations
since xM−1 could take any values of {0, 1, . . . ,N − 1}, (14) re-
quires N − 1 evaluations, and (15) requires N − M + k evalua-
tions, 1 ≤ k ≤ M −2, resulting in a total of M(2N−M+1)

2 evaluations.
For the exhaustive search, on the other hand, there are (N−1)!

(M−1)!(N−M)!

possible partitions for the weights, and each partition requires M
evaluations, resulting in a total of (N−1)!M

(M−1)!(N−M)!
for the number of

evaluations, which is significantly larger than the complexity of
the dynamic program algorithm, as will be further demonstrated
in Section 4.5.
3.3. Information loss metrics: entropy-based measure

The discussions so far have assumed a generic function Fk
that represents the information loss in replacing the weight
distribution of the kth group, {p(ri)}

βk
i=βk−1+1, with a single weight

p̂k(r̂k). In this subsection, an information-theoretic tool, entropy,
is exploited for defining the information loss in compression.
Entropy (Shannon, 1948) is a measure of the uncertainty in a
random variable, which have been used extensively in statistics
(Balakrishnan & Touba, 2007) and signal processing (Wu & Hsu,
2000).

For a discrete random variable Rwith pmf p̄(ri), i = 1, 2, . . . , L,
the entropy is defined as

H(R) = −

L
i=1

p̄(ri) log(p̄(ri)). (16)

The convention 0 log 0 = 0 is adopted. For a given L, the entropy
of R is lowest when there exists a k ≤ L, such that p̄(rk) = 1. On
the other hand, the uniform distribution, where p̄(ri) = 1/L, i =

1, 2, . . . , L, has the largest entropy.
Intuitively, if the weight distribution of (multiple) play

operators, when properly normalized, is close to a uniform
distribution, the compression loss is high; Conversely, if the group
has a single operator with weight dominantly larger than those of
the rest operators, the compression loss is expected to be small.
These considerations make the entropy a natural candidate for
measuring the information loss. In addition, if the dominant play
operators are located far away from r̂k, the compression loss is also
high, motivating the incorporation of the distances between the
play radii and the ‘‘centroid’’ r̂k into the cost function. Specifically,
the following procedure is proposed to compute an entropy-based
measure for the information loss in approximating a discrete
distribution group p(ri), i = βk−1 + 1, βk−1 + 2, . . . , βk:
(1) Calculate the total weight in the group:

Tk =

βk
i=βk−1+1

p(ri).

(2) Get the normalized pmf for the group:

p̄i = p(ri)/Tk,
i = βk−1 + 1, βk−1 + 2, . . . , βk.

(3) Obtain the entropy for the normalized pmf:

Hk = −

βk
i=βk−1+1

p̄i log p̄i.

(4) The effect of the distances between play radii and the
centroid needs to be incorporated; one way to do this is to
define the cost function for the k-th group as Ek = Tk ·βk

i=βk−1+1


p̄i


ri − r̂k

2
· Hk,

where Tk is included to reflect the impact of the total weight for the
group. Note that while there might be other alternatives, we will
show later in the paper that the proposed scheme is adequately
effective. Finally, for a partition strategy D , the entropy-based
overall cost functions can be chosen as:

JESUM (D) =

M
k=1

Ek, (17)

JEMAX (D) = max
k

Ek. (18)

The optimization algorithms based on the cost functions (17) and
(18) are denoted as Entropy Sum and Entropy Max, respectively,
for the remainder of this paper.
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Fig. 3. Illustration of the radius-dependent output range for a generalized play
operator.

3.4. Scaling of the weights for a generalized PI model

For a generalized PI model with a certain input range, the
constituent play operators will have different ranges of outputs,
and thus have different levels of importance to the output of the PI
operator even if their weights are equal. In this subsection, proper
‘‘scaling’’ of the weighting function is introduced to accommodate
the play radius-dependent importance.

Fig. 3 shows a generalized play operator with radius r , where
the input range is [vmin, vmax], and the initial condition w(0) =

γL(vmin) + r . It can be easily seen that the output range of the
play operator is dependent on r; specifically, the output w ∈

[γL(vmin) + r, γR(vmax) − r], with a total change of γR(vmax) −

γL(vmin) − 2r . Accordingly, the following scheme is introduced to
produce a ‘‘scaled’’ weight distribution for the compression.

Denote the actual weight as p, and theweight after scaling as p′,
then for the play operator with radius rj:

p′(rj) =
γR(vmax) − γL(vmin) − 2rj

2
∗ p(rj). (19)

For a generalized play operatorwhose envelopes are in the form
of hyperbolic-tangent functions, when vmin → −∞ and umax →

+∞, the output z ∈ [−1+ r, 1− r]. It can be seen that 0 ≤ r ≤ 1.
The play operator will not produce any output change under a
cyclic input when the radius r > 1, since the output will never
reach both envelopes due to the disjoint ranges of the envelopes.
It is for this reason that the radius is always chosen to be no larger
than 1 in the remainder of this paper. The advantage of using the
scaled weights over the non-scaled weights in compressionwill be
further demonstrated in Section 5.2.

4. Simulation results

In this section, the proposed optimal compression algorithms
are tested in simulation for PI models with different characteristics
for their scaled weighting functions.

FollowingAl Janaideh et al. (2009, 2011), the envelope functions
for the generalized play operator are chosen to be hyperbolic-
tangent functions in the form of

γR(v(t)) = tanh(aRv(t) + bR), (20)

γL(v(t)) = tanh(aLv(t) + bL). (21)

For simplicity of demonstration, the non-hysteretic component
D(v(t)) is set to be zero. The parameter values of the generalized
play operator are shown in Table 1. The original generalized PI
model consists of N = 30 play operators, with radii rj = j/(N +

1), j = 1, 2, . . . ,N , and input range of v ∈ [−1, 1].
The compression goal is to use a new generalized PI model with

M = 6 play operators to approximate the original generalized PI
model. Although the unscaled weights are directly related to the
output, the scaled weight distribution is considered based on the
discussion in Section 3. The output performance of the proposed
Table 1
Parameters of the PI generalized model envelope functions.

aR bR aL bL

3.5 0 4.5 1

a

b

Fig. 4. Weighting function (uniform case) of the generalized PImodel: (a) Unscaled.
(b) Scaled.

approach will be discussed in Section 4.6. Four cases for the
scaledweight distribution of the original model are considered, (1)
uniform, (2) one peak, (3) two peaks, and (4) random. In addition
to the two compression schemes presented in the previous section
(Entropy Sum, Entropy Max), a uniform compression scheme,
where every five consecutive play operators are clustered into one
group, is considered for comparison purposes.

In order to assess the output prediction performance of the
reduced model, throughout the paper, the normalized root-
mean-square error (RMSE) is adopted to quantify the modeling
performance under different compression strategies. The error is
obtained as follows: first, calculate theRMSEbetween the output of
each new generalized PI model and that of the original generalized
PI model under the input shown in Fig. 5(a); then divide the
RMSE by the output range of the original model. Normalization
of the RMSE allows assessing and comparing the algorithms’
performance across different weight distributions.

4.1. Case 1: uniform distribution for the scaled weights

First, the following uniform distribution is considered for the
scaled weights:

p′(rj) = 0.5, j = 1, 2, . . . , 30. (22)

Fig. 4(a) shows the actual weight distribution (unscaled) and
Fig. 4(b) shows the corresponding scaled weight distribution
obtained based on Eq. (19). Fig. 5(a) shows an input sequence
and Fig. 5(b) shows the input–output relationship of the given
generalized PI model. Note that the actual weighting functions and
the input–output relationships will not be shown for the other
simulation examples in the remainder of the paper in the interest
of brevity; however, the hysteresis loops in other cases are also
verified to be large.

The simulation results are summarized in Table 2. It is shown
that, given the uniform distribution, the two entropy-based
algorithms are able to compress the distribution uniformly, and
generate desirable performance.
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b

a

Fig. 5. (a) Input sequence. (b) Input vs. output for generalized PI model with
uniform weight function.

Table 2
Compression performance comparison: the uniform case.

Scheme Partition indices Error

Uniform (0, 5, 10, 15, 20, 25, 30) 0.75%
Entropy Sum (0, 5, 10, 15, 20, 25, 30) 0.75%
Entropy Max (0, 5, 10, 15, 20, 25, 30) 0.75%

Fig. 6. Scaled weighting function (one-peak case).

4.2. Case 2: scaled weights with one prominent peak

In the second case, the scaled weight distribution is assumed to
have one peak, expressed as:

p′(rj) =
5

√
2π

exp


−
(j − 15)2

15


, j = 1, 2, . . . , 30. (23)

Fig. 6 shows the scaled weight distribution. Table 3 shows the
compression performances based on different approaches. From
the simulation results, it is seen that Entropy Sumand EntropyMax
approaches are able to generate considerably better performance
than the uniform compression scheme. The peak of the original
weighting function is in the middle region; the simulation results
show that the entropy approaches partition the weights densely
in the middle region (with many groups having only one or two
elements).
Table 3
Compression performance comparison: the case of one peak.

Scheme Partition indices Error

Uniform (0, 5, 10, 15, 20, 25, 30) 0.34%
Entropy Sum (0, 11, 13, 14, 16, 18, 30) 0.08%
Entropy Max (0, 9, 12, 14, 16, 18, 30) 0.14%

Fig. 7. Scaled weighting function (two-peak case).

Table 4
Compression performance comparison: the case of two peaks.

Scheme Partition indices Error

Uniform (0, 5, 10, 15, 20, 25, 30) 0.42%
Entropy Sum (0, 7, 8, 14, 22, 23, 30) 0.27%
Entropy Max (0, 6, 8, 11, 21, 23, 30) 0.20%

Fig. 8. Scaled weighting function (the random case).

4.3. Case 3: scaled weights with two prominent peaks

In the third case, the scaled weighting function has two peaks,
expressed as:

p′(rj) =


5

√
2π

exp


−
(j − 8)2

8


, j = 1, 2, . . . , 16

5
√
2π

exp


−
(j − 23)2

8


, j = 17, 18, . . . , 30.

(24)

Fig. 7 shows the scaled weight distribution. Table 4 shows the
compression performances based on the different compression
approaches. From the simulation results, both of the proposed
approaches showvery goodperformance,with about 40% less error
comparing to the uniform compression scheme.

4.4. Case 4: random distribution for the scaled weights

Finally, we consider the case where the scaled weighting
function has a random distribution as shown in Fig. 8. Table 5
lists the corresponding simulation results. It can be seen that,
under a randomdistribution, the entropy approaches compress the
distribution almost uniformly, with slightly better performance
than the uniform compression scheme. A random distribution is
similarly difficult as a uniformdistribution to compress, since there
are usually no particular patterns that facilitate compression.

From the simulation results, overall, both of the proposed ap-
proaches show good compression performance. When the pattern
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Table 5
Compression performance comparison: the case of random distribution.

Scheme Partition indices Error

Uniform (0, 5, 10, 15, 20, 25, 30) 0.53%
Entropy Sum (0, 5, 9, 13, 18, 24, 30) 0.54%
Entropy Max (0, 6, 10, 15, 20, 25, 30) 0.53%

Fig. 9. Comparison of average optimization time. Note the log scale.

Fig. 10. Comparison of the number of information loss evaluations. Note the log
scale.

of the (scaled) weighting function is uniform or random, the opti-
mal compression almost degenerates to uniform compression, and
the compression error is larger comparing with other cases that
have more features (peaks).

4.5. Computational time for the algorithms

The computational time of the dynamic programming-based
optimization is also compared with that using exhaustive search.
Due to the similar optimization process under different cost func-
tion candidates, only Entropy Sum is considered in this compari-
son. A generalized PImodelwithN = 30 is used,which has a scaled
weight distribution as used in Section 4.2. The computations are
run inMatlab on a computer Lenovo Thinkpad T420 with 2.80 GHz
CPU and 4.00 GB memory.

In order to compare the computational efficiency, the dynamic
programming-based algorithm and the exhaustive search-based
algorithm are run 10 times for each setting of M , which is varied
from 2 to 7 in this study. The average running times among the
10 times are shown in Fig. 9. It can be seen that, when N is
fixed, the time cost under dynamic programming grows much
slower than the exhaustive search when M is increased. These
results agree well with the complexity analysis in Section 3.2,
as shown in Fig. 10, which plots the number of information loss
evaluations for the dynamic programming and the exhaustive
search methods, respectively. The computational advantage of the
dynamic programming approach is evident.

4.6. Comparison with a traditional model identification approach

The effectiveness of the proposed optimal compression ap-
proach is further compared with a traditional model identifica-
tion scheme (referred to as ‘‘output optimization’’ in this paper),
a

b

c

Fig. 11. (a) A third-order reversal input sequence. (b) The corresponding output
sequence. (c) The output prediction error between the Entropy Sum approach and
output optimization approach.

where a model with the same complexity (six generalized play
operators) is determined by minimizing the output error under a
given training input. While there are infinite number of possible
choices for the training input, a third-order reversal input sequence
(shown in Fig. 11(a)) is adopted as a representative example. An ex-
tensive search within all possible parameterizations of the 6 play
operators are conducted in Matlab using the function fmincon, to
match the output of the original model with 30 plays. The scaled
weighting function for the original model has the same random
case as shown in Fig. 8 and the corresponding output sequence
is shown in Fig. 11(b). Fig. 11(c) shows the corresponding output
prediction error under the Entropy Sum approach and the output
optimization approach. The RMSE errors of the Entropy Sum ap-
proach and the output optimization approach are 0.165 and 0.088,
respectively. While that latter indicates the output optimization
approach could deliver better performance for a given input se-
quence, Fig. 12 shows that the proposed approach is more robust
in output prediction with respect to input variability. In particu-
lar, simulation is run 50 times with different, randomly generated
input sequences and the corresponding output prediction perfor-
mance is recorded. Fig. 12(a) and (b) shows one example for the 50
cases, while Fig. 12(c) summarizes the error statistics over the 50
runs.

5. Experimental results

VO2 is an interesting class of smart materials with a myriad of
microactuation, optical, and memory applications. It undergoes an
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a

b

c

Fig. 12. (a) A random input sequence, and (b) the corresponding output prediction
error performance. (c) The output prediction performance based on 50 random
input sequences.

insulator-to-metal transition (IMT) at around 68 °C, during which
multiple properties of VO2 (including resistance Merced et al.,
2012, induced mechanical stress Zhang et al., 2014b, and optical
transmittance Coy et al., 2010) demonstrate pronouncedhysteresis
with respect to temperature. The hysteresis between the resistance
and the temperature in a VO2 film is used as an example to
illustrate the effectiveness of the proposed compression schemes
for a generalized PI model.

A VO2 layer was deposited by pulsed laser deposition following
similar treatment as in Zhang et al. (2014b). The film was glued
with a highly thermal conductive silver paint, and in close contact
with a Peltier heater. The Peltier heater was regulated with a
temperature controller with 0.1 °C precision. The experimental
setup in this work is similar to the one used in Zhang et al. (2013a)
(shown in Fig. 13). The resistance of the filmwasmeasured through
two aluminum contacts patterned on the VO2 film.

Since the measured resistance (R) changes by approximately
two orders of magnitude during the phase transition, − log10 R
is taken as the output, where the negative sign is introduced
so that the resulting play operators of the PI model have non-
negative weights. The waiting time at each temperature before
the resistance measurement is taken to be 8 s to ensure that the
thermal steady state has been reached (Zhang et al., 2014b).

In order to get desirable modeling performance, the original
generalized PI model has N = 30 play operators. Similarly, their
Fig. 13. Experimental setup for resistance versus temperature measurement of a
VO2 film (Zhang et al., 2013a).

Fig. 14. The performance of a generalized PI model (30 plays) in modeling of the
resistance–temperature hysteresis in VO2 .

Table 6
Identified parameters of the envelope functions.

aR bR aL bL aD bD d

0.201 −11.58 0.16 −10.26 0.03 −1.61 −3.26

play radii are rj = j/N, j = 1, 2, . . . ,N , respectively, and the
envelope functions for the generalized play operator are chosen to
be hyperbolic-tangent functions in the same form of (21) and (22).

The non-hysteretic component D(v(t)) is chosen to be

D(v(t)) = tanh(aDv(t) + bD) + d. (25)

The full range of temperature input is [30, 90]°C. The hysteresis
behavior shown in Fig. 14 is asymmetric and partially saturated.
The generalized PI model is identified based on the approach in
Al Janaideh et al. (2009). The effectiveness of the generalized PI
model is verified in Fig. 14. Table 6 and Fig. 15 show the identified
parameters for the envelope functions and the weights of the
generalized play operators, respectively. Fig. 16 shows the weight
after scaling based on the actual weight. The weights present a
non-uniform distribution.

5.1. Compression performance

To conduct the compression studies, the identified general-
ized PI model is taken as the ‘‘original’’ distribution. The modeling
performance is analyzed in the same manner as shown in the pre-
vious section between a compressed models and the experimen-
tal data. The new generalized PI model consists of M = 5 play
operators. The partition scheme under uniform compression was
{0, 6, 12, 18, 24, 30}. Fig. 17 shows the play radii and weights for
the M play operators. Uniform compression fails to accommodate
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0

Fig. 15. Identified weights for all the play operators of the generalized PI model.

Fig. 16. The scaled weights for the generalized PI operators.

Fig. 17. Parameters of the compressed generalized PImodel: uniform compression.

the weighting distribution, with an RMSE of 1.10% for the model-
ing error (the difference between the model output and the exper-
imental data).

The partition scheme under Entropy Sumwas {0, 7, 14, 20, 23,
30}, and that under Entropy Max was {0, 4, 10, 17, 22, 30}.
Fig. 18(a), (b) show the compressed play operator radii and
weights based on Entropy Sum and Entropy Max, respectively.
Both schemes worked much better than the uniform compression
case, with RMSE values of 0.73% and 0.76%, respectively, which
were about 32% smaller than that in the uniform case.

5.2. Model verification

In order to further validate the proposed approach, a randomly
chosen temperature input sequence, shown in Fig. 19(a), was ap-
plied to the VO2 film, and the corresponding resistance output was
measured as shown in Fig. 19(b). Predictions of the resistance out-
put were obtained based on the same compressed generalized PI
models in Section 5.1 and corresponding compressed generalized
PI models without considering the scaling before the compression.
The corresponding estimation errorswere calculated and shown in
Fig. 19(c) and Table 7.

The model verification experiments further demonstrate that
the proposed compression schemes outperform the uniform
compression. In Table 7, the modeling performance without
considering the scaling effect (Zhang et al., 2013b) is also included.
It is evident that the performance improves with proposed scaling
strategy; for the uniform, Entropy Sum compression schemes, the
results have improve about 10%–20% with the scaling.
a

b

Fig. 18. Parameters of the compressed generalized PI model: (a). Entropy Sum. (b)
Entropy Max.

a

b

c

Fig. 19. (a) A new temperature input sequence for model verification. (b)
Corresponding output sequence. (c) The output prediction error comparison of
Entropy Sum Unscaled approach and the Entropy Sum Scaled approach.

6. Conclusion

In this paper the problem of optimally compressing a gen-
eralized PI model was formulated and solved with dynamic
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Table 7
Modeling verification error comparison.

Scheme Non-scaled Scaled

Uniform 1.76% 1.45%
Entropy Sum 1.21% 1.05%
Entropy Max 0.87% 0.72%

programming,whichwas shown to have significant computational
advantage over the exhaustive search strategy. In particular, two
cost functions candidates based on entropywere proposed and ex-
amined both using simulation with different types of weighting
functions andusing experimental data thatwere collected on aVO2
film. The results demonstrated that the proposed approach outper-
forms a traditional uniform scheme, often by a large margin.
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