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Abstract 

Background:  Autonomous underwater vehicles (AUVs) and animal telemetry have become important tools for 
understanding the relationships between aquatic organisms and their environment, but more information is needed 
to guide the development and use of AUVs as effective animal tracking platforms. A forward-facing acoustic telemetry 
receiver (VR2Tx 69 kHz; VEMCO, Bedford, Nova Scotia) attached to a novel AUV (gliding robotic fish) was tested in a 
freshwater lake to (1) compare its detection efficiency (i.e., the probability of detecting an acoustic signal emitted by 
a tag) of acoustic tags (VEMCO model V8-4H 69 kHz) to stationary receivers and (2) determine if detection efficiency 
was related to distance between tag and receiver, direction of movement (toward or away from transmitter), depth, or 
pitch.

Results:  Detection efficiency for mobile (robot-mounted) and stationary receivers were similar at ranges less than 
300 m, on average across all tests, but detection efficiency for the mobile receiver decreased faster than for stationary 
receivers at distances greater than 300 m. Detection efficiency was higher when the robot was moving toward the 
transmitter than when moving away from the transmitter. Detection efficiency decreased with depth (surface to 4 m) 
when the robot was moving away from the transmitter, but depth had no significant effect on detection efficiency 
when the robot was moving toward the transmitter. Detection efficiency was higher when the robot was descending 
(pitched downward) than ascending (pitched upward) when moving toward the transmitter, but pitch had no signifi-
cant effect when moving away from the transmitter.

Conclusion:  Results suggested that much of the observed variation in detection efficiency is related to shielding of 
the acoustic signal by the robot body depending on the positions and orientation of the hydrophone relative to the 
transmitter. Results are expected to inform hardware, software, and operational changes to gliding robotic fish that 
will improve detection efficiency. Regardless, data on the size and shape of detection efficiency curves for gliding 
robotic fish will be useful for planning future missions and should be relevant to other AUVs for telemetry. With refine-
ments, gliding robotic fish could be a useful platform for active tracking of acoustic tags in certain environments.

Keywords:  Autonomous underwater vehicles, Underwater glider, Gliding robotic fish, Acoustic telemetry, Detection 
efficiency

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Recent improvements in acoustic telemetry technolo-
gies have advanced studies of spatiotemporal ecology 
and behavior of aquatic organisms [1, 2]. In acoustic 
telemetry, animals are tagged with acoustic transmitters 
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and their movements typically are tracked by stationary 
networks of hydrophones or acoustic receivers that can 
identify acoustic-tagged animals in their vicinity [3–6]. 
Acoustic telemetry enables more frequent observation 
(or sampling) of individuals than what can be obtained 
by direct observation or sampling with traditional sur-
vey methods (i.e., trawls, gill nets). Observations from 
such networks have already been used to improve con-
trol and assessment of invasive species, gain new insights 
into spawning behavior and habitat requirements of fish, 
and describe movements of high-valued stocks [1, 6]. In 
the future, telemetry promises to address many critical 
uncertainties in fishery research and aquatic ecosystems. 
However, logistical and economic constraints may pre-
clude use of stationary receiver networks to fill gaps in 
understanding of animal movements, especially in large 
systems and extreme environments.

Autonomous surface vehicles (ASVs) and autonomous 
underwater vehicles (AUVs) are becoming more com-
mon telemetry assets as receivers can be attached as a 
payload, or they can be integrated for real-time detection 
while simultaneously measuring physical and biological 
properties of the aquatic environment [7, 8]. For example, 
robotic sailboats were used to carry acoustic receivers to 
quantify the spatial distribution of fishes [9], buoyancy-
driven gliders with integrated or externally mounted 
receivers have been used to study sturgeon and shark 
habitats [10–12], stereo-hydrophone acoustic receiver 
systems have been integrated into propelled AUVs to 
track and follow leopard sharks [13], and receivers and 
hydrophones have also been externally mounted and 
integrated into a propeller-driven AUV [14] and a wave 
glider for real-time detections of tagged marine life [15].

Each of these vehicles has its unique advantages and 
disadvantages. Propelled AUVs (e.g., REMUS-100 [14], 
Woods Hole Oceanographic Institute, Woods Hole, MA, 
USA, and Iver2 [16], L3Harris OceanServer, Fall River, 
MA, USA) can overcome large currents and surface 
waves, and are capable of traveling at higher speeds than 
other unmanned vehicles. The main drawback for these 
vehicles is the power requirement needed for the propel-
lers, limiting deployment duration in the field. Another 
popular class of AUVs are wave gliders, where a surface 
float that uses wave energy to move forward is attached 
to an underwater sub via a tether [8]. The energy-efficient 
nature of wave gliders, such as the Wave Glider (Liquid 
Robotics, Sunnyvale, CA, USA) used in [15], allows them 
to be deployed for months at a time. Moreover, accu-
rate positioning of the surface float is readily available 
through GPS, along with reliable communication for the 
duration of the mission. In addition to their large size, a 
limitation of wave gliders is that the environmental sen-
sors deployed on these vehicles need to be tethered to 

the surface float, limiting the depth monitored by such 
sensors. Underwater gliders are another class of energy-
efficient AUVs that travel by changing their buoyancy 
and center of gravity. Underwater gliders, such as the Slo-
cum glider (Teledyne Webb Research, North Falmouth, 
MA, USA) [17], have been widely used in a variety of 
underwater applications [7, 10]. Like wave gliders, the 
energy-efficient nature of these robots makes them ideal 
for long-duration missions. However, unlike wave gliders, 
no tether is involved with these robots, allowing for sam-
pling of water environment at different depths up to the 
depth rating of the vehicle. The biggest challenges with 
these robots involve underwater localization and com-
munication because radio-frequency signals do not pen-
etrate water effectively. Thus, vehicle position in between 
surfacing events relies on dead reckoning, which is sus-
ceptible to large errors without the aid of additional sen-
sors such as the Doppler velocity log [18]. As the demand 
for AUVs to study ecology of fish and other aquatic ani-
mals increases, a need exists to understand how design 
elements, operational characteristics, and environmental 
conditions influence detection efficiency (defined here as 
the probability of detecting an acoustic signal emitted by 
a tag) of telemetry-equipped AUVs.

In this paper, we describe detection efficiency of an 
acoustic telemetry receiver mounted on a gliding robotic 
fish, a novel type of underwater AUV [19–21], during a 
series of field trials in a freshwater lake conducted prin-
cipally to evaluate hardware and software changes during 
development. Like underwater gliders, gliding robotic 
fish (dubbed GRACE, for Gliding-Robot-ACE) achieve 
locomotion primarily through buoyancy-driven glid-
ing or spiraling. They are also equipped with an active 
tail fin that can provide extra propulsion (e.g., “swim-
ming” against current), act as a rudder to improve steer-
ing during glide/spiral, and improve maneuverability via 
asymmetrical flapping (e.g., tight turns on the surface or 
during gliding). Consequently, gliding robotic fish com-
bine the energy-efficient nature of underwater gliders 
with the high-maneuverability of robotic fish (a type of 
bio-inspired surface robots) and hence hold great poten-
tial in long-duration monitoring of a broad spectrum of 
aquatic environments. During field tests, we opportun-
istically collected data on detection efficiency using sta-
tionary transmitters and receivers. Objectives were to (1) 
compare the detection efficiency of the AUV-mounted 
receiver to that of stationary receivers and (2) determine 
if the detection efficiency was related to distance between 
receiver and tag, direction of travel (i.e., toward vs. away 
from a remote transmitter), robot depth, and pitch during 
gliding. Results were expected to inform further develop-
ment of gliding robotic fish and improve the design of 
AUV-based telemetry performance assessments.
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Methods
Gliding robotic fish
An experimental prototype of GRACE, previously used 
to sample crude oil and harmful algae [20, 22], was modi-
fied to serve as a mobile platform for a receiver for detect-
ing acoustic tags. The new robot design featured a carbon 
fiber shell with removable front section, and aluminum 
wings and tail. Sensor payloads consisted of a dissolved 
oxygen and temperature sensor (In-Situ RDO Pro-X, Fort 
Collins, CO USA), an underwater quantum sensor (LI-
COR LI-192, Lincoln, NE USA) for measuring Photosyn-
thetically Active Radiation, a Chlorophyll sensor (Turner 
Designs Cyclops-7F C, San Jose, CA USA) and a freshwa-
ter Blue Green Algae sensor (Turner Designs Cyclops-7F 
P). The sensors were bundled and connected to the robot 
electronics through a waterproof connector (MarcArney 
SubConn MCIL16-F/M, Esbjerg, Denmark).

A GPS sensor (Garmin GPS 18 × LVC, Olathe, KS 
USA) was used for robot localization when the robot 
was on the surface, while a pressure sensor (Honeywell 
40PC100G2A, Charlotte, NC USA) was used to measure 
the robot depth underwater. Two linear actuators were 
used for buoyancy and pitch control; in particular, one 
pushed water in and out of a tank for buoyancy control, 
and the other moved a mass backward and forward to 
pitch the robot up or down. These actuators were con-
trolled, at a low level, by an embedded microcontroller 
(MCU) that operated at 7.37 MHz. The same microcon-
troller handled the reading of sensor data. An XBee wire-
less serial interface was used for communication with a 

laptop on a boat located within the communication range 
(typically several hundred meters). This channel was used 
to send commands to the robot or query data from the 
robot when it was on the surface (see summary of robot 
components and specifications in Table 1).

Hardware and software design of the robot underwent 
some evolution during the study period. In the 2016 
trial, all robot operations (i.e., control, communication, 
and data processing) were implemented on the embed-
ded MCU, and the robot sent its GPS position along 
with a UTC time-stamp over the XBee channel every 5 
s whenever it was on the surface. When the robot per-
formed a dive, it temporarily stored depth data that were 
time-stamped and sent through the XBee channel upon 
surfacing. In 2017, the robot also temporarily stored 
orientation (yaw, pitch, and roll angles) information 
whenever it was underwater. In 2018, we incorporated 
a Raspberry Pi Zero W that performed high-level tasks 
such as communication and data storage. This modifica-
tion allowed us to complement the original broadcasted 
messages by storing all available data onto an on-board 
SD card every 5 s. These data consisted of GPS coordi-
nates and UTC time, environmental sensor readings, 
orientation of the robot (yaw, pitch, and roll angles), posi-
tions of each actuator, and battery level.

Field tests
A self-contained acoustic receiver (VEMCO model 
VR2Tx; 69  kHz; Bedford, Nova Scotia, Canada) was 
attached to the robot, and field trials were conducted in 

Table 1  GRACE components and specifications

a  Due to fabrication and balancing imperfections, the magnitude of the pitch angle when pitching down is smaller than that for pitching up

Component Description

Hull dimensions 103 × 20 × 30 cm (L x W x H)

Tail-to-nose length 140 cm

Wingspan 60 cm

Weight 20 kg

Robot hull material Carbon fiber

Battery capacity 555 W H Li-ion polymer (approx. 5 days of continuous actuation with 1400 
dive cycles @ 5-min intervals)

Processors Raspberry Pi Zero W, Microchip dsPIC30F6014A MCU

Communication XBee

Positioning GPS and pressure sensor

Orientation VN100S IMU and attitude and heading reference system

Buoyancy tank volume 190 mL

Pitch controla + 40° (pitching up), − 25° (pitching down)

Average swimming speed 25 cm/s

Average glide speed 13 cm/s (as low as 5 cm/s against current and a high of 35 cm/s with current)

Environmental sensors Dissolved oxygen and temperature, photosynthetically active radiation, 
freshwater blue green algae, chlorophyll
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Higgins Lake, Michigan, USA, during 2016–2018. The 
receiver was mounted at the bottom of the robot, facing 
forward (Fig. 1). Detection efficiency was investigated as 
a function of distance between a test transmitter, or ‘tag’, 
and the receiver, robot direction (toward or away from 
tag), robot depth, and robot pitch. Each receiver also 
measured temperature (internal), tilt (degrees from ver-
tical), and environmental acoustic noise (69  kHz) every 
10 min, but those variables were not used in analyses (see 
Additional file 1) due to insufficient sampling frequency 
to describe within-dive variation (temperature, noise, 
and tilt); inability to detect rapid changes during dives 
(temperature); and high correlations (redundancy) with 
robot-integrated sensor data (tilt).

Tests (‘runs’) were conducted on 11 November 2016, 3 
November 2017, and 14–15 June 2018 in Higgins Lake, 
Michigan, where water depths ranged between 10–20 m 
(Fig.  2; Table  2). These locations were selected to facili-
tate field testing of navigation and actuation systems on 
a given day and not necessarily with detection efficiency 
tests in mind. While these tests were primarily focused 
on assessing the robot’s capabilities and identifying nec-
essary improvements, we used these opportunities to 
determine the parameters that affect detection efficiency 
for underwater gliders. During each trial, an acous-
tic transmitter (VEMCO model V8-4H 69  kHz; source 
power level 147 dB re 1 Paµ @ 1 m) was deployed on a 
stationary mooring (depth ranged 1.5–7.0 m among runs) 
and emitted a uniquely encoded signal every 24 s. Trans-
mitted signals were encoded using VEMCO’s 69-kHz 
pulse–position–modulation scheme (VEMCO code 
space A69-1601). Once decoded, each signal’s unique ID 
was recorded on the receiver along with time of detec-
tion. This tag type was used because it provided a detec-
tion range amenable to the field evaluation of the robot in 
the study system. Specific tag programming (24 s trans-
mit interval) was selected to ensure that testing would 
provide sufficient sample size for regression models and 

to capture relatively fine-scale changes in variables of 
interest (e.g., depth, pitch).

For every test, a target GPS waypoint was sent to the 
robot from a laptop on a boat over the wireless commu-
nication channel, and the robot was tasked with navigat-
ing to that location through a series of dives. A depth 
of 4.5 m was used as the maximum diving depth for the 
robot as the depth rating had not been established for 
the robot hull. Each dive was completed in approximately 
3  min on average. Robot heading was controlled by 
changes in tail position such that the tail acted as a rud-
der during gliding to maintain course toward the target 
location. Between dives, the robot remained on the sur-
face for 20  s to ensure that a GPS lock was established, 
and a new GPS position was obtained to calculate the 
desired heading angle.

Mobile detection efficiency tests
In 2016, the effect of distance between receiver and tag 
on detection efficiency was evaluated and compared 
between mobile and stationary receivers (objective #1) 
by navigating the robot–receiver system along a line of 
five stationary receivers (VEMCO model VR2Tx 69 kHz). 
Stationary receivers were suspended 1.5  m below the 
surface (in the hydrophone-up position) and moored 
via rope to weights on the lake bottom. Water depth at 
stationary receiver sites ranged between 7.3 and 10.0 m. 
Stationary receivers were arranged in a line with the 
transmitter such that the receivers were spaced 200, 400, 
600, 800, and 1000  m from the transmitter, which was 
suspended 1.5 m below the surface in 11.0 m water depth. 
During the first trial (run 16–1), the robot began navigat-
ing 996  m from the transmitter, in a direction roughly 
parallel to the line of stationary receivers and toward 
the transmitter. As the trial progressed, winds (approxi-
mately 4.9–5.8  m/s, based on a regional model) moved 
the robot off-course while it attempted to obtain a GPS 
fix. Magnetic disturbance, resulting from the internal 
electronics and actuators, which affected the stability of 
the measured heading angle using the on-board Inertial 
Measurement Unit (IMU), also contributed to the robot 
veering off-course. Consequently, the robot was removed 
from water about 563 m from the transmitter, and then 
returned to the water for a second trial (run 16–2). Dur-
ing the second trial, the robot started 411 m away from 
the tag, and was removed from the water 288 m from the 
transmitter.

Prior to the next field test, robot navigation problems 
observed in 2016 were addressed. First, the IMU was 
calibrated to reject larger magnetic disturbances, which 
improved the stability of the measured heading angle. 
Additionally, to combat high winds, the robot was tasked 

Fig. 1  Gliding robotic fish. The modified version of GRACE with 
bottom-mounted telemetry receiver
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Fig. 2  Lake tests. a Map of Higgins Lake, Michigan, showing regions (red rectangles) where gliding robotic fish GRACE was tested 11 Nov 2016 (b), 
03 Nov 2017 (c), and 14–15 June 2018 (d–f) with stationary transmitter locations (green circles), stationary receiver locations (yellow circles), and 
GPS locations (pink/red circles) recorded by the gliding robotic fish during each run. GPS points are shaded along a gradient from start (pink) to end 
(red) of each run
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with “swimming” (by continuously flapping its tail) on 
the surface while waiting for a GPS fix.

After these corrections, a second field trial was carried 
out in 2017 to further investigate the effect of distance 
on the detection efficiency for a mobile receiver (objec-
tive #1). During this trial (run 17–1), the gliding robotic 
fish navigated from 389 m to less than 1 m from the tag, 
in a direction roughly northwest. The tag was suspended 
3.0 m below the surface in 19.8 m water depth. Station-
ary receivers were not deployed during the test in 2017 
due to logistical constraints. While the windspeeds dur-
ing this trial were close to those in 2016 (approximately 
4.2  m/s, based on regional model), the provisions we 
took with surface swimming allowed the robot to com-
plete its task. During navigation, the tag transmitted 323 
times and the robot repeatedly ascended and descended 
between the surface and 4.5 m depth.

A third set of field trials were conducted in 2018 to 
investigate the effect of the robot’s direction of travel, 
depth, and pitch on detection efficiency (Objective #2). 
In addition, four stationary receivers (R1–R4; Fig. 2) were 
deployed in roughly a square-shaped pattern to explore 
the utility of obtaining fine-scale robot tracks using time-
difference-of-arrival-based positioning (not evaluated in 
this paper). Stationary receivers were suspended verti-
cally (hydrophone up) 4.7–19.8  m below the surface in 
9.3–24.0  m water depth. A fifth stationary receiver was 
collocated with the stationary tag; both were suspended 
vertically (hydrophone up) 4.6 m below the water surface 
in 9.1 m water depth. The robot was tasked with navigat-
ing toward the tag during two runs (runs 18–1, 18–3) and 
away from the tag during one run (run 18–2). Like the 

trials in 2017, the robot was tasked with swimming while 
awaiting a GPS fix on the surface to counteract surface 
waves that could push the robot away from its desired 
course.

Water current and wind data (e.g., velocity and direc-
tion) were not measured at the site during testing, but 
regional wind data were obtained from NCEP’s Global 
Forecast System [23] using the R package RWind. Model-
based estimates of mean wind speed and direction dur-
ing 3-h intervals (e.g., 00:00–02:59 UTC, 03:00–05:59 
UTC) at 10 m above land surface were obtained for two 
locations about 24 km west (85.0° W, 44.5° N) and 17 km 
east (84.5° W, 44.5° N) of the study site. Mean speed and 
direction between the two locations were used to repre-
sent conditions at the study site during the 3-h interval 
that contained each run.

Data analysis
Transmitter detection efficiency curves were estimated 
for stationary and mobile receivers using generalized 
additive models (GAMs) with binomial error struc-
ture. GAMs were used because they relax distributional 
assumptions and allow greater flexibility in modeling 
non-linear responses than generalized linear models 
[24]. Times of missed detections (i.e., transmitted but 
not detected) were estimated by sequencing every 24  s 
through each detection data set to identify time stamps 
that were not in the detection file for the receiver. A 
binary indicator variable was used to represent detec-
tion (1) or non-detection (0). Variables describing robot 
location and orientation (i.e., latitude, longitude, depth, 
pitch) and water temperature (see Additional file 1) were 

Table 2  Summary of mobile detection efficiency trials with GRACE at Higgins Lake in 2016, 2017, and 2018 (Tag location 
refers to sites identified in Fig. 2)

Mean heading reflects the bearing from the first GPS measurement toward the last GPS measurement in each run. Wind speed and direction (heading; note that this 
is the direction the wind vectors are following, not “blowing from” as is customary) are coarse-scale regional estimates based on the NCEP’s Global Forecast System, as 
described in methods

Run ID Date time (UTC-4) Tag location Distance from tag 
(m)

Mean heading (deg.) Wind speed 
(m/s)

Wind heading (deg.)

Start End Start End

16–1 11/11/16
10:47

11/11/16
12:38

T1 996 563 219° (SSW) 5.8 187° (S)

16–2 11/11/16
12:52

11/11/16
13:30

T1 411 288 214° (SSW) 4.9 182° (S)

17–1 11/3/17
12:45

11/3/17
14:54

T1 389 8 303° (WNW) 4.2 148° (SE)

18–1 6/14/18
18:06

6/14/18
19:00

T6 360 11 191 (S) 4.1 163° (SSE)

18–2 6/14/18
19:20

6/14/18
21:13

T6 44 361 3° (N) 1.7 157° (SE)

18–3 6/15/18
10:06

6/15/18
11:09

T7 408 10 8° (N) 1.9 324° (NW)
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estimated at time of each detection or non-detection 
using time-based linear interpolation over measurements 
recorded by the robot (Figs.  3, 4). Detection efficiency 
curves were first described separately for each run and 
for stationary and mobile receivers during each run, by 
fitting a GAM to data from each run separately, except 
that runs 16–1 and 16–2 were combined. These GAMs 
simply estimated the probability of detection (binomial 
response) as a function of distance between tag and 
receiver (Fig.  5). Specifically, each model estimated the 
log-odds (logit) of the probability of detecting each trans-
mitted tag signal as a function of the predictors:

where b0 is the intercept; srt_dist:dir is a smoothed func-
tion of distance for each direction and run, and ε is error 
assumed from an independent draw from a normal 

logit(p) = b0 + srt_dist + ε,

distribution with mean 0 and variance σ2. All models 
were fit to data using the ‘gam’ function in the mgcv 
library (v. 1.8.31) [25] in R (v. 3.6.2) [26]. The basis for 
smoothing functions was a cubic regression spline 
(bs = “cr” in mgcv) and 10 knots.

A GAM was fit to the data from runs 17–1, 18–1, 
18–2, and 18–3 to estimate the detection efficiency as a 
function of distance between receiver and transmitter, 
direction of robot relative to transmitter (toward, away), 
robot depth (meters below water surface), and robot 
pitch (degrees from horizontal). Runs 16–1 and 16–2 
were not included in the model because (1) little overlap 
occurred in distances covered between those runs and 
others (Fig. 5); (2) they lacked pitch data; and (3) depth 
data were incomplete during those runs. Specifically, the 

Fig. 3  Time-based dive profiles. Depth (a), pitch (b), and 
temperature (c) profiles of gliding robotic fish GRACE during a 
10-min segment of run 18–1 in Higgins Lake. Depths, pitch, and 
temperature were recorded by the on-board sensors (open symbols) 
and were estimated at the time of tag signal transmissions (red 
symbols). Horizontal broken line in a shows depth of the stationary 
transmitter at site T6. The black dot in c shows a single temperature 
measurement by the stationary transmitter at site T6 and the broken 
line connects that observation to the previous and next temperature 
measurements at that site

Fig. 4  Distance-based dive profiles. Depth profiles of gliding robotic 
fish GRACE during a selected 100- to 300-m segment of each run 
(a–d) in Higgins Lake, with locations of test tag transmissions that 
were detected (closed symbols) or not detected (open symbols) by 
the on-board receiver. The robot navigated towards the tag in 17–1, 
18–1, and 18–3, and navigated away from the tag in 18–2
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model estimated the log-odds (logit) of the probability of 
detecting each transmitted tag signal as a function of the 
predictors

where b0 is the intercept; dir is the fixed effect of direc-
tion; srt_dist:dir and srt_dist:run are smoothed functions of 
distance for each direction and run; sdepth:dir and spitch:dir 

logit(p) = b0 + dir + srt_dist:dir + srt_dist:run + sdepth:dir + spitch:dir + ε,

are smoothed functions of depth and pitch for each 
direction; and ε is error assumed from an independ-
ent draw from a normal distribution with mean 0 and 
variance σ2. Direction-specific smoothers were included 
to estimate the partial effects of each level of each con-
tinuous predictor on the response (detection efficiency). 
The run-specific smoother for distance was included to 
account for run-specific variability in detection efficiency 
not explained by other predictors. To eliminate con-
founding between run and direction, effects of direction 
were limited to contrast between runs 18–1 and 18–2, 
which occurred on the same day, and was accomplished 
by treating runs 18–1 and 18–2 as a single run (“18–1 
& 18–2”) in the model. Thus, we assumed that differ-
ences between runs 18–1 and 18–2 were attributed to 
change in direction relative to tag and no other variables 
or conditions. This assumption was supported by similar 
detection efficiency curves as functions of distance for 
stationary receivers during those runs (Fig. 5c, d).

Run-specific variation could have been treated as a ran-
dom effect in a mixed-effects model, but we anticipated 
no benefit of a mixed model with only four unique runs. 
An added advantage of a run-specific smoother is that it 
allows exploration of the unique shape of each curve that 
might inform future hypotheses about variables influenc-
ing the shape of the curve during each run. While it is pos-
sible that some across-run variation could be explained by 
wind, ambient noise, or water temperatures, our obser-
vational data set did not have replicate runs (wind, water 
temperature) or sufficient within-predictor contrast 
(ambient noise) and thus we did not include those vari-
ables in the model. Rather, we used those observations to 
generate hypotheses from our descriptive analyses.

The basis for all smoothing functions was a cubic 
regression spline with shrinkage (bs = “cs” in mgcv) and 
10 knots. “Shrinkage smoothers” allow identification 
of non-significant smoothers that essentially carry no 
weight in the model by reducing the effective degrees of 
freedom to a value as small as zero [24]. Thus, shrinkage 
smoothers are an alternative to stepwise model selec-
tion procedures. All smoothers were estimated using 
restricted maximum likelihood. Prior to model fitting, 
data were checked for evidence of collinearity (corre-
lations among predictors). Model fit was evaluated by 
checking for concurvity (non-independence) among 
smoothers and evidence of non-normality among residu-
als. Significance of each smoothing term was determined 

based on estimated degrees of freedom and approximate 
p-value for the null hypothesis that the smoothing term 
was zero. The significance level for all tests was 0.05. 

Fig. 5  Detection efficiency as a function of distance for mobile and 
stationary receivers. Estimated detection efficiencies for acoustic 
receivers affixed to stationary moorings (red symbols are fitted values; 
red shaded regions are GAM-based 95% confidence regions) and 
gliding robotic fish GRACE (black lines are fitted values; gray-shaded 
regions are GAM-based 95% confidence regions) in Higgins Lake, 
Michigan, during field tests in 2016 (a), 2017 (b), and 2018 (c–e). 
Vertical gray bars show distances between robot and the transmitter 
when each coded signal was detected (1) or not detected (0)
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Partial effects plots were used to assess the influence of 
each smoother on the log-odds of detection efficiency 
at each level of the predictor. Plots of fitted values were 
used to assess the influence of each predictor on detec-
tion efficiency during each run on the probability scale.

Results
Estimated detection efficiency of the robot-mounted 
receiver was lower than concurrently operated stationary 
receivers during all three runs where stationary receivers 
covered the full range of mobile runs (Fig. 5 a, c, d). Scale 
and shape of detection efficiency curves, when plotted 
against distance between transmitter and receiver, var-
ied among runs for both stationary and mobile receivers. 
During 2016, when detection efficiencies were higher at 
longer distances for both stationary and mobile receivers 
than during any other run, detection efficiencies for the 
mobile receiver were only slightly lower than the station-
ary receivers up to 600 m from the transmitter, but sub-
stantially lower at 800  m and 1000  m. The shape of the 
curve for the stationary receivers was unexpected (e.g., 
higher efficiency at 800  m than 600  m), and suggested 
that these stationary receivers were affected by pro-
cesses that were not quantified. During 18–1, estimated 
detection efficiency was similar between stationary and 
mobile receivers for distances up to 200 m but differed at 
larger distances due to mobile detection range declining 
much faster than stationary detection range. The great-
est difference between stationary and mobile detection 
efficiency was observed during 18–2 when the robot 

was moving away from the transmitter. During that run, 
mobile detection efficiency for any distance was mark-
edly lower, even at 50  m–the closest distance between 
receiver and transmitter during that run.

The GAM model explained 53.2% of the null devi-
ance. Detection efficiency differed by direction of travel 
(Table  3) with more than a fivefold increase in the log-
odds of detection efficiency when moving toward the 
transmitter than away from the transmitter. Significance 
of distance-based smoothers suggested that variation in 
the shape of range curves was attributed to direction of 
movement and other run-specific variables not included 
in the model. Pitch was significant when the robot was 
moving toward the transmitter (with higher detection 
efficiency for lower pitch value, regardless of pitch direc-
tion), but not when the robot was moving away from 
the transmitter (Table 3a, Fig. 6c). Depth was significant 
when the robot was moving away from the transmitter 
(with better detection efficiency at shallower depths), but 
not when the robot was moving toward the transmitter 
(Table  3b, Fig.  6d). Over the ranges of depth and pitch 
observed, the effect of depth on detection efficiency mov-
ing away from the transmitter was greater than the effect 
of pitch moving toward the transmitter (Fig.  7). Over-
all, the highest detection efficiency was observed when 
the robot was navigating towards the tag with near-zero 
pitch, while the lowest detection efficiency was observed 
when the robot was navigating away from the tag and 
was at large depths. However, results from data checking 
(collinearity and concurvity; Additional file  2), variable 
selection (shrinkage smoother degrees of freedom and 

Table 3  Summary of  parametric coefficients (linear terms) and  smoothing terms from  GAM used to  determine 
if detection efficiency was related to distance from transmitter (tag distance, in meters), direction of robot travel relative 
to  transmitter (toward or  away), robot depth (depth, in  meters from  water surface), or  robot pitch (pitch, in  degrees 
from horizontal)

Included for each parametric coefficient is the estimate, standard error (SE), test statistic (Z), and p-value for the null hypothesis that the corresponding parameter 
is zero. Included for each smoothing term is the estimated degrees of freedom (EDF), test statistic (χ2), and approximate p-value for the null hypothesis that the 
smoothing term is zero. Italicized p-values are significant at significance level of 0.05

Linear terms Estimate SE Z p-value

(Intercept) − 4.282 0.581 − 7.363 1.79E−13

dir = toward 5.322 0.594 8.965 3.11E-19

Smoothing terms EDF χ2 p-value

s(rt_distance): dir = away 6.48E−04 4.85E−04 0.265

s(rt_distance): dir = toward 1.642 4.345 5.84E−04

s(rt_distance): run = 17–1 2.152 6.651 3.07E−04

s(rt_distance): run = 18–1, 18–2 2.466 44.738 4.25E−13

s(rt_distance): run = 18–3 1.118 2.699 5.27E−03

s(pitch): dir = away 0.570 1.087 0.152

s(pitch): dir = toward 2.416 33.366 3.15E−09

s(depth): dir = away 1.212 9.468 8.55E−04

s(depth): dir = toward 0.209 0.255 0.247
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p-values), and model selection (AIC) suggested that the 
relationship among depth and pitch was complex. There-
fore, we caution against any strong conclusions about 
individual effects of pitch and depth from these results.

Discussion
Understanding detection efficiency of telemetry receiv-
ers is essential for designing and conducting a successful 
animal tracking project [4]. Although an animal location 
can be derived from detection time differences among 
multiple hydrophones [27], the location of a receiver at 
the time of detection is often used to represent the gen-
eral location of a tagged animal at time of detection for 
presence–absence data. Data describing the effect of 
distance between transmitter and receiver on detection 
efficiency are useful for interpreting spatial ambiguity 

or uncertainty around detection locations, but is not 
commonly collected [28]. Moreover, receivers are often 
assumed omnidirectional, though several processes con-
tributing to directional or non-uniform detection areas 
have been described [29]. Decreased detection efficiency 
when the robot was moving away from the transmit-
ter was not unexpected due to potential shielding of the 
signal based on position (bottom-mounted) and orien-
tation (forward-facing) of the receiver on the robot and 
the importance of line-of-site to acoustic detection. The 
magnitude of the effect, however, has important impli-
cations for the ability of an AUV in this configuration 
to detect tagged fish and for inferences of fish locations 
based on detection data.

Our results suggested that both depth and pitch can 
influence detection efficiency, even under a narrow 

Fig. 6  Partial effects of robot depth and pitch on detection efficiency. Estimated partial effects of robot depth and pitch on the log-odds of 
detection efficiency when the robot was moving away from (a, b) or toward (c, d) a stationary transmitter in Higgins Lake, Michigan. Black lines are 
fitted values from the model. Shaded regions are 95% confidence regions
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scope of environmental conditions. Depth and pitch 
are critical control parameters of AUVs that are care-
fully programmed to ensure mission success in the face 
of environmental and energetic constraints. When the 
objective is to detect acoustic-tagged fish, operational 
adjustments may be needed to achieve favorable balance 
among detection efficiency and other operational pro-
cesses (e.g., navigation, communication). Vertical gradi-
ents of environmental variables known to affect acoustic 
signals in water (e.g., salinity, temperature, suspended 
particulates, entrained air) exist in most aquatic systems, 
but we were not aware of any such gradients during this 
study. Although lack of environmental heterogeneity 
may limit application of these results to other systems, 
it may have improved our ability to identify relatively 
small effects of depth and pitch on detection efficiency 
by minimizing background variability during our study. 
Moreover, observed variability that is not environmen-
tally driven may be related to variables that can be con-
trolled or modified.

We hypothesize that decreasing detection efficiency 
from the surface to 4 m depth when moving away from 

the transmitter was driven by shielding of the signal by 
the body of the robot at depth. As described above, this 
explanation seems reasonable based on position and 
orientation of the receiver on the robot. If true, then 
the depth variable used in our analysis may be a proxy 
for the difference in depth between the hydrophone 
and transmitter. Although the range in depth difference 
between receiver and transmitter in our tests (receiver 
ranged 0 to 4 m above the tag) may be representative of 
some shallow environments, potential clearly exists for 
much greater vertical separation between transmitter 
and receiver in many aquatic systems. For an AUV with 
bottom-mounted receiver, shielding effects are expected 
to be largest when the vehicle is deeper than a tagged 
fish and smallest when the vehicle is shallower than the 
tagged fish. Thus, effects of shielding may be minimized 
by operational parameters (e.g., depth range) based on 
knowledge of the ecology of the target organisms (i.e., 
remaining near the surface for pelagic fish) or structural 
changes to the vehicle (i.e., positioning the receiver on 
top of the AUV for surface-oriented fish).

Although the mobile receiver on the gliding robotic fish 
did not perform as well as stationary receivers through-
out the entire range tested, detection efficiency over 
shorter distances (300 m or less) are likely still adequate 
for some active tracking needs. In practice, the distance 
at which a transmitter is reliably detected can vary con-
siderably due to hardware and software differences and 
environmental conditions. Future work should seek to 
determine if differences between the robot-mounted 
receiver and stationary receivers are caused by charac-
teristics of the robot (e.g., electrical or mechanical noise) 
or interaction of the robot with the environment (e.g., 
turbulence of flow over the hydrophone). For example, 
future work might seek to determine if low detection 
efficiency while ascending (pitched up) was associated 
with noise from the tail motor or increased turbulence 
on the receiver during tail actuation. Regardless of 
future improvements, however, knowledge of the robot-
mounted detection efficiencies will be useful for planning 
future missions, including active tracking with a network 
of AUVs.

While direct comparison of these results to similar 
work using the Slocum glider in [7] and Wave Glider in 
[8] in saltwater is difficult, the detection efficiency curves 
obtained here can further improve our understand-
ing of such systems. Our obtained detection efficiency 
results when the hydrophone was facing towards the tag 
over short distances of 100 m (> 80%) are close to those 
reported in [8] (50–90%), and are higher than those 
reported in [7] (40–0%). These results highlighted the sig-
nificance of alignment between transmitter and receiver 
for a forward-facing receiver, and can help explain the 

Fig. 7  Detection efficiency as a function of distance for different 
depth and pitch values. Estimated detection efficiencies for acoustic 
receivers affixed to gliding robotic fish GRACE in Higgins Lake, 
Michigan, during field tests in which evidence (GAM model results) 
suggested that detection efficiency was influenced most by depth 
when the robot was moving away from the transmitter (c) and pitch 
when the robot was moving toward the transmitter (a, b, d). Lines are 
fitted values from the model with depth = 2 m (a, b, d) and pitch = 0° 
from horizontal (c)
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lower detection efficiency observed in [7], as it could be 
due to occasional shielding as well as other environmen-
tal differences. These result also supported the observed 
improvement of detection efficiency for the vertically 
mounted receivers compared to the forward-facing 
receiver in [7], as forward-facing receivers are more sus-
ceptible to shielding of acoustic signals.

Although our results add to knowledge of AUV perfor-
mance as receiver platforms, much variation in detection 
efficiency remained unexplained in our analysis. Unfor-
tunately, we were not able to account for the influence of 
the environmental variables (e.g., wind, water tempera-
ture, ambient noise) on the results because availability of 
these data were limited. Our observational data set did 
not have sufficient replication (multiple runs) over envi-
ronmental variables (e.g., wind, ambient noise, thermal 
stratification) to explore this aspect. Future work should 
seek to obtain a balanced study design with replicate runs 
over a range of environment variables, so that one can 
attribute variation in the detection efficiencies to those 
variables.

Conclusion
We considered parameters that affect the detection effi-
ciency of mobile receivers mounted on AUVs through 
a series of trials using a gliding robotic fish, in which 
a forward-facing acoustic receiver was fixed to the 
robot’s hull. While the detection efficiency of the robot-
mounted receiver was expected to be lowered when the 
receiver was pointed away from the tag, the impact of 
this effect was significant. Results suggested that much 
of the observed variation may be related to shielding 
of the signal by the robot body depending on the posi-
tions and orientation of the hydrophone relative to the 
transmitter.

These results inform hardware, software, and opera-
tional changes to gliding robotic fish that will improve 
detection efficiency. As an example, tag-tracking 
controllers should consider the directionality of the 
receiver, as well as the relative position of the tag with 
respect to the receiver. Other options to mitigate the 
shielding effect include the use of vertically mounted 
receivers, pointing upwards or downwards [7, 12], or 
using two bidirectionally mounted receivers (forward- 
and rear-facing). We hypothesize that such configura-
tions could still suffer from reduced detection efficiency 
due to shielding, and knowledge of the ecology of the 
target organisms should be considered to guide the 
positioning of the receivers.

Data on the size and shape of detection efficiency 
curves for gliding robotic fish will be useful for planning 
future missions and should be relevant to other AUVs for 
telemetry. While the detection efficiency of the mobile 

receiver, when facing the tag, matched that of stationary 
receivers for distances of less than 300 m, these distances 
are still adequate for several active tracking applications 
using networks of these AUVs. Future work should seek 
to determine if differences between the robot-mounted 
receiver and stationary receivers are due to characteris-
tics of the robot or interaction of the robot with the envi-
ronment. Finally, future studies should use a balanced 
study design with replicate runs over a range of envi-
ronment variables and compare the detection efficiency 
using different AUVs.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
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