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a b s t r a c t

In this paper, we present conditions for the stabilization and regulation of the tracking error for an
n-dimensional minimum-phase system preceded by a Prandtl–Ishlinskii hysteresis operator. A general
controller structure is considered; however, we assume that an integral action is present. The common
Lyapunov function theorem is utilized together with a Linear Matrix Inequality (LMI) condition to show
that, under suitable conditions, the tracking error of the system goes to zero exponentially fast when a
constant reference is considered. A key feature of this LMI condition is that it does not require the hystere-
sis effect to be small, meaning that hysteresis inversion is not required. We use this condition together
with a periodicity assumption to prove that a servocompensator-based controller can stabilize the sys-
tem without using hysteresis inversion. Additionally, we draw parallels between our LMI condition and
passivity-based results achieved in the literature. We then verify our LMI results in simulation, where we
show that the LMI condition can accurately predict the stability margins of a system with hysteresis. Fi-
nally, we conduct experiments using a servocompensator-based controller, where we verify the stability
of the system and achieve a mean tracking error of 0.5% for a 200 Hz sinusoidal reference.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Smart materials have become a popular topic of research in
the field of engineering, due to a number of emerging applications
employing these novel materials (Eaton et al., 2007). The control
of smart materials is a complicated and interesting topic, due in
great deal to the phenomenon of hysteresis, which smartmaterials
ubiquitously exhibit. The theory of mathematical models of hys-
teresis, known as hysteresis operators (Brokate & Sprekels, 1996;
Mayergoyz, 1991), were formalized in the 1970s. Examples of such
models include the Preisach operator (Tan & Baras, 2005), Prandtl–
Ishlinskii (PI) operator (Janaideh, Rakheja, & Su, 2009), and
the Preisach–Krasnosel’skii–Pokrovskii (PKP) operator (Webb,
Lagoudas, & Kurdila, 1998). Each of these operators is based on the
weighted superposition of many (and even infinitely many) ele-
mentary hysteretic units called hysterons. Other examples of hys-
teresis operators include the Duhemmodel (Oh & Bernstein, 2005;
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Visintin, 1994) and Bouc–Wenmodel (Ikhouane & Rodellar, 2007).
These hysteresis operators form the basis of many smart material
models.

While a number of models for smart materials exist, a common
model structure for smart material actuators is a linear dynami-
cal system preceded by a hysteresis operator (Chen, Tan, & Shahin-
poor, 2005; Davino, Natale, Pirozzi, & Visone, 2004; Janaideh et al.,
2009). Suchmodels are especially common in the field of nanoposi-
tioning,where piezoelectric actuators are used to generate control-
lable motion with nanometer resolution. A wide variety of control
techniques have been proposed for such systems (Devasia, Elefthe-
riou, &Moheimani, 2007), including sliding-mode control (Bashash
& Jalili, 2009), adaptive control (Tao & Kokotovic, 1995), two-
degree-of-freedom control (Lee & Salapaka, 2009), andmanymore
(Wu & Zou, 2007; Zhong & Yao, 2008). In particular, hysteresis in-
version (Ahrens, Tan, & Khalil, 2009; Cavallo, Natale, Pirozzi, & Vi-
sone, 2003; Ge & Jouaneh, 1996; Iyer & Tan, 2009) has been used
extensively due to its effectiveness in mitigating the effect of hys-
teresis on the system.

Many of the above mentioned results have focused on proving
boundedness of states by considering hysteresis as a disturbance.
A new wave of research over the past five years has focused on
direct analysis of systems with hysteresis, based on the mathe-
matical formulations of the hysteresis operators. Theseworks have
provided some analytical results showing the stability of systems
with hysteresis and convergence of the tracking error to zero, and
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importantly, can do so without hysteresis inversion or requiring
the hysteresis effect to be small. Such a result was proved in Ric-
cardi, Naso, Turchiano, Janocha, and Palagachev (2012), where an
LMI framework is utilized to provide sufficient conditions for the
stability and tracking error convergence for a PID-controlled linear
systemwithout zero dynamics preceded by a modified PI operator
(Kuhnen, 2003). In Valadkhan, Morris, and Khajepour (2010), sta-
bility and tracking error convergence of a non-dynamic plantmod-
eled by a Preisach operatorwas proved usingmonotonic properties
of the operator. The authors of Jayawardhana, Logemann, and Ryan
(2008) proved closed-loop stability for a system involving a PID-
controlled second-order system preceded by a general hysteresis
operator, and provided guidelines on the selection of controller
gains. The circle criterion was also utilized to prove stability of
systems with hysteresis in Jayawardhana, Logemann, and Ryan
(2011).

One weakness of these results is that many are proved for dy-
namic systems of second order or lower. Similar results for nth-
order systems have typically relied on passivity conditions. One
of the most well known results in this area is reported in Gor-
bet, Morris, and Wang (2001), where a Preisach operator is shown
to be dissipative. This is then combined with traditional passiv-
ity results to show the finite-gain stability of the system. Dissipa-
tive properties have also been shown for the PI operator (Brokate
& Sprekels, 1996) and the Duhem operator (Jayawardhana & An-
drieu, 2009). A shortcoming of these results is that they are able to
only show boundedness, even for constant reference trajectories.
In addition, the conditions required for passivity are not satisfied
by many plants and controllers. Outside of passivity focused re-
sults, an interesting contribution is fromBarreiro andBanos (2005),
where tight input–output stability bounds are shown for systems
with play operators without explicit passivity assumptions. Fi-
nally, in Tarbouriech, Prieur, and Queinnec (2010), stability of an
n-dimensional system is proved under an LMI condition; however,
this result did not consider any controller, and furthermore, did not
show that tracking error could be regulated.

In this paper, we discuss the stability and tracking error con-
vergence of a system with hysteresis using a general feedback
controller containing an integral action. It is assumed that the hys-
teresis is modeled by a Prandtl–Ishlinskii (PI) operator, which has
become a popularmodel for smartmaterial hysteresis (Croft, Shed,
& Devasia, 2001; Devasia et al., 2007; Wu & Zou, 2007). The theory
of switched systems, in particular, that of the common Lyapunov
function (Decarlo, Branicky, Pettersson, & Lennartson, 2000), and a
linear matrix inequality (LMI) condition will be used to prove that
the tracking error and state vector converge exponentially to zero
for a constant reference. The principal contribution of this work is
to present sufficient conditions (in the form of an LMI) for the reg-
ulation of the closed-loop system in terms of the hysteresis param-
eters, without requiring the hysteresis to be small. This condition
can be utilized in an iterative design procedure in order to stabilize
a system with hysteresis modeled by a PI operator. As we will see,
the presence of an integral action is crucial to the formulation of
our LMI condition. Comparing our LMI results to those achieved in
Riccardi et al. (2012) and Tarbouriech et al. (2010), the proposed
framework can handle minimum-phase systems of arbitrary or-
der, in contrast to Riccardi et al. (2012), as well as a wide class
of controllers, in contrast to both (Riccardi et al., 2012) and (Tar-
bouriech et al., 2010). The class of controllers which can be incor-
porated into this design framework includes Servocompensators,
which have shown great promise in the control of systems with
hysteresis, particularly nanopositioning systems (Esbrook, Tan, &
Khalil, in preparation).

We then connect our LMI result to the aforementioned passivity
results, by demonstrating that if the system obeys a certain pos-
itive real condition, a solution to the LMI problem can be found
analytically. In addition, we apply our LMI results to show that
servocompensator-based controllers can stabilize systems with
Fig. 1. Illustration of a play operator.

hysteresis, without requiring inversion of the hysteresis. Our sim-
ulation results then confirm the effectiveness of the LMI condition
at predicting the global convergence of the tracking error.

We then verify our results through experiments conducted on
a commercial nanopositioner. These experiments focused on com-
paring the performance of servocompensator-based controllers
(Esbrook et al., in preparation) with and without hysteresis inver-
sion. We first verify the LMI condition presented in the paper, in
order to prove stability of the system. Our experimental results in-
dicate that servocompensator-based controllers without hystere-
sis inversion can achieve half the mean tracking error as that
achieved by the same control method with inversion, while also
being less computationally intensive.

The remainder of this paper is organized as follows. Section 2
introduces the PI hysteresis operator used in this work. Section 3
contains themain results of the paper, showing tracking error con-
vergence and exponential stability for the closed-loop system. This
result is then extended in Section 4 where we provide specialized
results for cases of servocompensator-based controllers. Simula-
tion results confirming our LMI results are presented in Section 5.
Section 6 contains the experimental results of the paper, and con-
cluding remarks are presented in Section 7.

2. The Prandtl–Ishlinskii operator

In this section, we provide a review of the Prandtl–Ishlinskii (PI)
hysteresis operator (Brokate & Sprekels, 1996; Kuhnen, 2003). The
PI operator consists of a weighted superposition of basic hysteretic
units called play operators, shown in Fig. 1. Each play operator Pr
is parameterized by a parameter r , representing the play radius or
threshold. When the input v(t) is monotone and continuous, we
can express the output ur(t) of a play operator Pr as

ur(t) = Pr [v; ur(0)](t)
= max(min(v(t)+ r, ur(0)), v(t)− r). (1)

The output ur(t) is also referred to as the state of the play opera-
tor Pr . For general inputs, the input signal is broken into monotone
segments, and the output is then calculated by setting the last out-
put of one monotone segment as the initial condition for the next.
Notice from Fig. 1 and (1) that there are two basic modes in which
the state of a play operator can reside. The first is the linear region,
in which ur(t) = v(t) ± r . The second mode of operation is the
play region, where ur(t) is constant, represented in (1) by the term
ur(0). We will make use of the linear and play region terminology
throughout the paper.

In general, the PI operator is an infinite-dimensional operator,
comprised of a continuum of play operators integrated over some
interval of play radii. However, in the interest of practical imple-
mentation, we will consider only a finite-dimensional PI operator,
representable by a weighted sum of a finite number of play opera-
tors. The output of the PI operatorΓh under an input v is then given
by

u(t) = Γh[v;W (0)](t) =

o
i=0

θiPri [v;Wi(0)](t) (2)
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Wi(t) represents the state of the play operator Pri at time t , and

W (t) , [W0(t),W1(t), . . . ,Wo(t)]T

where the superscript T denotes the transpose, and W (0) repre-
sents the initial condition of the operator Γh. The vector θ = [θ0,
θ1, . . . , θo]

T represents the weights of individual play elements of
the operator, where each θi is assumed to be bounded and non-
negative. We will use r to denote the vector of radii, r = [r0, r1,
. . . , ro]T , where r0 = 0. We also define the operator P , [Pr0 , Pr1 ,
. . . , Pro ]

T , which captures the evolution of the stateW (t) of Γh un-
der input v, i.e.,
W (t) = P [v;W (0)](t). (3)
This will allow us to write the output u(t) as

u(t) = θ TW (t). (4)
It is conventional to include the r0 = 0 term in the definition of
the hysteresis operator, even though this term results in simply
a linear gain. For our work, we will separate this term from the
nonzero radii play operators, thus

u(t) = θ0v(t)+ θ Th Wh(t) (5)
where
θh = [θ1, . . . , θo]

T ,

Ph , [Pr1 , . . . , Pro ]
T ,

Wh(t) = Ph[v;Wh(0)](t).

3. Sufficient conditions for stability in systems with hysteresis

Having presented our hysteresis model, we are now prepared
to discuss the stabilization problem for systems with hysteresis.
Consider an n-dimensional linear system with transfer function,

Gp(s) =
k(sm + bm−1sm−1

+ · · · + b1s + b0)
sn + an−1sn−1 + · · · + a1s + a0

, m < n (6)

with input u(t) and output y(t). We will assume that this transfer
function isminimumphase. Our control objective is to regulate the
output of the cascade connection of a PI operator (4) and Gp(s), il-
lustrated in Fig. 2. In particular, wewill design the input v(t) to the
hysteresis to stabilize the resulting feedback connection, and also
drive y to a constant reference yr . We will consider a normal-form
state-space representation for the transfer function Gp(s) (Khalil,
2002),
ż(t) = Fz(t)+ Gx1(t) (7)
ẋ(t) = A0x(t)+ B(u(t)+ λx(t)+ ψz(t)) (8)

y(t) = Cx = x1(t) (9)
where u(t) obeys (5). Thematrices F ∈ ℜ

m×m,G ∈ ℜ
m, A0 ∈ ℜ

p×p,
and B ∈ ℜ

p are given by

F =


0 1 · · · 0

0
. . . 0

0 · · · · · · 1
−b0 −b1 · · · −bm−1

 , G =

0
...
1

 ,

A0 =


0 1 · · · 0

0
. . . 0

0 · · · · · · 1
0 · · · 0 0

 , B =

0
...
k


and λ ∈ ℜ

1×p, ψ ∈ ℜ
1×m are row vectors.

Remark 1. For simplicity but without loss of generality, we will
assume in the following equations that θ0 = 1. This is because the
gain of the hysteresis operator can be rolled into the DC gain of the
linear dynamics. In order to transform a system where θ0 ≠ 1 into
Fig. 2. Illustration of linear plant preceded by hysteresis operator, commonly used
to model piezoelectric-actuated nanopositioners.

the form considered here, we multiply k in B by θ0, and divide the
elements of θh, λ, and ψ by the same value.

We will consider a general linear controller to control (5),
(7)–(9). The controller includes a dynamic compensator repre-
sented in the state-space form,

η̇(t) = C∗η(t)+ B∗(x1 − yr) (10)

with C∗
∈ ℜ

q×q and B∗
∈ ℜ

q. Herewe use the tracking error x1−yr
as an input to the controller; however, our analysis could be ad-
justed to accommodate different inputs. We will also require our
linear controller to contain an integral action,

σ̇ (t) = x1 − yr . (11)

Using (10) and (11), we can define our control signal to the plant/
hysteresis operator;

v(t) = −K1z(t)− K2x(t)− K3η(t)− K4σ(t) (12)

where K1 ∈ ℜ
1×m, K2 ∈ ℜ

1×p, K3 ∈ ℜ
1×q, and K4 ∈ ℜ are constant

gains. Applying (5) and (10)–(12) to (7)–(9) yields, ż(t)
ẋ(t)
η̇(t)
σ̇ (t)

 =

 F GC 0 0
−B(K1 − ψ) A0 − B(K2 − λ) −BK3 −BK4

0 B∗C C∗ 0
0 C 0 0



·

z(t)
x(t)
η(t)
σ (t)

 +

 0
Bθ Th Wh[v;Wh(0)](t)

−B∗yr
−yr

 . (13)

As the PI operator is continuous, the system (12)–(13) is well-
posed, and possesses a continuous and unique solution, which was
proved in Tan and Khalil (2009). Next, define the coordinate trans-
forms

z̃(t) = z(t)− [1, 0]T
1
b0

yr (14)

x̃(t) = x(t)− CTyr (15)

where 0 is an m − 1 dimensional row vector of zeros. With these
transforms, Eq. (13) then becomes

˙̃z(t)
˙̃x(t)
η̇(t)
σ̇ (t)

 =

 F GC 0 0
−B(K1 − ψ) A0 − B(K2 − λ) −BK3 −BK4

0 B∗C C∗ 0
0 C 0 0



·

 z̃(t)
x̃(t)
η(t)
σ (t)

 +

 0
Bθ Th Wh[v;Wh(0)](t)+ Bc0yr

0
0

 (16)

where c0 is a constant that depends on the system matrices and
control gains, which appears due to the coordinate transform. We
will now define

α(t) = −K4σ(t)+ θ Th Wh[v;Wh(0)](t)+ c0yr . (17)

This definition is made in order to use Lyapunov analysis to show
that all states converge to the origin, since the state of the integra-
tor will not necessarily go to zero in a systemwith hysteresis, even
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if yr = 0. The derivative of α(t) is given by

α̇(t) = −K4Cx̃(t)+ θ Th Ẇh[v;Wh(0)](t) (18)

where

Ẇh[v;Wh(0)](t)

= [Ṗr1 [v;W1(0)](t), . . . , Ṗrm [v;Wm(0)](t)]T . (19)

The derivative of a play operator is in general discontinuous, as
switching between play and linear regions can cause discontinu-
ities in the value of Ṗri [v;W (0)](t). Let Π(t) denote the set of all
play operators Pri [v;W (0)](t) that lie in a linear region at time t ,
and letΠ c denote its complement. We therefore have a piecewise
expression for Ṗri , given by

Ṗri [v;Wi(0)](t) =


v̇, if i ∈ Π(t)
0, if i ∈ Π c(t) (20)

where

v̇(t) = −K1[F z̃(t)+ GCx̃(t)] − K2[−B(K1 − ψ)z̃(t)

+ (A0 − B(K2 − λ))x̃(t)− BK3η(t)+ Bα(t)]

− K3[C∗η(t)+ B∗Cx̃(t)] − K4[Cx̃(t)]. (21)

LetΘh be the set of all numbers that can be reached by adding to-
gether elements of θh. Next, define θ̄h(t) ∈ Θh as the summation
of weights for play operators in the linear region, i.e.

θ̄h(t) =


i

θhi : i ∈ Π(t)


(22)

Define the state vector

γ (t) = [z̃T (t), x̃T (t), ηT (t), α(t)]T .

Note that v̇ can be expressed as a constant vector multiplying the
state vector of the system, i.e. v̇ = Kvγ . Using this definition with
(17) and (18), we transform (16) into

γ̇ (t) =

 F GC 0 0
−B(K1 − ψ) A0 − B(K2 − λ) −BK3 B

0 B∗C C∗ 0
0 −K4C 0 0

 γ (t)

+

 0
0
0

θ̄h(t)Kvγ (t)

 . (23)

Note that by using α as our state variable, c0yr drops out of the
analysis of the closed-loop system, as yr is constant. Alternatively,
we write (23) in a compact form,

γ̇ (t) , (Σ0 + θ̄h(t)B̄Kv)γ (t) (24)

where

B̄ = [0, 1]T

where 0 here is an m + p + q dimensional row vector of zeros. As
the states γ can be expressed as simple functions of the states of
(13) and the hysteresis state Wh(t), we know that the solution to
the above system iswell-posed, and that γ is continuous. Note also
that θ̄h(t) ∈ Θh, and thus θ̄h takes values in a set of finite cardinal-
ity; therefore, we can interpret (24) as a switched system, where
the switching is governed by the states of the play operators in (5).
The stability of such a system can be guaranteed through an LMI
condition (Decarlo et al., 2000),

(Σ0 + θ̄hB̄Kv)TP + P(Σ0 + θ̄hB̄Kv) < 0, ∀θ̄h ∈ Θh

where P > 0. Such a condition would imply that V (γ ) = γ TPγ
is a common Lyapunov function for (24), where V̇ < 0, ∀γ ≠ 0.
However, since the only element that actually changes is θ̄h, from
the results of Boyd, Ghaoui, Feron, and Balakrishnan (1994) a suf-
ficient condition for the existence of such a P is that

(Σ0 + min(Θh)B̄Kv)TP + P(Σ0 + min(Θh)B̄Kv) < 0,

(Σ0 + max(Θh)B̄Kv)TP + P(Σ0 + max(Θh)B̄Kv) < 0.
(25)

Similarly, if a P can be found such that

(Σ0 + min(Θh)B̄Kv)TP + P(Σ0 + min(Θh)B̄Kv)+ 2ΛP < 0,

(Σ0 + max(Θh)B̄Kv)TP + P(Σ0 + max(Θh)B̄Kv)+ 2ΛP < 0
(26)

where Λ ∈ ℜ > 0 then V̇ < −2ΛV , which implies that (24) is
exponentially stable, and the tracking error converges to zero with
decay rate of at leastΛ (Boyd et al., 1994).

Remark 2. One extension of this work would be to consider a
modified PI operator (Kuhnen, 2003) for the hysteresis model. This
operator adds one-sided deadzones in a superposition to the PI op-
erator so that asymmetric hysteresis nonlinearities can bemodeled
accurately. The modified PI operator can be fit into our existing
framework by extending the definition of θ̄h, multiplying the re-
sult of the current definition with the summation of the weights of
the active deadzone operators.

3.1. Specialization to positive real systems

By imposing a positive real assumption on the system, we can
arrive at a stronger stability result. Consider the closed-loop sys-
tem (7)–(9), (11), with

v(t) = −K1z(t)− K2x(t)− K4σ(t). (27)

Let the system
˙̃z
˙̃x


= Σ∗


z̃
x̃


+ Bu∗

,


F GC

−B(K1 − ψ) A0 − B(K2 − λ)

 
z̃
x̃


+


0

Bu∗


(28)

y = ζ̃1 , C

z̃
ζ̃


(29)

be positive real (Khalil, 2002), where z̃ and x̃ are defined as in
(14)–(15), and u∗

∈ ℜ will be defined momentarily. Then, there
exists a symmetric positive definite matrix P∗ such that

P∗Σ∗
+Σ∗TP∗

= −Q
P∗B = CT

where Q is symmetric and positive definite. This system repre-
sents the dynamics portion of our model which has been rendered
positive-real by state feedback. This condition is similar to the as-
sumption on the dynamics in Gorbet et al. (2001), where the dy-
namics of a cascaded controller and a smart material actuator are
assumed to be passive. Indeed, for LTI systems, the notions of pas-
sivity and positive realness are interchangeable (Kottenstette &
Antsaklis, 2010). Note that the controller is not included in this pos-
itive real condition.Wewill now show that under this positive real
condition, and with only integral control, the LMI (26) must have a
solution.

Let u∗ be defined as

u∗(t) = α(t) = −K4σ(t)+ θ Th Wh[v;Wh(0)](t)+ c0yr
where the integrator output σ is governed by

σ̇ (t) = C[z̃T , x̃T ]T .

Using this definition togetherwith (27) and (28), we notice that we
can recover the closed-loop system defined in (23) (excluding the
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terms related to η). Let χ̃ = [z̃T , x̃T ]T and consider the Lyapunov
function candidate

V (χ̃ , α) = βχ̃ T (t)P∗χ̃(t)+ 1/2α2(t) (30)

=


χ̃(t)
α(t)

T 
βP∗ 0
0 1/2

 
χ̃(t)
α(t)


(31)

where α is defined as in (17). The derivative of V can be written as
(using (28)),

V̇ (χ̃ , α) = βχ̃ T (t)P∗
[Σ∗χ̃(t)+ Bα(t)]

+β[Σ∗χ̃(t)+ Bα(t)]TP∗χ̃(t)

−α(t)K4Cχ̃(t)+ α(t)θ Th Ẇh[v;Wh(0)](t)

= −βχ̃ T (t)Q χ̃(t)+ α(t)χ̃ T (t)[β2P∗B − K4CT
]

+α(t)θ̄h(t)(−K ∗Σ∗χ̃(t)− K ∗Bα(t)− K4Cχ̃(t)) (32)

where K ∗
= [K1, K2]. Let β be defined as

β = K4/2 (33)

and let F = −K ∗Σ∗
− K4C. We can then rewrite V̇ in the matrix

form

V̇ (χ̃ , α) = −1/2

χ̃(t)
α(t)

T 
K4Q θ̄h(t)FT

θ̄h(t)F 2θ̄hK ∗B

 
χ̃(t)
α(t)


. (34)

Define ζ = [χ̃ T , α]
T , and

X =


K4Q θ̄h(t)FT

θ̄h(t)F 2θ̄hK ∗B


.

Let S equal the Schur complement of X , i.e.

S = 2θ̄h(t)K ∗B − θ̄h(t)2F [K4Q ]
−1F T . (35)

It is well known that X is positive definite if and only if both K4Q
and S ∈ ℜ are positive definite. Assuming that θ̄h > 0, we can
lower bound S with the expression

S ≥


2K ∗B −

1
K4λmin(Q )

∥θh∥1F T F

θ̄h(t). (36)

Note that this equation is independent of the solution to the Lya-
punov equation P∗; therefore, if K ∗ is such that K ∗B > 0, we can
always find a Q (and therefore a P∗) such that S is positive definite
for all θ̄h > 0. This implies that X is positive definite, and there-
fore there must exist a sufficiently smallΛ such that X > ΛP , and
therefore that P andΛ satisfy the LMI condition (26).

We can now compare our results here with the passivity results
achieved in Gorbet et al. (2001) and in similar references such as
(Jayawardhana &Andrieu, 2009). In Gorbet et al. (2001), dissipativ-
ity (a generalization of passivity) of the Preisach operator is shown
between the input and derivative of the output of the operator.
In both our results here and the results achieved in Gorbet et al.
(2001), by assuming the dynamics are positive real or passive, the
properties of the hysteresis operator under consideration allow us
to prove stability of the systemwithout any further restrictions on
the hysteresis. The principal difference is that because dissipativity
can only be shown from the input to the derivative of the output
of a hysteresis operator, passivity-based results cannot prove that
the tracking error converges to zero, even for constant reference
signals. However, our results require that K ∗B > 0 and K4 > 0,
which may not be satisfied for all positive real systems.

4. Servocompensators for controlling systems with hysteresis

One special stabilizing controller of interest to our work in
nanopositioning is the servocompensator (Davison, 1976). This
controller is capable of completely canceling disturbances whose
internal models are contained in the controller. This property is
also robust to plant uncertainty, as long as the uncertainty does
not destabilize the system. The form of this controller is identical
to that in (10), where C∗ is neutrally stable, with eigenvalues lo-
cated on the imaginary axis. B∗ is chosen to ensure that the pair
(C∗, B∗) is controllable. We now assume that the reference signal
is generated by a neutrally stable exosystem,
ẇ(t) = Sw(t) (37)
yr(t) = Ew(t). (38)
Let us assume that yr is periodic with period T . We next set up the
error coordinate transform,
z̃(t) = z(t)− z∗(t) (39)
x̃1(t) = x1(t)− yr(t)
...

x̃n(t) = xn(t)− y(n−1)
r (t) (40)

where z∗(t) is the steady state solution of

ż∗(t) = Fz∗(t)+ Gyr(t) (41)
and the notation f (i)(t) denotes the ith derivative with respect to
time. This transform changes the γ dynamics into

γ̇ (t) =

 F GC 0 0
−B(K1 − ψ) A0 − B(K2 − λ) −BK3 B

0 B∗C C∗ 0
0 −K4C 0 0

 γ (t)

+


0

−By(n)r (t)
0

θ̄hBKvγ (t)+ c0y(1)r (t)

 . (42)

Let us assume that we have identified a P such that (26) is satis-
fied for a given Λ. We can then use V (γ ) = γ TPγ as a Lyapunov
function candidate, the derivative of which obeys
V̇ (γ ) = −2ΛV (γ )+ 2γ TP[0,−BTy(n)r (t), 0, c0y

(1)
r (t)]

T

< −2Λλmin(P)∥γ ∥
2 (43)

+ 2λmax(P)∥γ ∥ ∥[0,−BTy(n)r (t), 0, c0y
(1)
r (t)]∥ (44)

where ∥·∥ denotes the Euclidean norm.We can see from this equa-
tion that there must exist a sufficiently large γ such that V̇ < 0;
therefore γ enters a bounded positively invariant set and γ re-
mains bounded for all t . However, the disturbance rejection prop-
erties of the servocompensator will allow us to draw some further
conclusions regarding the performance of the system if we impose
a periodicity assumption.

Assumption 1. The steady-state trajectory of γ (t) is T -periodic.

Remark 3. The restrictiveness of such an assumption is worth dis-
cussing. In Pokrovskii and Brokate (1998), it was shown that if a
nonlinear system has an asymptotically stable T -periodic solution,
the system still possesses an asymptotically stable T -periodic so-
lution if the system is perturbed by a sufficiently small hysteresis
nonlinearity. This result represents the best available theoretical
result for showing that a system with hysteresis possesses a T -
periodic solution, and this was utilized in Esbrook et al. (in prepa-
ration) and Tan and Khalil (2009) to prove stability and periodicity
of a systemwith hysteresis. However, the analysis of Esbrook et al.
(in preparation) and Tan and Khalil (2009) requires a sufficiently
accurate hysteresis inversion to be incorporated into the control,
which we will see in our experimental results may not be ideal.
Though theoretical results are lacking, many experimental results
reported in the literature have shown that systemswith hysteresis
seem to poses T -periodic solutions when driven by T -periodic ref-
erences, regardless of whether inversion is used or not (Bashash &
Jalili, 2009; Lee & Salapaka, 2009).



1022 A. Esbrook et al. / Automatica 50 (2014) 1017–1025
Utilizing Assumption 1, we can now investigate the steady state
tracking error, x̃1(t). Letting T = 2π/ω, we can write x̃1(t) in a se-
ries form as

x̃1(t) =

∞
i=1

Ri sin(iωt + φi). (45)

Let us assume that thematrix C∗ in our servocompensator (10) has
been chosen such that its eigenvalues are located at ±jkω, k ∈ ρ,
whereρ is a finite-element vector ofwhole numbers. Because x̃1(t)
is the input to (10), the servocompensator’s error regulation prop-
erties will force all components of x̃1(t)whose internal models are
contained in C∗ to have zero amplitude at the steady state. There-
fore, Ri = 0,∀i ∈ ρ in (45).

5. Simulation example: verification of the LMI condition

We now demonstrate the feasibility and effectiveness of our
LMI condition with a simulation example. Let us consider a linear
system,

Gp(s) =
ω2

n

s2 + 2ζωns + ω2
n

(46)

where ζ = 0.5 and ωn = 1. Gp(s) is preceded by a PI operator
with r = [0, r, 2r, 3r], where r will be considered as a variable.
The weights θ of the operator will be considered a function of r . In
particular, for the play operator Pri, 1 ≤ i ≤ 3, θi will obey

θi(ri) =
2

2µ− 2ri
(47)

where we introduce µ as a design parameter. This choice of θi is
chosen to make sure the relative gains of the play operators re-
main constant. By this,wemean that for any ri < µ, if the input v to
Pri [v;Wi(0)](t) is cycled periodically from vmin = −µ to vmax = µ,
then θiPri [vmax;Wi(0)](t) = 1. We have illustrated this idea in
Fig. 3 for µ = 3. The exception to this rule will be θ0, which we
will fix at one. This cascade of a PI operator and Gp(s) will be con-
trolled by an integral controller,

σ̇ (t) = y(t)− yr (48)
v(t) = −0.25σ(t) (49)

where y(t) is the output of Gp(s), and yr is a constant reference
signal. Since our LMI results prove global stability, we will set yr to
be 100. The system described above can be easily fit into the LMI
framework (26), with

Σ0 + min(θ̄h(r))B∗Kv =

 0 1 0
−ω2

n −2ζωn 1
−0.25 0 0

 ,
Σ0 + max(θ̄h(r))B∗Kv =

 0 1 0
−ω2

n −2ζωn 1
−0.25(1 + ∥θh(r)∥1) 0 0


where ∥ · ∥1 denotes the 1-norm.

To test the viability of our proposedmethod, we will now begin
to increase the value of r until our LMI condition either becomes
infeasible or produces a result that cannot guarantee stability. In-
creasing the value of r makes the hysteresis loops wider, meaning
that the control becomes less and less effective at compensating
the system. When r = 0.74, both LMIs (25) and (26) return results
that cannot guarantee stability. We then simulate our system, in-
creasing r each simulation until the tracking error no longer con-
verges to zero. We then denote this value of r as rmax. For our setup
described here, rmax = 0.8, with the system entering a limit cy-
cle rather than converging to zero. Our LMI framework is therefore
fairly effective, as it is able to guarantee stability up to 92.5% of rmax.
One behavior worth noting is that the value of rmax observed
in simulation can vary with the value of yr . For example, if yr =

3, r can be increased to 0.89 before instability occurs. This would
indicate that there is a region of attraction for this system, inside
which the tracking error converges to zero. This indicates that the
conservatism of our LMI condition is dependent on the value of the
reference input yr .

6. Applications to nanopositioning control

We now confirm the theoretical results of our paper using ex-
periments, in particular those of Section 4. We performed a series
of tracking experiments on a commercial nanopositioner (Nano
OP-65, from Mad City Labs), and compared the results under dif-
ferent control schemes. Online control implementation and data
collection was provided by a dSPACE platform (DS1104). Our work
begins with the formulation of the mathematical model of the
nanopositioner used to design the controller. A hysteresis opera-
tor cascaded with linear dynamics was considered, as illustrated
in Fig. 2. Two steps are required to create such a model: first,
quasi-static large amplitude signals are used to identify a hystere-
sis model, then small-amplitude sinusoids are applied over a wide
band of frequencies to identify the vibrational dynamics. As the
hysteresis of our nanopositioner was not odd-symmetric, we uti-
lized a modified PI operator Γ with 8 play operators and 9 dead-
zones to model the hysteresis. The weights of the play operators
were

θh = [0.694, 0.196, 0.041, 0.050, 0.040, 0.050, 0.023, 0.054]

and the weights of the deadzones were

θd = [1.056, 0.650, 0.327, 0.432, 9.130,−1.138,
−0.154,−0.787,−0.296].

Our vibrational dynamics were modeled by a 4th-order transfer
function,

Gp(s) =
4.7 · 1017

s4 + 1.6 · 104s3 + 6.6 · 108s2 + 5.0 · 1012s + 8.3 · 1016 . (50)

In order to improve computation accuracy we used a balanced
state-space realization (Zhou, Doyle, & Glover, 1996) of the system
(50). This results in the model

ẋ(t) = 1.0 × 104

−0.024 1.614 −0.126 0.061
−1.614 −0.266 0.721 −0.161
−0.126 −0.721 −1.060 1.677
−0.061 −0.161 −1.677 −0.221


× x(t)+

76.47
240.4
242.7
83.37

 u(t)

y(t) =

76.47 −240.4 242.7 −83.37


x(t). (51)

Note that, while this nominal dynamicsmodelwill be used for con-
troller design, the actual dynamics model of the nanopositioner
would have unity gain at DC. This is a consequence of the hystere-
sismodeling; the gain of the system is effectively incorporated into
the hysteresis model. This was discussed in Remark 1. After identi-
fying ourmodified PI operator, theminimum gain of the hysteresis
operatorwas found to be 4.69, with amaximumof 13.36, while the
gain of the plant (51) is 5.62. Let the equation

ẋu(t) = Auxu(t)+ Buu(t) (52)
yu(t) = Cuxu(t) (53)

denote the canonical form of the dynamics (51) with unity gain, i.e.
y(t) = 5.62 yu(t). We can then fit our nanopositioning system into
the form considered in (7)–(9) by lettingm = 0 and p = 4, where

A0 + Bλ = Au, B = Bu, C = Cu (54)
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Fig. 3. Hysteresis loops for play operators with equalized relative gains, where r is
equal to 0.7, and µ = 3.

Our experiments focused on tracking sinusoidal signals of the
form

yr(t) = 20 sin(2πωt)+ 30µm (55)

where ω = 5, 25, 50, 100, 200. We utilized two classes of con-
trollers in our tests. First, we utilized the servocompensator con-
troller described in Section 4. A Luenberger observer, based on the
model in (51), was implemented to emulate state feedback. Be-
cause u(t) is unavailable, the control signal v(t) was used in this
observer. The controller gains are chosen using a robust Riccati
equation method (Xie & Petersen, 2008) based on the nominal dy-
namics model (51), a method which was also used in Esbrook et al.
(in preparation). Let v(t) = [K2, K3, K4]γ (t) denote the control
synthesized by this method. Based on the definitions of (54) and
Remark 2, θ̄h for themodified PI operator considered takes values in
the interval [4.69/5.62, 13.36/5.62] = [0.83, 2.38]. The bound-
aries of this interval form the values of min(θ̄h) and max(θ̄h). We
can then use the LMI toolbox of MATLAB to solve for the matrix P
in (25) or (26).

Four different versions of the servocompensator-based con-
troller are used in our experiments. First, we consider a single-
harmonic servocompensator (SHSC) with eigenvalues of 0, ±jω
and amulti-harmonic servocompensator (MHSC)with eigenvalues
of 0, ±jkω, k = 1, 2, 3, both of which are coupled with hysteresis
inversion. The inverse of a modified PI operator can be computed
in a closed-form, a procedure that is described in Kuhnen (2003).
Prior experimental tests have shown the effectiveness of these con-
trollers in nanopositioning control (Esbrook et al., in preparation).

The final two servocompensators used are the SHSC and MHSC
designed to operate without hysteresis inversion, the stability of
which can be guaranteed by verifying the LMI condition in (26). For
example, consider an SHSC with ω = 50. Our controller gains are
chosen (according to the method of Esbrook et al., in preparation,
and Xie & Petersen, 2008) as

[K2, K3, K4]

= [0.059, 0.081, 0.053, 0.021,−0.002,−1.4,−1.00].

The LMI condition (26) can then be verified in the LMI toolbox,
with Λ = 4.44. We also utilize Iterative Learning Control (Wu &
Zou, 2007) for comparison purposes in our tests. Like the servo-
compensator, this method is specialized to periodic signals, and is
also robust to plant uncertainty. It is also well accepted in the field
of nanopositioning control.

Fig. 4 shows the resulting tracking error of the MHSC and SHSC
with and without inversion, together with the Iterative Learning
Control (ILC) results. One trend observed in all of the servocompen-
sator-based controllers is that their performance is substantially
Fig. 4. Mean tracking error for controllers used in experimental trials. SHSC refers
to compensation of only the reference harmonic, andMHSC refers to compensation
of the first, second, and third harmonics of the reference.

Fig. 5. Frequency spectrum of the tracking error with SHSC with and without
inversion. Bump near 3 kHz is caused by the resonance peak of the nanopositioner.

more robust to increasing frequency than ILC. This is particularly
true for the servocompensators that do not use inversion, which
see very little variation in their performance until the reference
reaches 200 Hz. We immediately note that the SHSC without in-
version is the worst-performing controller; this is contrasted by
the performance of theMHSCwithout inversion, which is the best-
performing controller.

This seeming contradiction can be explained by looking into the
frequency spectra of the error signals, provided in Fig. 5.We can see
from this graph that the frequency components of the tracking er-
ror above 600 Hz are larger when inversion is used as compared to
when it is left out. The modified PI operator attempts to approx-
imate the hysteresis with non-smooth play and deadzone opera-
tors. Therefore, we expect more high frequency components to be
introduced into the system using inversion than when inversion is
left out. The performance difference between the controllers is ex-
plained by the amplitude of the second and third harmonics, which
are much larger without inversion than with inversion. However,
once the MHSC is used, these harmonics are compensated and re-
moved from the system, meaning that the overall tracking error
is greatly reduced, especially when inversion is not used. In addi-
tion, the removal of the hysteresis inversion greatly reduces the
computational requirements of the controller. For example, the
MHSC without hysteresis inversion averaged a computation time
of 28 µs per sampling period, while the MHSC with inversion re-
quired 45 µs of computation time. This is a significant savings, es-
pecially since the controller possesses half themean tracking error
when the inversion is removed.
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7. Conclusions and future work

This paper has provided sufficient conditions for asymptotic
or exponential stability of systems with hysteresis. These results
contribute to the state of the art due to the lack of restrictions on
the order or number of zeros in the dynamicsmodel, and the ability
to prove that the tracking error converges to zero when constant
references are considered. This framework was also used to prove
boundedness under general reference trajectories. Based on these
results, we demonstrated the effectiveness of servocompensator-
based controllers in nanopositioning systems, where our stability
framework allows us to improve the tracking error performance
two-fold over existing techniques.

Future workwill focus on two directions. First, wewill work to-
wards a systematic controller synthesis technique in order to sat-
isfy the LMI conditions (25) and (26). Second, we will attempt to
rigorously prove the stability of observer-based controllers in sys-
tems with hysteresis by extending our existing framework.
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